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ABSTRACT During the process of rehabilitation after stroke, it is important that patients know how well
they perform their exercise, so they can improve their performance in future repetitions. Standard clinical rat-
ing conducted by human observation is the prevailing way today to monitor motor recovery of the patient.
Therefore, patients cannot know whether they are performing a movement properly while exercising by them-
selves. Adhering to the exercise regime makes the rehabilitation process more effective and efficient, and thus
a system that can give the patients feedback on their performance is of great value. Here, we built a machine-
learning-based automated model that gives patients accurate information on the compensatory (undesirable)
movements that they make. To construct the model, we recorded movements from 30 stroke patients, who
each performed 18 movements, used to identify the presence of six types of compensatory movements
in stroke patients’ movement trajectories. We used the random-forest algorithm for training this multi-label
classification model. We achieved 85 percent average precision across the six movement compensations.
This is the first study to automatically identify movement compensations based on stroke patients’ data.
This model can be adapted for use in in-clinic and at-home exercise programs for patients after stroke.

INDEX TERMS Compensations, machine learning, multi-label classification, RAkEL algorithm, random
forest, stroke rehabilitation, time series

I. INTRODUCTION

A. THE IMPORTANCE AND LIMITATIONS OF SELF-

EXERCISE FOR STROKE PATIENTS

The intensity and repetition of post-stroke training are key to
the efficacy of the rehabilitation process [1]. Up to 77 percent
of stroke survivors experience upper limb (UL) impairment,
which affects their function and reduces health-related quality
of life [2]. For effective and efficient rehabilitation of their
upper limb functionality, self-exercising in between physical
therapy sessions is vital, and yet, many patients do not follow
their exercise regime, which can hamper their recovery [2].
One explanation for why compliance rates are low is that
patients undergoing rehabilitation are not able to assess their
own functional state and their performance without the thera-
pist [3], [4]. One of the major functional goals of rehabilitation
after stroke is to retrain the coordination of reach-to-grasp

(RTG) movements (e.g., in order to pick up a cup to drink
from) [5]. In individuals with stroke, goal-directed movements
are characterized by slowness, spatial and temporal discontinu-
ity and abnormal patterns of muscle activation and joint syn-
ergy [6]– [8]. Individuals with stroke were reported to have less
smooth [9], less accurate and less efficient RTG movements
compared to healthy individuals [10], as was measured by the
index of curvature [11] and by the jerk [12] of their movements.
Following a stroke, patients who are not able to coordinate their
muscle-activation patterns to perform an RTG task as they did
before they had a stroke, develop compensatory movement
patterns—e.g., bending their trunk, rather than extending their
elbow—to reach an object located at arm’s length. Several
such compensatory characteristics of movement have been
described in RTG tasks, both in the trajectory and in the inter-
joint coordination of the movement [6], [8].
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B. FROM STANDARD CLINICAL RATING TO

AUTOMATED ASSESSMENT

Cirstea and Levin (2000) demonstrated the importance of
“knowledge of performance” in the upper limb rehabilitation
process of stroke patients. That is, while the person is practic-
ing RTG movements, they need to know how well they per-
formed the movement in order to improve their performance
in future repetitions. The prevailing way to monitor motor
recovery of the patient is carried out by direct human obser-
vation, using standard clinical ratings such as the Fugl-Meyer
assessment (FMA), Functional Test for the Hemiplegic
Upper Extremity (FTHUE), and the Brunnstrom stage [13],
[14]. However, whereas those clinical scales are efficient
tools, they also have some drawbacks [13]– [17]. The subjec-
tive judgement exercised by therapists using those tools may
lack accurate quantifiable data [14], likely because it is diffi-
cult for the human eye to detect variations in a small-scale
movement [17]. This makes it difficult to precisely evaluate
gradual improvements in movement execution. In addition,
the use of those tools is labor intensive and takes a consider-
able amount of time (at least 30 minutes) [2], [13], [15]. Fur-
thermore, it is not suitable in the home settings as patients
undergoing rehabilitation at home are not able to assess their
own functional state with the FMA tool or other similar tools
without a therapist [3], [4]. In order to help stroke patients to
continue the rehabilitation training after they leave the hospi-
tal, there is a need for automated assessment [4]. Automated
assessment holds several benefits in comparison to assess-
ment by human observation only in clinics [14]. For exam-
ple, it can offer a more detailed tracking of the time course of
recovery by identifying variations in their movements pattern
[14], [17], it avoids the “test” situation, which is often not
representative of everyday function [14], [18], and also, it
can make the assessment more objective by giving an auto-
mated score from a model instead of from a specific therapist
[17]. In addition, the ability to make a quick and accurate
evaluation could enable an efficient utilization of stroke-care
resources, with clinician time being dedicated mainly to
treatment, while the assessment is automated, even in the
clinic [2], [15], [19].

C. RELATEDWORK

To address this issue, a number of studies proposed a frame-
work for automating upper limb assessments for stroke
patients by using various sensors and classification schemes,
most of them being based on machine-learning algorithms
[2]– [4], [14], [16], [19]– [22]. The main purpose of most of
these studies was to give an evaluation score per movement
performed by the user. Otten et al. (2015) introduced an eval-
uation model using an artificial neural network (ANN) classi-
fier, which outperformed the support vector machine (SVM)
classifier. They used various sensors, such as GPS sensors,
direction sensors (i.e., magnetic compasses), and acceleration
sensors (i.e., accelerometers), from an Android-based smart-
phone in order to record movements of eight healthy partici-
pants. They asked the participants to perform all movements

