
Ben Zion and Lerner EPJ Data Science (2018) 7:45
https://doi.org/10.1140/epjds/s13688-018-0173-5

R E G U L A R A R T I C L E Open Access

Identifying and predicting social lifestyles
in people’s trajectories by neural networks
Eyal Ben Zion1* and Boaz Lerner1

*Correspondence:
benzione@post.bgu.ac.il
1Department of Industrial
Engineering and Management,
Ben-Gurion University of the Negev,
Beer Sheva, Israel

Abstract
In this research, we exploit repeated parts in daily trajectories in people’s movements,
which we refer to as mobility patterns, to train models to identify and predict a
person’s lifestyles. We use cellular data of a group (“society”) of people and represent a
person’s daily trajectory using semantic labels (e.g., “home”, “work”, and “gym”) given
to the main places of interest (POI) he has visited during the day, as determined
collectively based on interviewing all people of the group. First, in an unsupervised
manner using a neural network (NN), we embed POI-based daily trajectories that
always appear together with others in consecutive weeks and identify the result of
this embedding with social lifestyles. Second, using these lifestyles as labels for
lifestyle prediction, user POI-based daily trajectories are used to train a convolutional
NN to extract mobility patterns in the trajectories and a dynamic NN with flexible
memory to assemble these patterns to predict a lifestyle for a trajectory
never-seen-before. The two-stage algorithm shows model accuracy and
generalizability in lifestyle identification and prediction (both for a novel trajectory
and a novel user) that are superior to those shown by state-of-the-art algorithms. The
code for the algorithm and data sets used in our experiments are available online.

Keywords: Convolutional neural network; Embedding; Human behavior; Lifestyle;
Long short-term memory; Mobility patterns; Place of interest; Recurrent neural
network; Sequence classification; Word2vec

1 Introduction
Thanks to the increasing use of GPS devices, wearable sensors, and location-based ser-
vices, a significant amount of data on human movement has been collected. This data can
be used for analyzing the mobility patterns of people, their behavior, and lifestyles. For
example, in a recent study [1], we extended latent Dirichlet allocation (LDA) to capture
the temporal relations in mobility patterns that are reflected in a specific person’s trajec-
tories of movement, in order to identify his lifestyle. In this study, we extend the previous
study to identify lifestyles from trajectories for a society of people, and not only for a spe-
cific person, as people share different aspects in their behavior and lifestyles, and shared
information that is exploited from mobility patterns for an individual may enhance our
understanding and prediction capability of the behavior and lifestyle of another individ-
ual, and imply on those for the society itself. Identifying lifestyles for a single person is vital
in a wide variety of fields, such as in psychiatry, where a doctor or caregiver can monitor
the state of a specific patient, say having bipolar disorder, in order to intervene in situa-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 2 of 27

tions such as in mania or depression periods, that pose a danger to the patient or others.
Identifying lifestyles for groups of people may help in distinguishing these groups, e.g.,
patients with bipolar disorder having different characteristics, tourists among locals in a
specific city, or people with various special needs.

In this study, we are interested in identifying and predicting social lifestyles in people’s
trajectories of movement. For the identification part, we suggest learning user lifestyles
by capturing temporal relations between trajectories using embedding. We do this by ex-
tending word embedding—traditionally implemented within the word2vec [2] framework
using a neural network (NN)—to trajectory embedding by associating a word in a sentence
with a mobility trajectory made by a user during a two-week period. After modifying the
raw data of a user’s locations, which consist of latitude, longitude, and timestamps, into
“sentences” (in the context of word embedding) of two consecutive weeks, we apply tra-
jectory embedding by the word2vec algorithm to cell-phone user data, and demonstrate
the advantage of this embedding in capturing dependencies between trajectories. Using
t-distributed stochastic neighbor embedding (t-SNE) [3]—a non-linear dimensionality re-
duction algorithm—we cluster these embedded trajectories to identify human lifestyles.

