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Abstract—A major challenge in data stream applications is the
change in the target variable over time in unexpected ways, a
phenomenon called concept drift (CD). Another challenge is the
emergence of novel classes, soliciting novelty detection (ND) by,
e.g., one-class or semi-supervised classification. But, in online
ND, these two challenges interfere with each other although
they should be dealt with jointly. We present the cluster drift
detection (CDD) algorithm that, using a single hyper-parameter,
performs offline clustering to learn the diverse normal profile,
and detects online whether a never-seen-before example is novel
or normal using a multivariate statistical test. If it is normal,
the CDD uses this example to update the normal-profile cluster,
enabling continuous CD monitoring. Experimental results using
popular real-world and synthetic data sets, as well as a precision
agriculture data set of banana plants under water stress and
a COVID-19 data set demonstrate that the CDD algorithm: 1)
distinguishes between normal and novel concepts more accurately
than state-of-the-art algorithms, 2) provides information about
why specific novel concepts are misdetected, and 3) is more robust
to the complexity, drift, and noise in the problem than other
algorithms.

Index Terms—Concept drift, Novelty detection, Streaming data

I. INTRODUCTION

Most machine-learning methods assume examples are gen-

erated by a stable process, coming from a stationary distri-

bution. But, this is not true in many real-life applications,

especially in data streams. Assuming stationarity to deal with

data streams, the ability to identify novel concepts, different

from the normal profile, is challenging.

Outlier and novelty detection both aim at detecting anoma-

lies, but the former goal is cleaning deviant examples from

the data, and the latter goal is identifying new examples

as novel to the data. Some works [1] do not distinguish

between the two (calling them both ”anomaly detection”):

some originally proposed for outlier detection are also used for

novelty detection [2], [3], while some can do the opposite [4].

Algorithms for novelty detection (ND) learn first (offline)

the normal profile, and second (online) distinguish examples

that fit the (normal profile) model from those that are do not

(i.e., novel). Often, the normal profile should be represented

by more than a single source [e.g., several types of consumers,

each with its own distribution, make up the normal (transac-

tions) profile in a fraud detection task]; hence, a single-source

assumption can undermine the results. In the offline phase,

there are only normal examples, so fewer parameterized or not

well-optimized single-source algorithms may wrongly be pre-

ferred, and yet, hyper-parameter tuning and feature selection

are neither trivial nor accurate. However, the ability to ignore

irrelevant dimensions may be found essential. In the online

phase, 1) data may be infinite, so the ND algorithm cannot

expect to store all examples in memory, and 2) the normal

profile distribution changes over time, so the algorithm must

continuously update the model to keep its stable accuracy.

To address the above issues, we propose the cluster drift

detection (CDD) algorithm that combines 1) clustering for

deciphering the normal profile distribution; 2) Hotelling’s T 2-

based statistical test to detect concepts that are novel to all

clusters and, thus, to detect drifts from the normal profile; and

3) online updating of the normal profile, enabling continuous

concept-drift monitoring. In its first (offline training) phase,

CDD clusters the normal profile data into homogeneous clus-

ters, detecting sub-distributions in the domain, if they exist

(if the profile does not contain meaningful clusters, CDD

treats all the examples from the normal profile as one cluster

from a single distribution). In its second (online) phase, the

CDD algorithm detects whether a never-seen-before arriving

example is novel based on its Hotelling’s T 2 statistic (distance)

to the clusters composing the normal model. If based on

the statistic, the example cannot be associated to any of the

clusters, it is defined as novel to the normal profile, but if it can

be associated to any of the clusters, the statistics (mean and

covariance matrix) of the nearest cluster are updated online,

thereby adopting the normal profile to better monitor future

concept drifts.

Our contributions are: 1) while ND clustering-based ap-

proaches [5] associate an example to a cluster based on

the less-informative (arguable) Euclidean distance, the CDD

associates examples statistically by accounting for the co-

variances and normalizing distances by standard deviations,

exploiting variable interrelations to detect novelty; 2) while

both modern ND approaches, e.g., deep auto-encoder [6], and

traditional ones, e.g., statistical process control (SPC) [7],

miss the rich complex distribution of the normal profile by

assuming unimodality, the CDD decomposes the distribution

into sub-group distributions that enrich domain representation;
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and 3) while most ND approaches assume stationarity, the

CDD dispenses with this assumption and addresses ND in data

streams by updating online the model clusters of the normal

profile as more data are seen.