in three ways: faultlessly, partially, and not at all (motion-
less). From these, the authors calculated a set of movement
features, such as elbow flexion, limb orientation, and joint
angles. These features were used to determine a score for the
participant’s upper limb functionality, with a score of zero
indicating the participant cannot perform any movement, and
a score of two indicating they can perform the movement
faultlessly. Kwapisz et al. (2011) also used an ANN classi-
fier, but it was used to evaluate functional movement of the
lower limbs, such as walking, going up or down stairs, jog-
ging, sitting, standing, and not for movements of the upper
limbs. That study also included only healthy participants
[22]. To reduce the number of parameters required in the
ANN model, Yu et al. (2016) used extreme learning machine
(ELM)-based ensemble regression model and compared its
results to the results of an SVM algorithm. They proposed to
monitor the functional movement of the upper limb and
attempted to predict the user’s FMA score using sensor data.
They found no obvious difference between the SVM and
ELM algorithms in terms of accuracy. Importantly, they
found that feature selection - i.e., narrowing down the feature
space to the most informative set of movement features -
leads to significantly improved accuracy [4].
There is limited information on automatically identifying

the specific compensations in stroke patients’ movements.
Tormene et al. (2009) used dynamic time warping (DTW)
and open-ended DTW (OE-DTW) to provide real-time feed-
back to neurological patients undergoing motor rehabilita-
tion. They generated a dataset of multivariate time series
from a sensorized long-sleeve shirt. One of the experiments
they conducted was to recognize incorrectly performed
movements, and in those, identify the specific error that was
performed. However, there was only one healthy participant
in this experiment, whom they asked to perform very slow
movements or mimic two options of compensatory actions:
adduction of the upper limb on a frontal plane or on a sagittal
plane [23]. Similarly, Kizony et al. (2014) proposed a system
that was designed to provide a home-based tele-rehabilitation
program based on one healthy participant performing com-
pensatory and non-compensatory movements.
Previous works show that ANN, SVM, ELM, and DTW

could be beneficial for solving tasks such as multi-class clas-
sification and regression [2]– [4], [14], [16], [19], [21], [22].
However, these algorithms are not suitable for more compli-
cated tasks, such as multi-label classification tasks, when
attempting to identify more than a single component of the
movement (e.g., both excessive bending of the trunk and ele-
vation of the shoulder). Furthermore, in order to build a
model that identifies movement components that are found
primarily in patients’ movements, it is vital to collect the
movement data from the relevant patient population, rather
than from healthy individuals. However, most of the models
built by previous works were based on movements of healthy
participants and not on movements of post-stroke patients
[21], [22]. Moreover, the number of the participants in the
study is also a major factor in generating a representative
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model. Yet, previous works had between 1-7 participants,
which may have limited their applicability [3], [21], [23],
[24]. Finally, in order to build as accurate a model as possi-
ble, it is important to use high-precision sensors. Using a
Kinect camera is rather common [2], [24], being a readily
available and relatively affordable tool, though it is limited in
its capacity to correctly detect fine motions [2], which then
limits the overall accuracy of the generated model.

D. OUR STUDY

Here, we used data from 30 stroke patients, using a high-
precision motion-capture system, to generate a multi-label
classification model to detect movement compensations. To
build such a model, it is necessary to choose the appropriate
method for this multi-label task, which is more complex than
those mentioned earlier, which had only a single outcome
(for example, the presence of a single compensation versus
multiple concurrent compensations). According to Tsoumakas
and Katakis (2007), there are two main categories of multi-
label classification methods: transformation methods and
algorithm-adaptation methods. The first category transforms
the multi-label classification problem into one or more single-
label classification problem(s), while the second adjusts
known single-label classifiers to handle multi-label data [25],
[26]. Since a main weakness of algorithm-adaptation methods
is that they are mostly tailored to a specific classifier (e.g.,
SVM or decision tree), they lack the ability to be generalized,
and thus the transformation methods perform better in this
respect [25], [26].
To date, no algorithm has been developed to automatically

identify the type of compensatory movements performed by
actual patients who suffer from neurological conditions, such
as stroke. Here, we propose such an algorithm, with which
compensatory movements can be automatically detected
without the need for an on-site clinician to be present. The
machine-learning model we present here (1) will allow the
patients to practice the desired exercise movements, as
instructed by the therapist, and avoid performing undesirable
movement patterns known as “bad learned use” [27] during
self-practice, by providing accurate information on what spe-
cific compensations they performed (e.g., elevation of the
shoulder); (2) will enable the therapist to receive information
on the patient’s at-home performance, in order to precisely
adapt the overall training program to the patient’s current abil-
ity; and (3) will serve as a personal ecological performance-
assessment tool. In the future, the algorithm can be used to
give recommendations for updating the exercise program dur-
ing a session, in accordance with the patient’s performance.

II. METHOD

A. MOVEMENT-COMPENSATION DETECTION

The algorithm we present here will be used to identify the
exact set of compensations the patient performed in each
movement. Thus, we are dealing with a multi-label classifica-
tion task, since any given movement can have between zero
and six compensations in parallel. Figure 1 shows the process

of generating the model, which we briefly overview here, and
explain in detail below. To build the classification model for
this problem, we first collected the movement data from
stroke patients (Data Collection, Figure 1.1). After that, data
were analyzed in the Feature-Generation phase (Figure 1.2).
Movement features were generated using twomethods in paral-
lel and then combined: (1) biomechanics-inspired handcrafted
features based on the motor-control literature, and (2) automati-
cally extracted features by a dedicated software (the tsfresh
package, see below). Then, Feature Selection (Figure 1.3)
was conducted in order to obtain an optimal set of features
that will be the input to the random k-label sets (RAkEL) for
multi-label classification algorithm (Figure 1.4), which is
suitable for multi-label problems. Finally, in the Evaluation
phase (Figure 1.5), we tested the performance of the model
we built.

B. DATA COLLECTION

1) PARTICIPANTS

Thirty post-stroke patients were recruited for this study from
the “Beit Hadar” Rehabilitation Center (14 females, 16 males,
mean age 70.3 � 9.4 years). The study was approved by the
Barzilai Medical Center’s Helsinki Committee, and all partici-
pants signed an informed consent form to participate in this
study. Demographic and clinical information of the partici-
pants is listed in Table S1 (see Supplementary Materials).

