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Abstract.  Although recent studies have shown that a Bayesian
network classifier (BNC) that maximizes the classification accuracy
(i.e., minimizes the 0/1 loss function) is a powerful tool in knowledge
representation and classification, this classifier focuses on the major-
ity class, is usually uninformative about the distribution of misclas-
sifications, and is insensitive to error severity (making no distinction
between misclassification types). We propose to learn a BNC using
an information measure (IM) that jointly maximizes classification
and information, and evaluate this measure using various databases.
We show that an IM-based BNC is superior to BNCs learned using
other measures, especially for ordinal classification and imbalanced
problems, and does not fall behind state-of-the-art algorithms with
respect to accuracy and amount of information provided.

1 Introduction and Background

Prediction and identification of key factors in imbalance ordinal
problems are difficult for several reasons. First, classifiers that max-
imize accuracy (ACC) during learning do not account for error dis-
tribution and, thus, are not informative enough about the classifica-
tion result. On the other hand, classifiers that account for error dis-
tribution usually are not accurate enough. Second, for imbalanced
data, classifiers usually predict all minority samples as the majority
class. Tackling imbalance by down-sampling the majority class, up-
sampling the minority class, or applying different costs to different
misclassifications provide an optimistic ACC estimate, and thus are
not recommended [4]. Third, 0/1 loss function classifiers are not op-
timized to tackle different error severities differently; for instance,
they consider misclassification of fatal accidents as severe, similar to
misclassification of fatal accidents as minor. Fourth, classifiers (e.g.,
SVM, NN) usually excel in prediction but not in knowledge repre-
sentation, which is a main goal of this study.

The Bayesian network classifier (BNC) excels in knowledge rep-
resentation, which makes it ideal to identify key factors as required,
but like other classifiers, it suffers from the first three problems. It
has been claimed [2] and shown [3] that to achieve high ACC, a
BNC should maximize a (discriminative) score which is specific to
classification, and not a general inference score based on likelihood.
Therefore, to tackle the above concerns, we first consider replacing
ACC with four existing scores, each of which accounts for the entire
confusion matrix (CM) and not just its diagonal (ACC): 1) Mutual
information (MI) that is defined between two M -dimensional vec-
tors, X and Y, holding predictions and true values for M possible
classes, respectively [1]; 2) Mean absolute error (MAE) that is the
average deviation between X and Y'; 3) Matthew correlation coef-
ficient (MCC) that is the correlation between the true (Y') and pre-
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dicted (X) class matrices [1]; and 4) Confusion entropy (CEN) [5]
that exploits the distribution of misclassifications of a class as any of
the M — 1 other classes.

Second, since none of the above measures accounts for all con-
cerns, we propose a novel information measure (IM) that uses MI to
evaluate the error distribution and a factor we introduce to measure
error severity (ES) between predictions and true values,

IM, = ZXZXY: P(z,y) (—log (%) +log(1 + oz — y|)) .

)]
When o« = 1, IM, = IM, and ES measures a “classification dis-
tance” |z — y|, which is transformed using the weighted by the joint
distribution logarithm to MI "units”. Both P(X,Y") and |z — y| are
measured using the CM. When predictions are uniformly distributed
(maximum entropy), MI contributes the most to IM. When there is
no error between X and Y (off-diagonal elements are 0), the only
contribution to IM is from MI, and if, in addition, the classes are
balanced, IM is minimized to —log(M ). When the error severity is
maximal, ES contributes log(1+ M — 1) = log(M); hence, MI and
ES contradict each other, and IM is balanced in [—log(M ), log(M)].
We seek a classifier whose prediction and true value distributions
correspond to each other, while its errors are the least severe. When
a > 1, a is a user or data-defined constant that balances ACC, in-
formation, and ES, IM,, is a generalization of IM. Then, it is easy to
show that IM, = IM — log(a) x ACC, i.e., IM is monotonic
with ACC, and when a — 00, log(«) dominates IMq.

To demonstrate the value of these two novel measures in compar-
ison to the existing measures, we conducted experiments with syn-
thetic CMs and summarize the most important properties of the mea-
sures regarding whether they: 1) balance ACC and information, 2)
prefer balanced class distribution, 3) are sensitive to the error distri-
bution, 4) tackle error severity, and 5) are sensitive to the number of
classes. ACC and MCC do not meet any of the above properties; MI
meets 1, 2, and 5; CEN meets 1 and 3; and MAE meets only 4. IM
and IM,, are the only measures to meet them all.

2 Evaluation, Experiments, and Results

We compared the ability of each of the two proposed measures
to augment learning of a state-of-the-art BNC called RMCV [3]
with those of the existing measures (ACC, MI, MAE, MCC, and
CEN), suggesting seven algorithms (classifiers) for evaluation. In
each learning step of the RMCYV algorithm, neighboring graphs (edge
addition/deletion/reversal) are compared with the current graph as
part of a greedy hill climbing, and learning proceeds if the measure
computed on the validation set is improved by any of the neighboring



Table 1. Mean|std ACC and normalized IM,, values of BNCs learned using seven measures for 23 artificial (ART) and 16 real-world (RL) DBs.