Finally, we evaluate the CDD using 1) four ND applications

including two streaming data sets for detecting intrusion in

computer networks and fraud detection and two anomaly

detection data sets; 2) experiments with synthetic data to

demonstrate the CDD robustness to the number of sources

in the normal profile, noise in the distribution, and level of

concept drift; 3) a precision-agriculture data set describing

the development of water stress in banana plants; and 4) a

COVID-19 patient database.

Sect. II presents related work, Sect. III describes the CDD

algorithm, Sects. IV–VII present its empirical evaluation, and

Sect. VIII concludes and suggests future research directions.

II. RELATED WORK

Most ND approaches are static, e.g., kernel-based [8], [9],

clustering-based [10], [11], based on density estimation [2],

[12], or SPC [7], [13]. Another approach is isolation forest

(IForest) [3] that isolates anomalies, rather than learns the

normal profile, using decision trees that identify novelties.

A recent deep auto-encoder (AE) [6], [14] learns hidden

representations of the normal profile, and by the reconstruction

error distinguishes it from novel concepts.

Streaming ND can be either multi-class [15]–[17] or one-

class. OLINDDA [5] is a one-class streaming ND algorithm

that represents the normal profile by clusters in the data

distribution, where the boundaries of each are computed by

the distance between the centroid and the example farthest

from it, and the union of the clusters’ boundaries defines

the model’s boundaries. MINAS [17] extends OLINDDA for

the multi-class scenario, learning decision boundaries for each

class separately. Another one-class streaming ND algorithm is

streaming half-space trees (HST) [1], an ensemble of decision

trees with random generated rules. HST is very efficient in

terms of time and memory complexity, but it has difficulties to

ignore irrelevant dimensions and requires input to be in [0,1],

which is hard to guarantee, especially in data streams. Finally,

lightweight on-line detector of anomalies (LODA) [18] is an

online outlier detection algorithm that uses an ensemble of

one-dimensional histograms to detect anomalies.

III. ONLINE CLUSTER DRIFT DETECTION

Figure 1 (top) depicts the CDD algorithm. In the first phase

[Figure 1 (top-left)], it learns the normal profile distribution

by clustering the normal examples (Sect. III-A). In the second

phase (Sect. III-B), any new example arriving online is con-

sidered (by Hotelling’s T 2 test) for association to any of the

clusters of the normal profile [Figure 1 (top-middle)], and is

associated with the nearest cluster (top-right) unless declared

novel (black points) because it does not statistically fit any

of the clusters. Associated examples are then used to update

online the parameters of the normal profile [Figure 1 (bottom);

see Sect. III-C].

A. Learning the Normal Model

To decide if the normal profile distribution is based on one

or more sources, the latter case soliciting clustering, CDD

uses the Hopkins statistic [19] for randomness. The statistic

measures the difference between uniformly distributed data

and a random subset of the original data. If the statistic is

greater/smaller than an accepted threshold of 0.5, then the

null hypothesis of ”no difference” can/cannot be rejected. If

rejected, cluster tendency is declared, and clustering is applied

to the data, whereas if it cannot be rejected, the normal profile

is considered as based on a single cluster. Any clustering

method can be used, but we recommend the Gaussian mixture

model (GMM) [20] since it considers the covariances, which

are needed in the online phase, unlike, e.g., K-means. Cluster

validity (i.e., setting the number of clusters) is determined by

the maximal value of the silhouette coefficient [21]. For each

cluster, the CDD estimates its centroid and covariance matrix,

and counts its number of examples, which are used in the

online phase.

B. Online Novelty Detection vs. Example Association

After establishing the normal profile distribution, the CDD

detects novel concepts in the stream through the multivariate

Hotelling T 2 statistical test. This statistic measures the Ma-

halanobis distance of Xi, the ith new example, from the kth

of K clusters, having centroid (sample mean) Ck, covariance

matrix Sk, and number of examples Mk:

T 2 = (Xi − Ck)
t ∗ Sk

−1 ∗ (Xi − Ck). (1)

This statistic, multiplied by a constant, is F -distributed with

P and Mk − P degrees of freedom [22]:

T 2 ∗ Mk ∗ (Mk − P )

P ∗ (Mk − 1) ∗ (Mk + 1)
∼ FP,Mk−P , (2)

where P is the number of features (identical for all clusters).