2) PROCEDURE

The participants were examined by a physical therapist
between one to two weeks before their discharge date from
the rehabilitation center. The examination was performed
while the participants sat in front of a height-adjustable table.
Participants were instructed to reach their impaired arm at a
self-selected speed, forward, toward a cup located on the
table, lift it, and place it on top of a 5 cm-high block, posi-
tioned on the table (Figure 2). The participants were instructed
to avoid bending their trunk as much as possible during the
reach movement, but no restraint of the trunk was applied.
RTG was performed at three different heights: (A) low - the
height of the wrist when the hand is extended downwards, (B)
medium,�75 cm from the floor, the height of a standard table,
and (C) high - the height of the participant’s shoulder
(Figure 2). The cup was placed at an arm’s distance, measured
from the lateral acromion to the radial styloid process, to avoid
excessive trunk movement during the reach movement. Reach
and grasp movements were executed using an empty cup (273
gr) in half of the trials, and a cup filled with water (443 gr) in
the other half (Figure 2). Every combination of cup height
and weight was repeated three times for a total of 18
RTG movements (3 heights x 2 weights x 3 repetitions). The

FIGURE 1. The movement-compensation detection process.
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order of the heights and weights was randomly set in order to
prevent the influence of fatigue on particular combinations of
height and weight.

3) MOTION-CAPTURE SYSTEM

Position of the upper extremity joints during the RTG move-
ment was recorded using a motion capture system V120: Trio
(OptiTrack, NaturalPoint, Inc., OR, USA). The V120: Trio
tracking system is a portable multiple-camera with a 6DoF
optical object tracking technology. Eleven reflective markers
were placed on the participants’ upper body (Figure 3).
Markers were placed as follows: twomarkers were placed ver-
tically aligned on the sternum to reflect the trunk motion
(Figure 3, Points 1-2), and one marker was placed on each of
the following anatomical landmarks: lateral portion of the
acromion [reflecting the scapular motion [28]] (Figure 3, Point
3), proximal humerus (Figure 3, Point 4), lateral epicondyle of
the elbow (Figure 3, Point 5), the middle forearm (Figure 3,
Point 6), radial and ulnar styloid processes (Figure 3, Points
7-8), the dorsal side of the palm at the axis along the middle
part of the third metacarpal bone (reflecting the wrist motion)
(Figure 3, Point 9), thumb (Figure 3, Point 10), and index fin-
ger (Figure 3, Point 11). Two additional markers were placed
vertically on the wall behind the participant to serve as station-
ary reference points, and three additional markers were placed
on the cup and defined by the system as a rigid body, so that
the cup location can be tracked during each recording. Data
sampling frequency of the Trio system is 120 Hz.

4) MOTION-CAPTURE SYSTEM

Grip forces were measured with a 3D force sensor (Nano25-E
Transducer, ATI Industrial Automation, INC) embedded in a
custom-built 3D-printed cup (Figure 2). The data sampling fre-
quency of the force sensor was 100 Hz. The output from the
force sensor was the summed grip forces applied on the cup.

C. FEATURE GENERATION

To build an initial set of features from the collected data, we
used two different approaches. The first is based on the analy-
sis of the reach-grasp-lift movement by calculating (with Mat-
lab R2017b) first the segments of each movement and then a

wide variety of biomechanical hand-crafted metrics, including
velocity, jerk, index of curvature, angels of the joints, etc.
derived from the time series data generated using the markers
and the force values measured during the movement. The
movement data were down-sampled to 100 Hz to match the
sampling frequency of the force data. The second approach is
based on time-series feature extraction using scalable hypoth-
esis tests implemented by the tsfresh package [29].

1) MOVEMENT SEGMENTATION

RTG is divided into a transport component, which is the
change in position of the hand over time, and a grasp compo-
nent, which is the change of the distance between the index
finger and thumb over [30]. In healthy individuals, certain
elements in reaching and grasping display invariant behav-
iors suggesting key principles in motor control. For example,
movement trajectories involving more than one joint tend to
be straight, smooth, and have bell-shaped velocity profiles
[31]; Peak deceleration point usually occurs around the time
of object contact [30]; The start time of the opening of the
hand is correlated with the start time of hand movement
toward the object, and the time of maximum hand opening is
correlated with the time of peak deceleration of the hand
[30]. Smoothness of the movement is widely regarded as a
hallmark of coordinated movement. Jerk, the third derivative
of position with respect to time, has been used as an empiri-
cal measure of this quality [32]. We automatically segmented
each of the participants’ movements into three segments, as
shown in Figure 4, based on four time points (T1-T4),
according to the phase of the movement: reaching to the cup
(REACH), grasping the cup (GRASP), and raising the cup
and placing it on the block (LIFT):
1. T1 – start of movement – the time at which 10 percent

of the maximal velocity of the wrist is reached [6].

FIGURE 3. The location of the 11 body markers placed on each

participant. (1-2: sternum, 3: shoulder, 4: proximal humerus, 5:

elbow, 6: the middle forearm, 7-8: radial and ulnar styloid pro-

cesses, 9: wrist, 10: thumb, and 11: index finger).

FIGURE 2. The experimental setup for the data-collection phase.

(a): Participants were asked to reach to a cup placed on a table,

pick it up, and place it back on a 5-cm block on top of the table.

The table was set at three different heights: (A) low (�50 cm

from the floor); (B) intermediate (�75 cm from the floor); and (C)

high (�86-100 cm from the floor, depending on shoulder height).

(b): The custom-built cup, embedded with a force sensor, with

the three position markers (see text).
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2. T2 – start of grasp – the time at which the participant
applied force equal to 5 percent of the difference
between the maximal and minimal forces applied on
the cup in a given trial.

3. T3 – start of lift – the time at which the cup reached 10
percent of its maximal height during the trial.

4. T4 – end of movement – the time at which the movement
ended, calculated as follows: the force trace was scanned
from the end of the trial backward until the first time the
value of the force was 20 percent of the maximal force
during that trial. Then, the force trace was scanned from
this point forward, to find the first time the value of the
force was 5 percent of the maximal force during that
trial. That point in the time series was set to be T4.