For the second task of predicting lifestyles for a new mobility pattern (of a known or an
unknown user) based on already identified lifestyles, we assume that:

• Trajectories reflecting the same lifestyle do not have to be identical or very similar, but
they should share specific sub-sequences with common semantic meaning;

• The order (sequence) of places of interest (POIs; most frequently visited places) along
a trajectory, as well as past and future POIs on the trajectory, indicate on the lifestyle
they represent; and

• Correlation between POIs along a trajectory (measured, e.g., by the POIs’
co-occurrence) imply on the lifestyle reflected by this trajectory.

Prediction of a lifestyle for a trajectory can be related to text classification [4], where
we associate a person’s POIs, trajectories, and lifestyle with words, text, and text classifi-
cation, respectively. However, in traditional text classification, feature engineering is con-
ventionally needed, and the order of the words is assumed to be unimportant (the “bag
of words” assumption). To avoid feature engineering, we can apply end-to-end NN solu-
tions [5], and to dispense with the “bag of words” assumption, we can utilize, e.g., n-grams
or hidden Markov models (HMMs) [6]. In this study, we extend elements of sequence text
classification [5] to the prediction of a lifestyle (a latent unknown variable) from human
mobility patterns that are extracted from trajectories of movement.

Therefore, our approach for identifying and predicting social lifestyles in people’s tra-
jectories is based on four pillars, in which the first two are a pre-processing stage, and the
last two are the identification and prediction stages:

• Embedding of POI-based daily trajectories that always appear together with others in
consecutive weeks in lifestyles using word2vec [7] and t-SNE [3] from cellular data of
a society of people, and not of only a single person [1]. This embedding provides
lifestyle (abstract) labels to trajectories in an unsupervised manner, which are then
used to train supervised system elements of the other pillars;

• Embedding of POIs in lifestyles using an NN in order to project semantic (categorical)
POIs, e.g., “home”, “work”, “gym” (as collectively determined by the society) to a
continuous representation that suits system elements for social lifestyle prediction,

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 3 of 27

while keeping semantically close POIs (with respect to lifestyles) also close in their
embedding;

• Identifying high-frequency sub-sequences of co-occurring POIs (i.e., mobility
patterns) that are associated with the lifestyles embedded by the first pillar using a
convolutional neural network (CNN) (similarly to identification of edges and other
features that compose image objects, which is the most prevalent task of CNN); and

• Predicting a lifestyle based on a never-seen-before mobility pattern in a trajectory of
known or novel users using long short-term memory (LSTM) of flexible memory,
which is a variation of the recurrent NN, and bidirectional LSTM (BLSTM), which
also allows future sub-sequences besides past ones in the trajectory to contribute to
the prediction.

Our contribution is in developing methods for unsupervised inference of latent lifestyles
and lifestyle identification and prediction, and generalization of these capabilities for a
society of people to identify and predict social lifestyles for novel mobility patterns never-
seen-before.

In Sect. 2, we survey the relevant literature to our study. In Sects. 3 and 4, we respectively
describe our methodologies for identifying and predicting a lifestyle by a trajectory. In
Sect. 5, we demonstrate the ability of our method in two scenarios: one of predicting a
lifestyle for a novel sequence and the second of predicting a lifestyle for a novel user. In
Sect. 6, we summarize our contribution. Finally, in Sects. 7 and 8, we respectively conclude
and suggest avenues of new research.

2 Related work
Learning a user’s mobility pattern is challenging because it involves many aspects in the
user’s life and levels of knowledge, combined with a high level of uncertainty. This chal-
lenge is historically connected to systems optimization, e.g., in predicting the density of
cellular users to perform resource reservation and handoff prioritization in cellular net-
works [8]. As information collected from cellphones has become increasingly personal,
models have become more user-specific. Thus, predicting a mobility pattern is at a higher
level of learning than finding the geographic coordinates of locations, enabling prediction
of significant places for individuals [9].

Most research in learning mobility patterns today stems from the large amount of infor-
mation currently collected on users from different sources, information that in our case
can help predict human behaviors and lifestyles. Such information has been based, e.g.,
on accelerometers [10], state-change sensors [11], or a system of RFIDs [12]. In a series
of studies, [13, 14] presented the prediction and correlation of human activities based on
information from the user’s location. [15] proposed the use of eigenbehaviors to predict
human behavior. Eigenbehaviors describe the important features of observed human be-
havior in a specific time interval, which may be related to lifestyles, and allow direct com-
parison between movement patterns of different people. The authors described behavior
that changes over time, and showed how eigenbehaviors build behavior structures.