The upper control limit (UCL) of the kth cluster is:

UCLk =
P ∗ (Mk − 1) ∗ (Mk + 1)

Mk ∗ (Mk − P )
∗ Fα,P,Mk−P , (3)

where Fα,P,Mk−P is the (1 − α)th quantile of the FP,Mk−P

distribution. A statistic T 2 (1) for Xi to be associated with

cluster k that is greater than UCLk (3) indicates that Xi

cannot be associated with k, and thus is defined as ”novel”

(T 2 is non negative by definition; thus, the lower control limit

for all clusters is equal to 0). Since this test for clusters with

Mk ≤ P has non-positive degrees of freedom, making the F -

distribution meaningless, we apply the test only for clusters

here Mk > P , which are then defined as valid.

While a new example that cannot statistically fit (based on

the T 2 test) any of the valid clusters is defined ”novel” for all

clusters, a new example that can be associated with at least one

of the clusters is included in the normal model and either is:

1) associated with the nearest cluster (”hard association”) or

2) probabilistically associated with the nearest cluster (”soft

association”). Associated probabilistically, the probability is

one minus that of the new example to be novel (the ”anomaly
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Fig. 1: CDD association (top) and parameter update (bottom).

score”), i.e., the probability to not fit the nearest valid cluster

(by the T 2 test), which is P (Fst > FP,Mk−P ), Fst is the

statistic [left expression in (2)]. We use hard association when

evaluating the algorithm detectability between normal and

novel examples, and soft association (”anomaly scores” for all

examples) when we compare the association probability with

different thresholds (to find a balance between Type I and Type

II errors), e.g., when computing the area under curve (AUC)

in Sect. IV. Then, after associating an example to a cluster,

the cluster statistics are updated online (Sect. III-C).

C. Online Update of the Normal Profile

The CDD periodically updates the normal profile clusters’

statistics to ensure that clusters represent the current normal

profile to detect future drifts. In an illustration of the update

mechanism [Figure 1 (bottom)], Step 1 represents initial

clustering into three clusters. In Step 2, new examples are

associated with the blue cluster, updating its centroid to move

down. Due to this update, a novel example in Step 3 (the black

point) is not erroneously detected as normal, but as novel.

Parameters are updated for cluster k independently of other

clusters once it grows by π∗Mk examples, 0 < π < 1. Hyper-

parameter π controls the update timing to maintain stable

process, which is especially important as the online association

is based on a statistical test and not on ground truth labels. If,

on the one hand, we update the cluster statistics with every

new example arriving, the chance increases that false positive

(identifying normal as novel) and false negative (identifying

novel as normal) errors will follow each other, and no real

improvement in drift detection will be achieved. If, on the

other hand, we update the cluster statistics only after a (large)

batch of new examples arrives, then the normal profile will not

be updated frequently enough, and once updated, it is more

likely that the update will be based mostly on normal profile

examples, which are the majority class, undermining novelty

detection. Although π could be set separately for each cluster,

for simplicity, it is set here as identical for all clusters.

Once needing updating, a cluster centroid and covariance

matrix are updated

Ck[t] := w ∗ Ck[t] + (1− w) ∗ Ck[t− 1] (4)

Sk[t] := w ∗ Sk[t] + (1− w) ∗ Sk[t− 1], (5)

where w is the ratio of the number of examples added to a

cluster, π ∗ Mk, to the number of examples in the updated

cluster, (π+1)∗Mk. Once used to update cluster parameters,

updating examples are deleted from memory. If not valid

because Mk ≤ P (Sect. III-B), cluster k can become valid

once Mk > P following some updates.

1) Memory Complexity: This is O(K∗P 2+P ∗π∗Mnorm),
where Mnorm is the number of examples of the normal profile.

The first term stands for the P ×P covariance matrix for each

of the K clusters, and the second stands for the π ∗Mnorm

P -dimensional updated examples. Since following update, the

number of examples belonging to the normal profile grows

with time, we bound this number, saved in memory, by C,

enabling the CDD to deal with streaming data. Once C
examples have been saved in memory, 10% of the oldest

examples in the largest cluster are removed, allowing the CDD

to save fresh arriving examples in memory, further updating.