In each movement, T2 was first identified, then T1 was
calculated in the interval between the start of the recording
and T2, followed by T3, and then T4. Once these values
were determined, the segmentation was applied to the entire
time series of the movement, across all markers.
The segmentation rules we detail above were informed by

previous literature [33], and adapted, where needed, to the
movement and force profiles generatedwhen the stroke patients
perfomed the RTG movements to different heights with differ-
ent weights. We verified that the time points T1-T4 correspond
to the appropriate movement phases, as shown in Figure 5.

2) BIOMECHANICAL HANDCRAFTED MOVEMENT

FEATURES

Kinematic features of the movement were calculated from six
main categories: ‘Jerk’, ‘Velocity’, ‘Angles’, ‘Aperture’,
‘Curvature’, and ‘Force’, all of which are known to have dif-
ferent characteristics in movements of individuals after
stroke [6], [7], [9], [10], [12], [30], [34]. Table 1 lists the fea-
tures we calculated from each category, the markers used to
derive each feature, and for which segments of the movement
the features were calculated (see Section II.C.1)): REACH
(T1 to T2), GRASP (T2 to T3), LIFT (T3 to T4), and ALL (a
unified segment that begins in T1 and ends in T4). The com-
bination of two segments indicates a segment that is com-
posed of both (e.g., GRASP þ LIFT between T2 and T4).

In the ‘Angles’ category, six angles were calculated based
on position data from the relevant markers:
1. Scapula elevation (ScapulaEle) – the angle between the

two sternum markers and the shoulder marker (Figure 3,
Points 1-3).

2. Scapula rotation (ScapulaRot) – the angle between the
bottom sternum marker and the shoulder marker
(Figure 3, Points 2-3).

3. Trunk– the angle between the two sternum markers
(Figure 3, Points 1-2) and the wall markers.

4. Elbow–the angle between the proximal humerus, elbow,
and middle forearm markers (Figure 3, Points 4-6).

5. Shoulder– the angle between the upper sternum, shoul-
der, and proximal humerus markers (Figure 3, Points 1,
3-4).

6. Wrist– the angle between the middle forearm, the radial
styloid process, and the wrist markers (Figure 3, Points
6,7,9).

The correlations between pairs of angles were then calcu-
lated per movement, as well as between the angles and the
aperture of the hand (see Table 1 for the list of pairs for
which correlations were calculated).

3) AUTOMATED EXTRACTION OF TIME-SERIES

FEATURES

Weused the Python 3.6 tsfresh package to generate 3,000 time-
series features automatically [29]. This package filters the fea-
tures with respect to their significance for the classification
task, while controlling the expected percentage of selected but
irrelevant features. The features it extracts describe basic char-
acteristics of the time series such as the number of peaks, aver-
age or maximal value of a signal or more complex features
such as the time reversal symmetry statistic. The features
belong to one of three main categories [29].
1. Summary statistics- such as: maximum, minimum,

mean, variance, standard deviation, skewness, kurtosis,
length, median, quantile of empiric distribution.

2. Sample distribution—such as: absolute energy, aug-
mented Dickey-Fuller test statistic, binned entropy, distri-
bution characteristics, symmetry, mass quantile, number

FIGURE 4. The process of movement segmentation.

FIGURE 5. Force profiles during a single trial from three different movements (columns) performed by five different participants (rows).

The red, magenta, green, and black asterisks represent T1, T2, T3, and T4, respectively.
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of data points above mean/median, and number of data
points belowmedian.

3. Observed dynamics—such as: autoregressive inte-
grated moving average (ARIMA) model coefficients,
continuous wavelet transformation coefficients, and
fast Fourier components [29].

For the sake of brevity, we elaborate here on six of these
features, which we found to be most influential for the perfor-
mance of the model:

1. Autocorrelation – An autocorrelation estimator is given
in Eq. (1), where n is the length of the time series xi, s2

its variance and m its mean. l denotes the lag between
observations:

1
n� lð Þs2

Xn�l

t¼ 1

ðxt � mÞ xtþl � mð Þ: (1)

2. Change quantiles mean – The mean absolute value of
consecutive changes of the series x inside a range

TABLE 1. The Handcrafted Features.

Category Feature Markers/Sensors Segments

Jerk Mean Squared Jerk (MSJ) – Wrist REACH, GRASP, LIFT, ALL
1
jTj

1
2 ðjerk2Þ= maxðvelocityÞ

Velocity - the first derivative of position with respect to time for the duration of the movement, T.

Jerk -the third derivative of position with respect to time for the duration of the movement, T.

Velocity Average, Maximum, Minimum, Time to Maximum Wrist, Elbow REACH, GRASP, LIFT, ALL

Angles Correlations – Sternum 1-2,

Shoulder, Humerus,

Elbow, Forearm,

Radial, Wrist

REACH, GRASP, LIFT, ALL

ScapulaEle Trunk$ Elbow

ScapulaRot Trunk$ Aperture

Trunk Trunk$ Shoulder

Elbow Trunk$ ScapulaEle

Shoulder Trunk$ ScapulaRot

Wrist Trunk$Wrist

ScapulaEle$ Elbow

ScapulaEle$ Aperture

ScapulaRot$ Aperture

Wrist$ ScapulaEle

Wrist$ Elbow

Maximum, Minimum, Average Trunk, Elbow,

Shoulder, Wrist,

Sternum 1-2

REACH, GRASP, LIFT, ALL

Aperture Maximum Distance – between the positions of the thumb and index-finger markers. Thumb, Index REACH

Time to Maximum Distance – The time elapsed from T1 to the time at which the participant

reached the Maximum Distance.

Thumb, Index REACH

Time to T2 – The time elapsed from when the participant reached the Maximum Distance to T2. Thumb, Index REACH

Std1– Standard deviation of the aperture amplitude between T1 and the time that ‘Maximum

Distance’ was reached.

Thumb, Index REACH

Std2 – Standard deviation of the aperture amplitude between the time that ‘Maximum Distance’

was reached and T2.

Thumb, Index REACH

Curvature Straight-line distance – The length of a straight line connecting the locations of the wrist marker at

T1 and T4.

