
Learning a Bayesian network classifier by jointly maximizing accuracy and 

information 

 

Learning a Bayesian network classifier by jointly maximizing accuracy and information [1,2,3] is a 

generalization of the RMCV algorithm [4] (see RMCV readme file). Similar to the RMCV, this code requires 

Kevin Murphy's Bayes Net Toolbox (BNT) [5], that is freely available from 

https://github.com/bayesnet/bnt. 

The difference between the RMCV code and this code is the score function. While RMCV uses accuracy, 

this code allows more flexibility for imbalanced ordinal classification problem. The score functions 

implemented are: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
∑ ∑ 𝐶𝑥,𝑦𝑦𝑥  ,∀𝑥=𝑦

∑ ∑ 𝐶𝑥,𝑦𝑦𝑥
      

𝑀𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑀𝐼) = ∑ ∑ 𝑝(𝑥, 𝑦) ∙ 𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥) ∙ 𝑝(𝑦)
)

𝑦𝑥

 

𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝐶𝐸𝑁) = ∑
∑ (𝐶𝑗,𝑘 + 𝐶𝑘,𝑗)𝑁+1

𝑘=1

2 ∙ ∑ ∑ 𝐶𝑘,𝑙𝑙𝑘
∙ ∑ (𝑃𝑗,𝑘

𝑗
∙ 𝑙𝑜𝑔2𝑁(𝑃𝑗,𝑘

𝑗
) + 𝑃𝑘,𝑗

𝑗
∙ 𝑙𝑜𝑔2𝑁(𝑃𝑘,𝑗

𝑗
))

𝑁+1

𝑘=1,𝑘≠𝑗

𝑁+1

𝑗=1

 

𝑀𝑎𝑡𝑡𝑒𝑤 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
𝐶𝑂𝑉(𝑈, 𝑉)

√𝐶𝑂𝑉(𝑋, 𝑋) ∙ 𝐶𝑂𝑉(𝑌, 𝑌)
 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) = ∑ ∑ 𝑝(𝑥, 𝑦) ∙ |𝑥 − 𝑦|

𝑦𝑥

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐼𝑀) = −𝑀𝐼(𝑋, 𝑌) + 𝐸𝑆(𝑋, 𝑌, 𝐸𝑟𝑟𝑠) = ∑ ∑ 𝑝(𝑥, 𝑦) ∙ (−𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥) ∙ 𝑝(𝑦)
) +log(1 + |𝑥 − 𝑦|))

𝑁

𝑥=1

𝑁

𝑦=1

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ 𝑎𝑙𝑝ℎ𝑎 (𝐼𝑀∝) = ∑ ∑ 𝑝(𝑥, 𝑦) ∙ (−𝑙𝑜𝑔 (
∝ 𝑝(𝑥, 𝑦)

𝑝(𝑥) ∙ 𝑝(𝑦)
) +log(∝ (1 + |𝑥 − 𝑦|)))

𝑁

𝑥=1

𝑁

𝑦=1

= 𝐼𝑀 − log(∝) × 𝐴𝐶𝐶 

 

1. The algorithm can be found in the extended_rmcv.m file. The header of the main function is: 

function [results, mats] = extended_rmcv(mytrain_data, mytest_data, class, 

num_folds_k, init_type, score_type, varargin) 

The inputs: 

• mytrain_data and mytest_data are the train and test matrices (in a cell format, where rows are 

variables and columns are samples). 

• class [integer] is the index of the target variable. 

• num_folds_k [integer] is the number of folds for cross validation. 

http://www.ee.bgu.ac.il/~boaz/rmcv%20Readme.pdf
https://github.com/bayesnet/bnt


• init_type [string] is the initialized BN. Can take the values: ‘E’-empty, ‘D’-discriminative BN, and 

‘NBC’-naïve BN. 

• score_type [string] can take one of the following values: ‘ACC’, ‘MI’, ‘CEN’, ‘MCC’, ‘MAE’, ‘IM’, 

‘IMalpha‘ – indicating which score function to use. 

• varargin can contain up to two input variables: alpha (relevant to IMα) and Real_MB (relevant for 

synthetic datasets where the true structure is known and thus an SHD can be calculated). 

The outputs: 

• results [integer array] are the performance measures over the test set. 

• mats [matrix array] are the confusion matrices for the training and test sets. 

 

 

2. The functions: calculate_ACC/MI/CEN/MCC/MAE/IM/IMα (within extended_rmcv.m) take as input 

a confusion matrix and return the relevant score. These functions can be used apart from the rmcv 

to learn or evaluate any classifier (e.g., decision tree, random forest). 

 

3. Demo: 

Steps to run the demo: 

3.1. Unzip the demo.zip folder which contains a demo.m file and DBs folder (to ‘C:\Matlab\’) 

3.2. Type in the Matlab command line: 

run('C:\Matlab\demo.m') 

 

 

References 

1. D. Halbersberg and B. Lerner, “Learning a Bayesian network classifier by jointly maximizing accuracy 

and information”, 22nd European Conference on Artificial Intelligence (ECAI), 2016. 

2. D. Halbersberg and B. Lerner, “Young driver fatal motorcycle accident analysis by jointly maximizing 

accuracy and information”, Accident Analysis and Prevention 129, pp. 350-361, 2019. 

3. D. Halbersberg and M. Wienreb and B. Lerner, “Joint maximization of accuracy and information for  

learning the structure of a Bayesian network classifier”, Machine Learning 110, pp. 1-61, 2020. 

4. R. Kelner and B. Lerner, “Learning Bayesian network classifiers by risk minimization”, International 

Journal of Approximate Reasoning, 53(2), pp. 248-272, 2012. 

5. K. Murphy, "The Bayes net toolbox for Matlab", Computer Science and Statistics 33, pp. 331-350, 

2001. 