2) Cluster Merging: Once cluster i has been updated, CDD

tests whether it has become too similar to cluster j �= i,
soliciting cluster merging. Hypothesis

H0 : Ci = Cj H1 : else

is tested using a two-sample statistic [23],

T 2 =
ni ∗ nj

ni + nj
∗ (Ci − Cj)

t ∗ S−1 ∗ (Ci − Cj), (6)

where the estimated pooled covariance matrix is,

S =
(ni − 1) ∗ Si + (nj − 1) ∗ Sj

ni + nj − 2
, (7)

and ni and nj are the sizes of the clusters. When multiplied

by a constant, the statistic follows an F -distribution with P
and ni + nj − 1− P degrees of freedom [22]:

T 2 ∗ ni + nj − 1− P

(ni + nj − 2) ∗ P ∼ FP,ni+nj−1−P . (8)

CDD applies this test for the ith cluster against all the

other clusters. If the null hypothesis is not rejected for the

jth cluster, CDD merges the two, and the parameters of the

new, merged cluster are estimated with a weighted mean for

both the centroid and covariance matrix. For simplicity and

conventionally, CDD uses the same α (the test significance

level) as for the SPC test (3). This test is taken only when

ni+nj − 1−P > 0 because, otherwise, the statistic has non-

positive degrees of freedom, which makes the F -distribution

meaningless.

IV. EXPERIMENTS: REAL-WORLD DATA SETS

In this section, we compare the CDD to other ND algorithms

using the AUC and two streaming data sets and two anomaly

detection static data sets. The first data set is of detecting intru-

sion in computer networks, which is a streaming benchmark

in evaluating anomaly detection (both supervised and semi-

supervised), and the second is a huge fraud detection data set

that can be used as streaming data since the data are ”infinite”.

Duplicate examples, categorical features with too many

categories, and zero variance features were removed. Cate-

gorical features were transformed using one-hot encoding to
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insure that the distance between each two categories is equal.

Numeric features of training examples were Z-scored, and the

corresponding features of the test examples were scaled based

on the means and variances computed in the training. That is,

mean μj(train) and standard deviation σj(train), computed

for feature j using the training set, scaled this feature in the ith

test example Xij(test) = [Xij(test)−μj(train)]/σj(train).
For HST, we used min-max scaling to ensure that the features

are bounded in [0,1], as HST requires.

The CDD was implemented in Python. The Scikit-Learn

package [24] was used for GMM clustering. α = 0.05 (3) and

π = 0.1 (Sect. III-C) were default hyper-parameters.

A. Data Sets and Evaluation Metrics

For detecting intrusion in computer networks, we used the

10% version of the KDD Cup 1999 data set [25] from the

UCI. This was originally created for supervised classification

tasks; thus, its training set consists of both normal traffic

and attacks. Focused on ND, we used only the normal traffic

examples for training (87,832 examples). The test consists of

both normal traffic (47,913 examples) and intrusions of four

classes/attacks: denial of service attack (DOS), user to root

attack (U2R), remote to local attack (R2L), and probing attack

with 21,765, 39, 2,328, and 1,269 examples, respectively.

For fraud detection, we used the Synthetic Financial Dataset
for Fraud Detection provided by Kaggle and created by the

PaySim mobile money simulator [26]. Each example has a

time step that maps a unit of time in the real world, e.g.,

Step 1 represents the first hour. Since the data set was not

split into training and test sets, we chose all first time steps

of normal transactions as the training set (2,692 examples),

and the remaining steps as the test set (6,362,620 examples,

0.128% of them fraudulent).

The two additional data sets (OpenML [27]) are not used

in streaming, but are used for anomaly detection. The first is

page-blocks, a document analysis task, in which 4, 913 blocks

of text, which are the majority class (89.8%), establish the

normal profile, whereas 560 graphic areas of classes horizontal

lines, pictures, vertical lines, and graphics are labeled as

anomalies (10.2%). The second data set is Satellite, where

the task is to identify two classes of vegetation as abnormal

(with 75 anomalies; 1.49%) to a normal profile of four soil

classes (5, 025 normal examples). For both data sets, we used

200 randomly normal examples for training and the rest for

testing.

B. First Phase (offline): Building the Normal Model

To decide if there is more than one distribution in the

data set, which solicits clustering, we computed the Hopkins

statistic (Sect. III-A), which was about 1, 0.97, 0.94, and 0.81

for the intrusion, fraud detection, page-blocks, and Satellite

training sets, respectively – all higher than the conventional

0.5 threshold, indicating the existence of meaningful clusters

in these data sets.