Discovery of mobility patterns and prediction of users’ destination locations, both in
terms of geographic coordinates and semantic meaning, was demonstrated [16] without
using any semantic data voluntarily provided by a user or sharing of data among the users.
The proposed algorithm allows a trade-off between prediction accuracy and information
and shows that the predictability of user mobility is strongly related with the number and
density of the users’ locations, as learned from the data of each user.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 4 of 27

A recent review [17] surveyed and assessed different approaches and models that an-
alyze and learn human mobility patterns using mainly machine learning methods. The
authors categorized these approaches and models in a taxonomy based on the positioning
characteristics, scale of analysis, properties of the modeling approach, and class of appli-
cations they can serve. They found that these applications can be categorized into three
classes: user modeling, place modeling, and trajectory modeling, each class with its own
characteristics.

Also LDA [18] can be applied to identify human lifestyles from mobility patterns, but
since it makes the assumptions of “bag-of-words” and the order of documents, in order
to capture temporal relations in the mobility patterns, we needed in a previous study to
relax these assumptions by extending the LDA [1]. In contrast, word2vec is a less complex
model that eliminates the need to consider any assumptions.

Following its introduction [2], word2vec has generally been applied in natural language
processing [19, 20]. Because of the efficacy of this model’s framework in capturing the
correlations between items, it is employed in network embedding [21], user modeling [22],
item modeling [23], and item recommendation [24, 25].

There is recent work on word embedding also in the context of POIs. For example, [26]
suggested how to find these POIs. [27] showed how to use word2vec in order to create POI
vectors to perform better POI recommendations for users. They treat a user as a “docu-
ment,” check-in sequence as a “sentence,” and each POI as a “word.” The difference in our
work is that we used word2vec for sequence (i.e., trajectory) embedding and not POI em-
bedding, similar to paragraph2vector [28] and other word2vec variants [29, 30] proposed
to enhance the word2vec framework for specific purposes. Gao et al. [31] performed tra-
jectory embedding as a post-processing stage in their mobility patten analysis, but not for
lifestyle prediction.

3 Identifying a lifestyle by trajectory
In this section, we identify the lifestyle by embedding according to following stages:

1. Finding significant POIs � Sect. 3.2
2. Finding semantic meaning for POIs � Sect. 3.3
3. Creating a semantic trajectory � Sect. 3.4
4. Clustering unique semantic trajectories � Sect. 3.5
5. Building a trajectory representation of two consecutive weeks � Sect. 3.6
6. Embedding of trajectories using Trajectory2vec � Sect. 3.7
7. Identifying a lifestyle for a trajectory � Sect. 3.8
After raw data of longitude, latitude, and timestamps have been collected from users

using the Google Location History app [32] (Sect. 3.1), preprocessing is performed in five
stages. The first stage of preprocessing is finding significant POIs, and the second is giv-
ing them semantic meaning. The third stage is creating semantic trajectories of POIs, and
the fourth is clustering trajectories to unique semantic trajectories. Preprocessing is com-
pleted by building a trajectory representation of two consecutive weeks. Then identifica-
tion of lifestyles by embedding is performed in two stages (Stages 6 and 7). Figure 1 shows
the preprocessing stages from finding significant POIs to clustering unique semantic tra-
jectories, and Fig. 2 demonstrates the process of trajectory embedding with word2vec and
t-SNE.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 5 of 27

Figure 1 Preprocessing. The preprocessing stage from raw data to clustered trajectories. d is the cell size; A, B,
C, D, and O are POIs (O is a POI outside the map); g is the number of trajectories (and days); gT is the number
of unique trajectories, where each day is represented by a 24-hour trajectory; and N is the number of
trajectory clusters

Figure 2 Identifying a lifestyle. The process for identifying a lifestyle to trajectory. N (3000) is the trajectory
clusters number, n is the number of the hidden layer in the word2vec model, and LS is the lifestyle number

3.1 Collecting data
The Google Location History app records the coordinates and timestamps of locations
collected from Android users. An Android user can download these records in a JSON
file. This file includes the longitude and latitude of the location, the timestamp, and more
metadata about the accuracy of the recorded location, the speed of the user at the time
of the record, and type of movement, e.g., walking, biking, riding in a vehicle, etc., at the
time of the record. In this research, we chose to consider only the longitude and latitude
of the locations and their timestamps.