Wrist REACH, GRASPþLIFT

Path length – The actual path length of the movement made between each segment. Wrist REACH, GRASPþLIFT

IC – Index of curvature: the ratio between the Straight-line distance and Path length. Wrist REACH, GRASPþLIFT

Force Summed forces –Measured across all durations of movement. Force sensor GRASPþLIFT

Time to max force – Time duration between T2 and the time at which the maximum force was

reached.

Force sensor GRASP, LIFT

Segment duration – Duration of a movement segment. Force sensor GRASP, LIFT, GRASPþLIFT

Duration ratio – The ratio between the segment durations of GRASP and LIFT. Force sensor GRASP, LIFT

Variance – Variance of the force measured during the segment. Force sensor GRASP, LIFT

Time duration max aperture – The time duration between the time max aperture was reached and

T2, divided by the variance in segment.

Force sensor GRASP, LIFT

Average force Force sensor GRASP, LIFT, GRASPþLIFT

Std – standard deviation of the difference between any two consecutive force values. Force sensor GRASPþLIFT

Variance X Segment duration Force sensor GRASP, LIFT

Average X Segment duration Force sensor GRASP, LIFT

The first, second, third, and fourth columns list the main category the feature belongs to, its meaning, the markers/sensors that were used for its calculation, and
which segments the calculation was applied to, respectively.

VOLUME 9, NO. 3, JULY-SEPT. 2021 1239

Kashi et al.: A Machine-Learning Model for Automatic Detection of Movement Compensations in Stroke Patients



defined by the upper and lower quantiles of the distribu-
tion of x.

3. Change quantiles variance – The variance absolute
value of consecutive changes of the time series, exclud-
ing extreme values (defined by a quantile range).

4. Energy ratio by segments – The sum of squares of seg-
ment i out of N segments expressed as a ratio with the
sum of squares over the whole series. N is the number
of segments to divide the series into and i is the seg-
ment number (starting at zero) to return a feature on.

5. Abs energy – The absolute energy of the time series
which is the sum over the squared values of the exam-
ined time series.

6. Larger standard deviation – Boolean variable denoting
if the standard deviation of x is higher than r times its
range, which is the difference between maximum and
minimum of x.

7. Ratio beyond rs – Ratio of values that are more than
r�stdðxÞ (so they are rs) away from the mean of x
divided by the length of the time series.

The time-series sequence we used as input to the tsfresh
package is the traces of the three position axes (x, y, z) of the
wrist marker (Figure 3, Point 9) for each participant for each
of the 18 RTG movements. The wrist marker was chosen as
it is common to use this marker for kinematic data analysis
[34], [35].

4) COMPENSATION LABELING

Two expert physical therapists labeled each of the 18 move-
ments per participant with the set of compensations that par-
ticipant made, if any. To label the movements, they viewed a
visualization of the collected data (videos of the movement
created by the markers). Compensations were only labeled
when both physical therapists agreed they were present, fol-
lowing a joint discussion. The possible compensations were:
trunk-flexion, scapula-elevation, scapula-rotation, shoulder-
flexion, elbow-flexion, distal dys-synergy.

D. FEATURE SELECTION

It was necessary to perform feature selection on the large set
of features we generated using both methods (over 3,000) for
two reasons: (1) to avoid over-fitting due to a large number
of features compared to the number of training instances
(movements); and (2) to identify the most meaningful fea-
tures for a leaner and more efficient model. Feature selection
allowed us to reduce the dimensionality of the feature space,
and remove redundant, irrelevant, and noisy features, to
enable the classification algorithm to be more accurate and
rapid. As will be described in Section II.E, we classified
movements by multi-label classification, which transforms
the problem into one or more single-label classification tasks
[36]. We used the WEKA 3.8 program [37] for this task.
WEKA is a workbench for machine learning that is intended
to aid in the application of machine-learning techniques, as
the feature selection phase [37]. We applied, for each single
label (i.e., compensation), feature selection that searches the

space of feature subsets by greedy hill climbing augmented
with a backtracking facility. The features were evaluated by
‘CFS’ (correlation-based feature selection) [37], which eval-
uates the contribution of a subset of features by considering
the individual predictive ability of each feature along with
the degree of redundancy between them. Therefore, subsets
of features that are highly correlated with the label (compen-
sation) while having low crosscorrelation among them are
preferred [37].
We applied this selection approach on each of the six com-

pensation labels separately (Section II.C.4)) and kept features
that were selected for between two and five labels, since there
were too many features that appeared only in a single label
set. None of the features were selected for all the six labels.
All the features we obtained in Sections II.C.2) and II.C.3)
were combined to one set of 156 features.

E. THE MULTI-LABEL CLASSIFICATION USING

RANDOM K-LABELSETS (RAKEL) ALGORITHM

Recall that a multilabel classification algorithm is necessary
when attempting to identify more than a single compensation
in the movement. RAkEL is a popular ensemble approach
for multi-label classification over a set of labels L (the six
compensation types). To consider label correlations, it con-
structs an ensemble of label powerset (LP) classifiers, each
considering a different subset of labels as a single label. Fol-
lowing this approach, the LP classifier learns one single-label
classifier [38]. Since LP classifiers may have the disadvan-
tages of having many different possible label sets, ð2jLjÞ,
each with only a small number of examples, each LP is
trained using a different small random subset (k) of labels.
For training, this approach uses the ensemble method - multi-
ple learning classifires (M), to obtain better predictive perfor-
mance [38]. The higher the values of M and k are, the better
is the performance of the RAkEL method. However, since
the complexity of RAkEL grows exponentially with the size
of label sets k, but only linearly with the number of classi-
fiers, it is common to set k to a small value. Note that if k ¼
1, RAkEL trains M ¼ jL j ( ¼ 6) binary classifiers. We
trained the RAkEL model using a random forest as the base
classifier; the size of the label subset was k ¼ 4, and the num-
ber of classifiers was M ¼ 16 (see explanation below in the
Results section). For the implementation, we used R-Studio
version 3.5.1.