To avoid overfitting (reflected in too many unnecessary

clusters), the optimal number of clusters must be defined

Fig. 2: Intrusion Detection for Different Numbers of Clusters.

according to the training set size (in a positive correlation)

and the feature dimension (in a negative correlation), since

CDD defines valid clusters as those with more examples than

features. Empirically, we observed that the number of clusters

which maximizes the silhouette coefficient (i.e., our cluster

validity in accordance with Sect. III-A) is much smaller than

the maximum number according to this intuition. Figure 2

shows a positive correlation between the silhouette coefficient

(blue) and the CDD AUC value (orange) for different numbers

of clusters in the initial clustering for the intrusion detection

data set (both recommending four to six clusters), where the

picture is similar for the fraud detection data set. For automatic

model selection (Sect. III-A), in the experiments we used the

number of clusters that maximized the silhouette coefficient,

which for the the intrusion, fraud detection, page-blocks, and

Satellite data sets is six, five, three, and two, respectively.

C. Second Phase (online): Novelty Detection

For the experiments, we used both state-of-the-art static and

streaming ND algorithms. One static competitor is Hotelling’s

T 2, a representative of the SPC approach to ND. Because the

CDD and Hotelling’s T 2 use the same statistic, but the CDD

also uses clustering, this comparison examines the contribution

of clustering to ND. Other representatives of the static state-of-

the-art ND algorithms are: auto encoder (AE), one-class SVM

(OCSVM) [8], local outlier factor in ND mode (LOF) [2], and

isolation forest (IForest) [3]. For the last three, we used the

Scikit-Learn package, and for the first algorithm PyOD [28].

The streaming ND competitors are HST and LODA. For the

first one, we used the Scikit-multiflow package [29] and for

the second PyOD [28].

For a fair comparison between the two streaming data sets,

fraud and intrusion detection, for each algorithm, we tested

several values of hyper-parameters. In almost all cases, the

default parameters were the best. The only exception was for

the intrusion detection data set and the LOF algorithm that

significantly benefited from 200 neighbors more than from

the default value of 10. For the fraud detection data set, we

could not increase the number of neighbors for LOF or the

number of trees in IForest due to memory issues. For HST,

in the intrusion detection data set, the optimal setting was

200 trees, a depth of 15, and window size of 20,000. For

the fraud detection, the default values of 25 trees, a depth of

10, and window size of 2,000 yielded the best results. For

LODA and the intrusion detection data set, increasing the
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default numbers of bins from 10 to 100, random cuts from

100 to 500, and contamination from 0.1 to 0.3 significantly

improved the results, but also significantly extended the run

time. Thus, for the huge fraud detection data set, we used

the default values for the numbers of bins and random cuts

(both affecting the run time). For the smaller two static

data sets, we used the default hyper-parameters for all the

algorithms. For the AE, the main default parameters were:

hidden neurons–64,32,32,64, hidden activation–ReLU, output

activation–Sigmoid, optimizer–Adam, and dropout rate (same

for all layers)–0.2. For the IForest, the main default parameters

were: number of trees–100, maximum examples to draw each

tree–the minimum between 256 and the number of training

examples, and no limitation on the maximum number of fea-

tures per tree. To enable nonlinear mapping for the OCSVM,

we used a radial basis function kernel. For the Hotelling T 2,

we used our CDD implementation. The CDD, IForest, AE,

HST, and LODA are randomly initialized; hence, we ran them

ten times with different random seeds and reported the means

of these ten runs.

TABLE I: AUC for real-world data sets

Algorithm Fraud Intrusion Page-blocks Satellite Average
CDD 0.898 0.987 0.933 0.949 0.942
LODA 0.590 0.957 0.858 0.771 0.794
HST 0.770 0.949 0.860 0.844 0.855
AE 0.830 0.980 0.930 0.898 0.909
IForest 0.769 0.985 0.907 0.948 0.902
OCSVM 0.744 0.970 0.932 0.930 0.894
LOF 0.631 0.977 0.965 0.938 0.878
T 2 0.879 0.980 0.939 0.942 0.935

Table I shows that for three of the four data sets, the CDD

achieved the best AUC results, and for the fourth, it was third

after LOF and T 2. For the intrusion detection data set, all

of the algorithms achieved high results, but LODA and HST

were the lowest, although both are streaming. The window

parameter, which controls the frequency of the update of the

HST algorithm, that gave the best results was very large,

which might suggest that the HST did not benefit from its

update mechanism for the intrusion detection data set. For the

fraud detection data set, LODA and LOF achieved the worst

results, perhaps because their hyper-parameters could not be

optimized due to memory and run time issues. Although all

of the randomly initialized algorithms achieved stable results

(std values are not shown), the CDD was the least noisy (0%

std) for all data sets besides page-blocks (0.11% std).