With their permission, we collected the data from 38 users, who agreed to assign se-
mantic meanings, e.g., home, work, etc., to their POIs.

In the next section, we decribe how we changed the Google Location History into POIs.

3.2 Finding significant POIs
We used two-week time periods to capture the previous week’s influence on the current
week. Because the Google Location History may have missing data, e.g., periods of time

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 6 of 27

with no records, we selected only two-week periods which had no more than 24 hours of
missing data in each week.

The recorded latitude and longitude are not always precise because of the frequent use
of cellular networks rather than GPS for recording the Android user’s choice. Because
there are places with low coverage of cellular towers, the recorded location may not be
as accurate. Due to low accuracy, different close places may be recorded as having the
same semantic meaning, adding noise to the raw data. Thus, we grouped nearby places to
reduce noise in the identification of the user’s most significant places. By converting the
geographic map into a grid with a cell size of (approximately) 10 × 10 m2 (size d in Fig. 1)
and rounding the latitude and longitude according to: newx = round(oldx ∗ 10, 000/5) ∗
(5/10, 000) (10,000 and 5 are parameters to create the grid cell size), we defined every grid
cell as a POI, and every longitude and latitude point was related to a POI by its geographical
position (See Fig. 1).

To select the above values—the 24-hour time window and 10 × 10 m grid size—we
needed to check ranges of values that reasonably manifest a typical human lifestyle and
places of visit. We checked time-window sizes between six and 48 hours with a six-
hour jump because these periods are significant in a person’s life, and grid-cell sizes
between two and fourteen meters with a two-meter jump because these sizes are typ-
ical to rooms, shops, offices, etc. that establish places people visit/stay. Besides their
plausibility, the two selected values achieved the highest accuracy in lifestyle classifica-
tion by a naive Bayesian classifier (NBC) following a simple preprocessing stage we ap-
plied to the data. However, for this preprocessing stage, we needed results that were de-
rived only at later stages, providing feedback to this earlier stage. First, we established
a vocabulary of 34 POIs having semantic meanings to our “society” of 38 people (see
Sect. 3.3). Second, we created n-grams of semantic sub-sequences of n POIs in the tra-
jectories. We used an n-gram of size three because this size is half of the smallest time-
window size of six, which represents a meaningful unit in a person’s life. For example,
if we had a trajectory of six POIs: {home, school, work, work, gym, and home}, the 3-
grams extracted were: {home, school, work}, {school, work, work}, {work, work, gym}, and
{work, gym, home}. Each of the L unique 3-grams (L = 4 in this example) establishes a
“term” for which, in the third stage, we computed frequencies over all terms. Fourth, we
represented each trajectory as an L-dimensional vector for which its ith element is the
term frequency (TF) of the ith term identified in this trajectory. Finally, we trained the
NBC using this trajectory representation, while corresponding lifestyle classes were de-
rived following trajectory embedding and identification, as will be described in Sect. 3.7
and Sect. 3.8, respectively. Evaluating the classification accuracy of NBCs trained using
different combinations of time windows and grid sizes using the validation set, we could
identify the most appropriate values, as described above.

Finally, we filtered non-significant POIs, i.e., places a user visits infrequently, and kept
only the most frequent POI in each hour. We counted the appearances of these POIs, and
if a POI was not in the 10% that most frequently appeared, it was considered “rare” and
was labeled Other (The Other label appeared on average 12.34% out of 24 hours on the
trajectories of each user). Non-rare POIs are the building blocks of the trajectories, which
are constructed from the POIs and the timestamp.