ACC performance IM,, performance
™ M, MI CEN MCC MAE ACC ™ ™M, MI CEN MCC MAE ACC
ART 75.4]9 76.2]9 74.0[10 | 46.8[19 | 75.0[10 | 74.4]11 75.4]9 68.5[9 69.0[9 67.6[8 437111 68.1]9 67.5110 68.1]9
RL 78.8[15 | 79.0[15 | 78.6]15 | 68.6]22 | 78.7[16 | 787715 | 78.6[16 66.6]15 | 66.9[15 | 66.5[15 | 54.9]121 | 66.6[15 | 66.5]15 | 66.2]15

graphs, which then becomes the new current graph. When learning is
completed, a CM is computed using the test set. This CM was evalu-
ated using the seven measures. IM,, was normalized using min-max
values in order to select best o (we heuristically examined values of
ain [2 : M, M?, M?3] for M classes, and selected the o that max-
imized IM,, on a validation set independent of the training and test
sets). We made the evaluation using artificial (ART) and real-world
(RL) DBs (all classification problems were ordinal). In the results
reported (Table 1 and Table 2), bold and underlined italic fonts indi-
cate the best and worst algorithms, respectively.

First, we evaluated the algorithms using 23 ART DBs that were
generated from a synthetic 20-node BN structure, in which the class
variable Markov blanket includes 4 parents, 3 children, and 3 parents
to common children. To test various scenarios and to simulate a broad
range of problems, we changed the number of values of the class vari-
able between 2 and 9, and sampled 2,000 samples in DBs 1-8; kept
four values to the class variable and changed the number of samples
between 500 and 3,000 in DBs 9-14; and sampled 2,000 samples and
kept four classes, but changed their prior probabilities to represent
different degrees of imbalance — from pure balance, through differ-
ent levels of imbalance, to very high imbalance —in DBs 15-23. Each
DB was re-sampled to create ten data permutations, and each permu-
tation was divided into five folds (i.e., CV5). Table 1 (top) shows
evaluation of the seven algorithms averaged over the 23 ART DBs
according to the ACC (left) and IM,, (right). BNCs learned based
on the IM, measure (1) perform better than BNCs learned based
on all other measures, regardless if the evaluation is based on the
IM, measure or ACC, which is interesting to see because classifiers
trained to maximize the IM,, measure are not expected to also maxi-
mize ACC. BNCs based on ACC, MCC, or IM, are behind, and those
learned based on the CEN measure provide the poorest performance.
The reason that the CEN-based BNC performs so poorly is because
empty graph initialization of the RMCYV algorithm creates an initial
CM that has entries only for one class, the majority class, leaving the
total CEN measure relatively low (better). Thus, it stops at this local
minimum and cannot proceed further.

To check if these differences are statistically significant, we per-
formed a Friedman non-parametric test followed by a Nemenyi post-
hoc test. Table 2 (top) shows the average ranks of the algorithms
(lowest is best) according to ACC and IM,, based on the Friedman
test. The Nemenyi test shows (with a 0.05 confidence level) that all
algorithms are significantly better than CEN with respect to the ACC
and IM,, measures, and the IM,-based BNC is significantly superior
to those based on MI, MCC, MAE, and ACC. In addition, the BNC-
IM,, has significantly better average ranks than the other algorithms
have regardless of the measure that evaluates performance.

Table 2. Average ranks according to ACC and IM,, of BNCs learned using
seven measures for the ART and RL DBs.
M M, MI CEN MCC MAE ACC
~ ACC 32 1.6 4.7 6.9 3.9 3.8 3.8
< M, 3.0 1. 4.3 6.9 .0 4.0 4.1
) ACC 2.6 2.1 4T 6.0 4.1 43 4.8
4 M, 2.6 2.1 3.8 6.1 4.4 4.1 4.9

Next, we extended the evaluation of the measures using 14 UCI
RL DBs (Australian, Autombp, Bostonhousing, Car, Cleve, Corral,
Glass, Hepatitis, Machinecpu, Mofn, Mushroom, Shuttle, Stocksdo-
main, and Voting) and two of our own DBs: Amyotrophic lateral
sclerosis (ALS) and Missed due date. The problems represented by
these 16 DBs have 2-10 classes, 7-29 variables, 80—-10,500 sam-
ples, and different degrees of class imbalance, posing a range of
challenges to the classifiers. Again, ten random permutations were
made to each DB, which were used over a CV5 experiment. Table 1
(bottom) shows the evaluation of the seven algorithms according to
ACC (left) and IM,, (right) performances. Once again, IM,-based
BNCs preform better on average than BNCs learned based on all
other measures. Table 2 (bottom) shows the average ranks according
to the Friedman test according to ACC and IM,. The results are con-
sistent with those of the ART DBs, showing that IM,, is ranked first,
followed by IM, MCC, and MAE. The ACC-based BNC was the sec-
ond worst classifier, which re-emphasizes the motivation to replace
it. According to Nemenyi post-hoc test (with 0.05 confidence level),
BNC-IM,, is superior to BNCs-MI, CEN, MCC, and ACC with re-
spect to ACC and to BNCs-CEN, MCC, and ACC with respect to
IM,,. In addition, we expended our evaluation to other state-of-the-
art algorithms suitable for ordinal classification, such as ordinal re-
gression and ordinal DT with a cost matrix equivalent to that used
by IM and IM,,. Friedman and Nemenyi tests found BNC-IM,, to be
superior to these algorithms.

3 Summary and Discussion

Learning by only maximizing ACC and ignoring the error distribu-
tion and severity in class-imbalance problems results in accurate clas-
sification of only the major class at the expense of incorrect predic-
tion of the minor one. We proposed an information measure, IM, and
a weighted version of it, IM, to tackle these limitations in ordinal
classification problems. We implemented them as a discriminative
score in an algorithm for learning a BNC and demonstrated their ad-
vantage compared to other measures. IM and IM,, are specifically
suited to any imbalance ordinal classification problem. If a problem
is not ordinal, the contribution and impact of the ES term in the mea-
sures will vanish, and with no imbalance, the measures advantage
over others may decrease. For problems with high imbalance and
error that account differently for different classes, the advantage of
these measures over other ACC and information measures is large.
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