Further analysis for the intrusion detection data set shows in

Figure 3a the AUC results of most of the algorithms over time

in steps of 3, 000 examples (we omitted inferior algorithms to

make the figure more readable). While the LODA was inferior

almost always, most algorithms are similar most of the time

with an advantage to CDD. Besides at a single time step (6),

CDD is always the best or among the best algorithms, showing

stable performance. We relate the drop in performance of

almost all algorithms from time step 20 to the increasing

proportions of anomalies from this step.

(a) AUC Over Time. (b) Error Analysis.

Fig. 3: Analyses for the Intrusion Data Set.

Drilling down the CDD performance for the intrusion detec-

tion data set reveals an inferior detection rate (DR) for some

of the attacks. For example, while CDD and T 2 had similar

DRs for the DOS attacks, CDD was inferior regarding the

R2L attacks. Figure 3b shows, using the first two principal

components [30], clustering of the normal profile transactions

into (the optimal number of) six clusters. The figure also shows

a random subset of the R2L (orange points) and DOS (red

points) attacks. While most of the DOS (red) points do not

overlap any of the normal profile clusters, which explains the

high DR for this attack, R2L examples overlap some clusters,

indicating that the R2L attack examples are not too statistically

different from some of the normal transaction clusters, which

explains the errors the CDD makes for this attack.

Run time is crucially important in streaming algorithms in

the online phase since novelty detection must be as fast as

possible. We tested run time of these algorithms using their

default hyper-parameters (which did not necessarily yielded

the best run time, but were optimized for best accuracy)

and using the intrusion detection data set. The HST was

the fastest algorithm with an average processing time per

example (including both evaluation and update mechanism) of

0.00189 seconds, the CDD was second with 0.0144 seconds,

and LODA was third with 0.0156 seconds.

D. Sensitivity Analysis

To examine the effect of its two hyper-parameters, we tested

the CDD in two experiments using the fraud detection data set.

Significance Level Effect (α). Detection tasks involve

a trade-off between the DR and true negative rate (TNR)

performances. The CDD trades off these performances by

controlling the significance level (3), and Figure 4a shows this

for levels from 0.01 to 0.99. As the figure demonstrates, a high

significance level decreases the TNR, but increases the DR, in

accordance with the decrease in the UCL [as in (3), the UCL

decreases with the decrease of the F value, which decreases

with the increase of α)], and vice versa. The choice for α
depends on user preferences. For scenarios where the DR and

TNR are equally important, we recommend setting α at 0.05-

0.1 (as is customary in most statistical tests), and then there is

no need to optimize α. However, if the DR is more important

than the TNR, we recommend increasing α, and vice versa.

175

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on April 13,2021 at 19:25:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) Significance Level Effect. (b) Update Parameter Effect.

Fig. 4: Hyper-Parameter Effects.

Update Parameter Effect (π). Figure 4b shows the effect

of the update parameter (π) on the AUC for π values ranging

from 0.01 to 0.99 (note that AUC values for the full range of

π values are between 0.9 and 0.92 with changes of an order

of 0.01). The AUC increases until a certain point, which is

reasonable, since as long as the update mechanism is based

on more examples, it will be more reliable (Sect. III-C). On

the other hand, setting too high a π value (not shown in the

figure) causes the update mechanism to take place only rarely.

For example, if we set π to be 10 for a cluster of 50,000

samples, update will occur only when 500,000 examples are

associated with this cluster, which can take too long, if at all.

Although the best π value may change from task to task, based

on our empirical experience, we recommend setting π ≥ 0.1,

where π = 0.1 is the CDD default value (used throughout this

paper).

V. EXPERIMENTS: SYNTHETIC DATA SETS

In this section, we evaluated the algorithm sensitivity to

the number of sources in a multi-source distribution of the

normal profile, level of concept drift, and number of irrelevant

dimensions. We used the Scikit-Learn package (with the make-
blobs function) to generate two-dimensional data of sources

with a standard deviation of 0.5.