III. EVALUATION

A. LEAVE-ONE-OUT CROSS VALIDATION

We used the leave-one-out cross validation (LOOCV), which
is necessary when there is insufficient amount of data [39]. In
LOOCV, each of the 30 models is trained on a different sub-
set of 29 participants, and the data from the remaining partic-
ipant was used as a validation set [39]. LOOCV is useful for
avoiding the statistical problem of overfitting in models in
which the same samples are used both for training and pre-
diction, or when the number of instances is small and there
are many variables [40]. Another property of the LOOCV is
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that it provides an almost unbiased estimate of the generali-
zation ability of a classifier [39].

B. EVALUATION METRICS

Multi-label classification requires different metrics for evalu-
ation than those used in traditional single-label classification
[41], [42]. We used here the precision metric and the Ham-
ming loss, which are widely used in the literature to evaluate
multi-label classification methods [41], [42].

1) MICRO AND MACRO AVERAGED PRECISION

Micro and macro averaged precisions are two ways to calcu-
late the precision over all the labels in a multi-label classifica-
tion problem [43]. The precision can be computed globally
over all labels, which is the “micro-averaged precision”, or
for each label separately and then be averaged over them,
which is called “macro-averaged precision”. Equations (2)
and (3) were used to calculate the micro- and macro-aver-
aged precision, respectively, while jL j represents the num-
ber of labels (i.e., compensations), TP represents the True
Positive variable (i.e., the portion of correctly identified com-
pensations), and FP represents the False Positive variable
(i.e., the portion of incorrectly identified compensations)
[43]. The range for both TP and FP is [0,1] while the optimal
value for TP is 1 and the optimal value for FP is 0.

Micro� averaged precision

¼ 1
LLj j ��

P LLj j
ii ¼ 1 TTPPiiP LLj j

ii ¼ 1 TTPPii þ
P LLj j

ii ¼ 1 FFPPii

(2)

Macro� averaged precision ¼ 1
LLj j ��

XLLj j

ii ¼ 1

TTPPii

TTPPii þ FFPPii
:

(3)

While micro-averaging can be used to know how the sys-
tem performs overall across the data, macro-averaging is
preferable if there is a class imbalance [5]. Providing both
scores is more informative than providing either of them
alone [43].

2) MACRO-AVERAGED HAMMING LOSS

The Hamming loss evaluates how many times an instance-
label pair is misclassified; in other words, a label not belong-
ing to the instance is predicted or a label belonging to the
instance is not predicted [41]. The Hamming loss was com-
puted as follows: for each movement, the predicted list of

compensations was compared against the actual presence of
each of the six possible compensations for that movement.
Then, the number of mismatched pairs (of predicted compen-
sation vs. actual presence) across all examined movements
was divided by the number of possible compensations ( jL j
¼ 6) and by the number of movements examined (N). Table 2
shows an example of this computation.

Macro� averaged Hamming loss

¼ 1
NN

��
PNN

jj

PLL
ii yyiipredpred 6¼ yyjjtruetrue

h i

LLj j :
(4)

IV. RESULTS

In the movement-compensation detection process, we use
156 features in total (both from handcrafted and tsfresh fea-
tures), the result of the feature-selection phase (Figure 1.3).
Table 3 presents the results obtained from the model in three
feature settings: using handcrafted features (45 features),
tsfresh features (111 features) and both (all 156 features). As
we can see from the table, macro and micro averaged preci-
sion were higher when all 156 features were used, with a
macro-averaged precision of 0.85, and a false-positive rate of
0.15. Not only that, but also the Hamming loss was the low-
est in that condition. The calculation of the macro-averaged
precision metric as we explain in Section III.B.1) is done by
computing the precision for each label, i.e, compensation,
separately before averaging them. Figure 6 shows the preci-
sion for each label.
The best results obtained by the RAkEL algorithm were for

k ¼ 4 and k ¼ 2. Since both give a micro-averaged precision
of 0.81, but k ¼ 2 has a significantly longer running time, we
opted for using k¼ 4. Table 4 shows a grid search of parame-
ter k and the corresponding micro-averaged precision. It is
common to determine the number of classifiers (M) of the
RAkEL algorithm as the number of labels or twice this num-
ber (i.e., in this case, between L ¼ 6 and 2�L ¼ 12). Since the
larger the number of classifiers, the more reliable is the result,
we tested, using trial and error, values of M>12 to find the
optimal value for M, and concluded by choosing M¼ 16.
To test significance of the results in Table 3, we compared

the macro-averaged Hamming loss, which is calculated for
each movement of each patient, among the three features set-
tings. First, we applied adjusted Friedman test [44] and

TABLE 2. Computation Example of the Hamming loss Metric.

i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4 i ¼ 5 i ¼ 6

yyiipredpred 1 0 1 1 0 0

yyiitruetrue 0 0 1 1 1 0

yyiipredpred 6¼ yyjjtruetrue 1 0 0 0 1 0
PLL

ii
½yyiipredpred 6¼yyjjtruetrue �

jLLj ¼ 2
6

TABLE 3. Average Predictive Performance for Different Feature

Sets.

Formula
Features

Micro-averaged
precision

Macro-averaged
precision

Macro averaged
Hamming loss

Handcrafted 0.78 0.81 0.21 ��a
Tsfresh 0.76 0.81 0.22 �a
Handcrafted þ
tsfresh

0.81 0.85 0.19

a The symbols ��/� indicate that the difference between Handcraft þ tsfresh
is significantly better than the corresponding feature set at p<0.05/ p<0.1,
respectively.
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rejected the null hypothesis that all settings perform the same
(p-value<0.05). Once the null hypothesis was rejected, we
used the post-hoc Nemenyi test in order to compare the set-
tings with each other. The difference between the combined
feature set and the handcrafted feature set was found to be
statistically significant with p-value<0.05 (the combined is
better). The difference between the combined feature set and
the tsfresh feature set had a p-value<0.1. Finally, there was

no statistically significant difference between the tsfresh fea-
ture set and the handcrafted feature set.
Figure 7 shows all 156 paired feature correlations. The

matrix has the same number of rows and columns as the
number of features. Cell (i, j) represents the correlation
between features i and j. The small number of feature pairs
with high correlation demonstrates that the features mostly
contribute to the model individually, and not in combination
with other features.
To find which of the 156 features were the most important,

we applied the LOOCV protocol to calculate the macro-aver-
aged precision of the model, each time with a different fea-
ture absent. Then, we extracted the 10 features that have the
greatest impact on the model – i.e., those without which, the
model’s macro-averaged precision score was lowest. Table 5
lists the 10 most informative features, with three handcrafted
features and seven which were generated by the tsfresh pack-
age. The tsfresh features were generated by the default
hyper-parameter of the package without any optimization.
Figure 8 shows values of the macro-averaged precision score
of the model without each of the top 10 features.