Number of Sources. We gradually increased the

number of sources in the normal profile distribution

from one with a centroid of (2, 2) to 8 with centroids

(2, 2), (−2,−2), (2,−2), (−2, 2), (6, 6), (−6,−6), (6,−6),
and (−6, 6)), and in each case, uniformly sampled 1,000

training examples from the increased number of sources. For

the test set, we sampled 10,000 examples, 99% from the

normal profile and 1% uniformly in [−8, 8]2, the latter used

as the ground truth anomalies. Figure 5(a) shows that while

the CDD, OCSVM, and LOF experience only a slight drop

in their AUC performances, AUC values drastically drop for

AE and T 2, already for two sources, and for IForest, HST,

and LODA from five sources.

Level of Concept Drift. For training, we sampled 1,000

examples from two clusters with centroids of (2, 2) and

(−2,−2). For testing, we gradually shifted the centroid of

the first cluster to (2+d, 2+d), where d is the drift level, and

sampled 10,000 examples, 99% from the (training) normal

profile distribution and 1% uniformly in [−8, 8]2, the latter

used as the ground truth anomalies. Figure 5(b) shows that

IForest, AE, and LODA are the most sensitive algorithms to

the concept-drift level, and T 2 and HST are almost insensitive

to this level, but are less accurate. Figure 5(b) also shows

that the CDD, IForest, OCSVM, and LOF achieve similar

high results for d = 0 (no drift), where as the AE and T 2

show inferiority [this was already seen for this case of two

centroids (2, 2) and (−2,−2) in the first experiment, i.e., the

second point on the graph in Figure 5(a)]. But, while IForest,

OCSVM, and LOF present a withdrawal in their AUC values

with the drift level (for IForest, AUC was significantly worse

from d = 0.4, where for OCSVM and LOF, AUC values were

significantly worse from d = 0.6), the CDD keeps high stable

performance regardless of the drift level.

Number of Irrelevant Dimensions. While feature selection

is elementary in supervised learning, it is more challenging in

ND, since the training set consists of only one-class examples.

Therefore, we challenged the ND algorithms with increasing

numbers of irrelevant dimensions. The relevant dimensions

were the first two, where for the training set, we sampled

1,000 examples from two clusters with centroids of (2, 2) and

(−2,−2), and for the test set, we sampled 10,000 examples,

99% from the normal profile and 1% uniformly distributed in

[−8, 8]2, the latter used as the ground truth anomalies. Then

we added to each example d = [1, 8] irrelevant dimensions

sampled uniformly in [−1, 1]d. In this way, we get examples

in 2 + d dimensions, where only the first two are relevant to

determine if an example is normal or novel. Figure 5(c) shows

that IForest and HST are the most sensitive to the irrelevant

dimensions, probably since they both generate random rules

(i.e., randomly select variables for a tree), which may be

devastating as the numbers of irrelevant dimensions (variables)

increases. The AE and LODA are less sensitive to these

dimensions, but are also less accurate. The CDD, OCSVM,

LOF, and T 2 show stable and similar results, where the CDD

outperforms the other three.

VI. WATER-STRESS EXPERIMENT

As part of a precision agriculture project, with an agro-

biotechnology partner, we tested the ability of the CDD

algorithm to detect novelty in the form of water stress in

greenhouse banana plants. The experiment was conducted with

four treatment schemes of watering, each applied to another

30 plants, that simulated different water stress conditions. In

the first three days of the experiment, all 120 plants were

equally watered by an agronomist, and in the next 14 days,

watering was done according to four schemes: A–100%, B–

80%, C–60%, and D–40% of the water quantity of the first

three days (also the 100% level was elevated through the

experiment to provide the plants with a water level that suited

their development stage, and the 80-40% were derived from

this 100%). While the first three days were the ”in-control”

stage (normal profile), the next 14 days for schemes B–D were

the ”out-of’control” stage.

Measurements taken to characterize the plant condition on

each day were the amounts of water entering and leaving the
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Fig. 5: Evaluation of the effects of the: (a) number of sources, (b) level of concept drift, and (c) number of irrelevant dimensions.

plant and their electrical conductivity levels, (greenhouse) out-

side temperature, chlorophyll levels, plant size, and maximal

and average plant temperatures (the three last measurements

were captured from an infra-red image of the plant, aided by

an agronomist’s annotation of the plant in the image). Feature

scaling followed that described in Sect. III.

We used all 360 examples from the first three days as the

”in-control” points, as all plants during this period received

the same amount of water regardless of the treatment scheme,

thereby establishing the training set (normal profile). All 1,680

examples from the following 14 days served as the test set.

For these days, and according to the agricultural protocol,

we considered the examples of scheme A as normal (i.e.,

plants watered with the optimal water amount), and all other

examples as novel (i.e., water amount was less than optimal)

in order to evaluate detection of a novel condition of water

stress.

For comparison, we used the algorithms described before

(Sect. IV-C) with their default hyper-parameters. The CDD

achieved the highest AUC value of 0.906, followed by LOF,

and T 2 with AUC values of 0.872, and 0.867, respectively.

Therefore, the CDD is most likely the best water-stress detec-

tor.

VII. COVID-19

The COVID-19 pandemic started in December 2019 and has

been spreading around the world. Many countries were, and

still are, in lockdown with the aim to slow down the spread

of the disease. One of the biggest problems in many places

is that the number of ventilators is limited. Hence, predicting

whether a sick person will deteriorate is an important task.

One of the major challenges in doing this is that most of the

sick people easily recover. Therefore, learning a model of the

patient who will recover is a reasonable idea (i.e., one-class

classification).

We used a Kaggle open data set which included COVID-

19-confirmed patient data such as age, sex, symptoms, and

outcome (which may be either discharged/death or empty if a

patient does not have an outcome). From the symptoms, we

derived for each patient binary variables indicating whether

they have fever, cough, and fatigue (one binary variable for

each symptom).

Since most of the patients do not have an outcome, learning

a one-class classifier (such as the CDD) is not trivial, and for

this reason, we designed an unsupervised version of the CDD.

As a first stage, we used only examples without an outcome as

the training set and learned clusters in the distribution (similar

to the CDD first stage). For testing, we used examples with an

outcome:discharged or death. We used a validation set, which

is a subset of the test set, and for each cluster, computed

the average Hotelling’s T 2 distance for both outcome groups.

Since the training set should depict the normal distribution

(and luckily the discharged group is the most common, hence,

the normal one), each cluster whose average Hotelling’s T 2

distance to the group of people who died was smaller than the

discharged group was removed. Finally, we evaluated the CDD

performance on the entire test set. In the test set, 67 of the

patients were discharged and 52 of them (78%) were correctly

identified as normal by the CDD, and eight of the eleven

patients who died were correctly detected as anomalies by

the CDD (72%). We believe that with a larger richer database,

which will probably be available soon, CDD could improve

this performance.

VIII. CONCLUSION

Data-stream analysis is not a trivial task, especially in

scenarios where novel concepts appear or drift over time.

We presented the CDD algorithm—an ND algorithm that

harnesses clustering and the Hoteling’s T 2 statistic to detect

novelty, while continuously updating the normal profile in

order to be sensitive to further concept drifts.

Compared with other static and streaming ND algorithms,

e.g., those based on trees, one-class SVM, statistical process

control, or auto-encoder neural networks, CDD includes only

two hyper-parameters to choose, which is an advantage for

a semi-supervised algorithm (practically, CDD relies on only

one hyper-parameter, π, because the significance level, α, is

conventionally, and as supported empirically here, set at 0.05).

As our error analysis for the intrusion detection data set

demonstrated, the CDD clustering mechanism enables ex-
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ploration of the source of errors in novelty detection. Such

analysis can promote applying additional rules or detection

mechanisms to identify examples previously associated erro-

neously with the normal profile as novel, an ability that is

lacking in other ND algorithms.

The results for the intrusion and fraud detection streaming

data sets suggest that the CDD can distinguish well between

the normal profile and novel concepts, better than state-of-

the-art ND algorithms. Since the former data set is large

and the latter is small, this superiority may suggest overall

superiority of the CDD. Also for the static data sets, CDD

succeeded. Demonstrated using synthetic data sets, the CDD

was more robust to the number of sources in the distribution,

level of concept drift, and number of irrelevant dimensions

in the normal profile than any of the other state-of-the-art

ND algorithms. Also, CDD was shown to detect water stress

in banana plants more accurately. Finally, applied to a small

COVID-19 database, an unsupervised version of the CDD

algorithm succeeded in detecting most of the patients who

were later either discharged or died, giving some hope to the

role ND algorithms may play in combating the COVID-19

pandemic.

Future work could be directed to alleviate the CDD time

complexity, as the algorithm consists of multivariate statistical

tests. This can be performed, e.g., by not considering the full

covariance matrix. Also, better, less extensive update mech-

anisms can be suggested. In addition, evaluation of different

types of concept drift (e.g., abrupt and gradual) is solicited.

Finally, the code for the CDD and data sets used in our

experiments are available online.
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