FIGURE 6. Precision scores for each of the six compensations:

trunk flexion (trunk-flex, 93%), scapular-elevation (scapular-e,

88%), distal-dys-synergy (distal-dys-syn, 85%), scapular rotation

(scapular-r, 81%), elbow flexion (elbow-flex, 71%) and shoulder

flexion (shoulder-flex, 67%).

TABLE 4 Micro Averaged Precision for the k Parameter in the

Range [1,6] in the RAkEL Algorithm.

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6

Micro-averaged precision 0.80 0.81 0.77 0.81 0.75 0.75

FIGURE 7. Pairwise correlations between all features. There are

156 rows and columns in this matrix, corresponding to the num-

ber of features used. Cell (i,j) represents the correlation value

between features i and j.

TABLE 5. The 10 Most-Important Features.

Feature Approach Score

1 Minimum elbow velocity Handcrafted 0.8268
2 X wrist autocorrelation tsfresh 0.8268
3 Correlation wrist$ trunk Handcrafted 0.8263
4 X wrist variance - change quantiles tsfresh 0.8261
5 X wrist energy ratio by segments (10,1) tsfresh 0.8258
6 X wrist abs energy tsfresh 0.8255
7 Mean force Handcrafted 0.8252
8 Y wrist large std tsfresh 0.8251
9 X wrist energy ratio by segments (10,6) tsfresh 0.8249
10 Ratio beyond r sigma tsfresh 0.8247

The description, source (handcrafted or based on tsfresh), and average pre-
cision score in the absence of each of these features.

FIGURE 8. The micro-averaged precision of the 10 most informa-

tive features.

1242 VOLUME 9, NO. 3, JULY-SEPT. 2021

Kashi et al.: A Machine-Learning Model for Automatic Detection of Movement Compensations in Stroke Patients



Table 6 lists the top-5 features for each table height.
Table 7 lists the top-5 features for each compensation.
As an example of the information contribution of an indi-

vidual feature, we show in Figure 9 the value of the ‘X wrist
abs energy’ feature for movements with and without each of
the six compensations. As shown in the figure, movements
with compensation tend to have lower values for this feature.
One possible explanation for this is that, for those move-
ments that included compensations, the compensation
bypassed the need to extend the elbow, which lead less cur-
vature in the motion of the wrist, resulting in a decrease in
the energy of the wrist movement (for the energy calculation
see the Methods section above).

V. DISCUSSION

The main objective of this study was to construct an auto-
matic algorithm that can identify whether and which com-
pensations a post-stroke individual made when reaching to a
cup, grasping, and lifting it. Our motivation in developing
this algorithm was to enable individuals after stroke to prac-
tice everyday actions on their own, in addition to the practice
they do during physical and occupational therapy sessions,
by providing them with the information on whether they per-
formed an undesirable compensation movement during their
practice. In this experiment, we used data we recorded from
position markers placed along the upper limb of 30 post-
stroke individuals when they reached and grasped a cup

TABLE 6. The 5 Most Important Features Per Table Height (Low/Medium/High).

Low Medium High

1 Minimum elbow velocity (H) X wrist variance – change quantiles (T) Minimum elbow velocity (H)
2 X wrist autocorrelation (T) Minimum elbow velocity (H) Max angle of scapulae (H)
3 Z wrist mean – change quantiles (T) Y wrist large std (T) X wrist variance – change quantiles (T)
4 Correlation wrist, trunk (H) X wrist mean – change quantiles (T) Correlation trunk, scapulaRot (H)
5 X wrist energy ratio by chunks (T) Ratio beyond r sigma (T) Correlation wrist, trunk (H)

For each feature, it is noted (in parentheses) whether it was handcrafted (H) or generated by the tsfresh package (T).

TABLE 7. The 5 Most Important Features Per Compensation.

The most informative five features (rows) for each of the six compensations (columns) are listed in order from the
most informative (top) to least (bottom). Each feature name is followed by an indication of whether the feature was
handcrafted (H) or generated by tsfresh (T).
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placed at three different heights, with the cup being either
empty or full. Feature generation and feature selection were
made to find the optimal set of features which will result in
the best performance of the algorithm. We produced two
main sets of features: handcrafted and tsfresh-based features.
Since the algorithm was trained to identify several compen-
sations simultaneously made in an individual’s movement,
this is a multi-label task. Therefore, we chose the RAkEL
algorithm, and achieved high classification rates, with 0.85
macro-averaged precision. That is, we identified the presence
of the six main compensatory movements (described in detail
in the Results section) in 85 percent of the cases, on average.
The identification rate varies per compensation, and ranges
between 67 and 93 percent. We found that the combination
of the handcrafted features and the tsfresh features resulted in
significantly more accurate identification rates, compared to
using each set of features separately. The analysis we present
in Tables 5 and 6 provides interesting insights into the most
informative features in identifying the six compensations.
Although there is an overlap in the most informative features
across table heights (Table 6) and compensations (Table 7),
they are not exactly the same features in the same order
of importance for each of the table heights or compensations.
That is, there are some main features that will be informative
for all table heights and for all six compensations (Table 5),
as well as unique features that contribute specifically to
the identification of a particular compensation, or to the
idenfication of compensations performed at a certain table
height.
The prevalent way to evaluate movements made by post-

stroke individuals is by a physical therapist using standard
clinical rating scales such as the FMA or the FTHUE [13].
Recently, an effort has been made to automate these clinical
ratings using machine-learning algorithms [2]– [4], [16],
[19]– [22]. The motivation for automating the ratings is
threefold: (1) to save time – evaluation with a model can take
less than a few minutes, whereas performing the clinical test
may take 30 minutes [2], [13], [15]; (2) to improve the preci-
sion of the evaluation, as the human eye may not detect

small-scale movements that can be detected by accurate sen-
sors [17]; and (3) to help post-stroke individuals to receive
an evaluation of their movement quality when a clinician is
not available to provide one, e.g., during home practice [4].
Using this system for home practice can also help patients
who refrain from going to the clinic due to low availability
and accessibility, lack of knowledge of opportunities, high
costs of organized activity, inclement weather, or who feel
uncomfortable exercising in public since they are concerned
about how others might perceive them [45]. The models that
have been developed thus far are useful in providing a clini-
cal score. In contrast, our model is based on performing func-
tional tasks. Rather than generating a score, it provides
information on the exact compensation the individual per-
formed. We anticipate this will be highly pertinent and infor-
mative output for the patients’ rehabilitation process, as they
work on recovering the ability to perform everyday tasks.
We found that when using either the handcrafted features or
the tsfresh-generated features, there was no significant differ-
ence in the macro-averaged Hamming loss, indicating that
both sets of features are equivalent in their contribution to
identifying the presence of compensations. However, their
combination – handcrafted with tsfresh features – signifi-
cantly improved the performance of the model, compared to
using each set separately. A possible reason for this is that
when we created the RGL segments, which were chosen
based on the motor-control literature, we attempted to auto-
matically segment the movements across all participants.
Since each participant performs movements differently, there
was a trade-off between the accuracy of the segmentation,
which affects the model’s output, and automaticity of the
data segmentation. Since automation is a key feature in our
system, we strove for automatic segmentation, which may
have resulted in the loss of some participant-specific informa-
tion. The tsfresh set of features, which were calculated for
each movement as a whole without applying our segmenta-
tion rules, apparently added information that was lost in the
calculation of the handcrafted set. Thus, the combination of
both sets of features led to the best results.
The algorithm we developed offers several benefits over

existing models for movement evaluation: (1) It uses every-
day functional movements, of the type individuals after
stroke are often asked to practice; Thus, it avoids the artificial
nature of a test situation which does not reflect real everyday
movements [14], [17], [18]; (2) It is based on data from
stroke patients; (3) It provides direct information on the com-
pensatory movements that the individual performed –

whether there were any, and which. Thus, it can address a
potential concern that patients may have regarding at-home
practice. According to Moriss et al. (2017), translation of
motivation into actual activity depends on capability for
physical activity. For example, intrinsic influences, such as
the fear of negative consequences of physical activity, may
prevent individuals from being physically active [45].
Indeed, repeatedly performing compensatory movements is
known as “bad learned use” [27], and should be avoided.

FIGURE 9. The ‘abs energy’ feature, generated by tsfresh, in

movements with and without each of the six compensations. In

red are the values of this feature for all the movements that

include the compensation; In green are the values of this feature

for all the movements without this compensation.
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Using a model as the one we present here, provides the users
with accurate feedback on their movement performance. It
can assist patients to perform movements more correctly and
thus help them experience success, which, according to
Moriss et al. (2017), leads to increased motivation and is
translated to confidence in the general capability to be active.
By tracking the individuals’ performance over time (e.g.,

what compensations are present, and whether they diminish
over time), both the clinical team and the patient can have an
accurate evaluation of the process of recovery and identify
particular recurring difficulties.

A. LIMITATIONS

One possible limitation of our work is the sample size – 30
post-stroke individuals. While it is large compared to previ-
ous works with human participants, a larger sample size may
allow for better generalization, and have a more balanced
data set (a better representation of the different impairment
levels) [46]. In addition, this group of participants was het-
erogeneous in terms of their functional ability, with patients
displaying low, moderate and severe levels of impaired func-
tion. Despite this, the model we developed reached a macro-
averaged precision of 0.85.
Another limitation is the use of markers for data collection.

In this work, we aimed at generating an accurate algorithm
for the identification of compensatory movements in stroke-
patient movements. For that purpose, we used high-precision
motion-capture device (V120: Trio OptiTrack, NaturalPoint,
Inc., OR, USA, accuracy � 1.0 mm). It is conceivable that
simpler implementations of the model may use a smaller
number of sensors (in our model, we used only 6 of the 11
sensors we recorded from, namely: the sternum 1, sternum 2,
shoulder, elbow, wrist and force sensors), or potentially a dif-
ferent, low-cost, simple sensor system, which would add to
the user’s convenience of using the algorithm both in terms
of procedure and of price. Enabling a low-cost automated
supervision of at-home practice would be important in that
during home-based practice there are fewer constraints on
time and space, so the patients can practice more frequently,
for longer periods of time, and also according to their own
schedule and terms [3], [4], [47]. Also, at home, the individu-
als can engage in more ecological exercises that are compati-
ble with their everyday routines, which may be more
indicative and useful from an evaluation session in the clinic
[3], [4], [47].

B. SUMMARY AND FUTURE DIRECTIONS

In this study, we constructed a model that identifies the pres-
ence of compensations in stroke patients’ movements, to be
used in the process of rehabilitation. We achieved 85 percent
macro-averaged precision across the six movement compen-
sations we studied. This is the first study to identify compen-
sations based on stroke patients’ data. Here, we used a high-
precision movement-capture system. However, future work
with a more affordable sensor system may open the possibil-
ity for stroke patients to use the model system for home-

based training. Such an affordable and simple-to-use tracking
system, which can provide real-time position information
would be necessary for an in-clinic or at-home implementa-
tion. The automated algorithm we present here may further
be combined with socially assistive robotics (SAR), which
can administer the exercise set, and provide feedback on the
user’s performance [48]– [51]. A potential line of future
investigation would be how the compensation-specific infor-
mation that the SAR may deliver to users affects their accep-
tance and level of trust in using such a device in the process
of rehabilitation [52], [53]. Lastly, it would be instructive to
collect and use data from the unimpaired arm when individu-
als with stroke perform functional RTG movements, as com-
pensatory strategies may also involve the unimpaired side of
the body.
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