In the next section, we describe how we found the semantic meaning of the POIs for a
specific user.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 7 of 27

Table 1 The semantic meaning vocabulary of 34 POIs determined based on all POIs identified for 38
users participating in the experiment. “Close” is in the same city and “Far” is in a different city. “Local”
is in the same country and “Global” is in a different country

Acronym Semantic meaning Acronym Semantic meaning

H Home W Work
CP Close partner FP Far partner
CP Close parents FP Far parents
CPP Close partner’s parents FPP Far partner’s parents
CF Close family FF Far family
CFr Close friend FFr Far friend
S Study PH Prayer house
ASL Advanced study locally ASG Advanced study globally
Sh Shopping D Drive in a car
M Medical treatments Gy Gym
CEF Child educational framework PC Personal care
Er Errands AT Animal treatments
LV Local vacation GV Global vacation
V Volunteering G Group activate
PT Public transportation CT Car treatments
SE Social entertainment CR Cultural recreation
O Other U Unknown

3.3 Finding semantic meaning for POIs
After finding the POIs of each of the 38 users, we created a custom map (with Google
My Maps of [32]) for every user with his POIs. This map was shared with the user, who
gave every POI semantic meaning according to Table 1, which was created based on the
semantic meanings of all POIs of all users. Sharing the semantic meanings of POIs among
users enabled the establishment of a common vocabulary of semantic POIs (Table 1) for
all users. Then we created for every user a hash table for his POIs, i.e., a semantic meaning
for each of his POIs.

In the next section, we describe how to build the trajectories from the POIs for each
user.

3.4 Creating a semantic trajectory
We limited a trajectory, i.e., places a user visited sequentially in a given interval of time, to
the length of a day, a significant time period in a user’s life. Thus, to form a trajectory, we
created a vector with 24 slots, each representing one hour (Fig. 1). Each slot was assigned
a number that represented the semantic meaning (Table 1) of the most frequent POI at
this specific hour on this specific day. Thus, the daily trajectory was defined as a string
of 24 letters (POIs). If there was no record at a specific hour, this hour was assigned the
semantic value of No Record.

In the next section, we describe how we reduced the trajectory dimension.

3.5 Clustering unique semantic trajectories
The number of possible trajectories is 3424, for which 34 is the number of possible POIs
(see Table 1) and 24 is the number of slots in the trajectories. Although the actual num-
ber of trajectories is usually close to the number of days in this dataset, if we want to
employ word2vec methods, we need to further reduce this number to create a strong co-
occurrence between the trajectories. Therefore, we performed unsupervised learning with
a hierarchical clustering algorithm and the edit distance metric on the unique trajectories
to achieve a more compact trajectory representation (Fig. 1). The edit distance measures

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 8 of 27

the similarity between two temporal sequences of equal length. We chose this distance
because the sequences must be the same length. The number of clusters was determined
empirically to be a quarter of the number of unique trajectories of all the users, e.g., if the
number of unique trajectories of all the users was approximately 12K, so the number of
clusters was determined to be 3K (gT in Fig. 1). Labels in {1, N} for all clusters are kept
using a hash table.

In the next section, we describe how we built weekly-time dependances between the
trajectories.

3.6 Building a trajectory representation of two consecutive weeks
Since we try to show that the previous week and trajectory impact on the current trajec-
tory, we input here into our model two consecutive weeks to validate this impact. That
is, a series of seven consecutive trajectories (days) was grouped in a week, beginning on a
Sunday and ending on a Saturday, and two-consecutive weeks were grouped together to
make a 14-dimensional sample (observation). Similarly, each other couple of consecutive
weeks in the user’s database were grouped to form another sample, and all these samples
formed the data set for this user.

In the next section, we describe how we embedded the different trajectories to contin-
uous vectors.

3.7 Embedding of trajectories using Trajectory2vec
Word2vec is an NN embedding model from natural language processing (NLP), which is
able to embed words into word vectors [2]. The model was extended to different research
areas, other than NLP, such as an extension of word vectors for n-grams in biological se-
quences (e.g., DNA, RNA, and proteins) for bioinformatics applications, as proposed by
Asgari and Mofrad [33]. Also, another extension of word vectors for creating a compact
vector representation of unstructured radiology reports has been suggested by Banerjee
et al. [34].

In this work, we establish a connection between word embedding and what we call “tra-
jectory embedding”. If the POIs’ sequence in the trajectory can be considered as letters, so
the trajectories can be considered as words, and a two-week period is our text. Therefore,
a word2vec model can be used to embed trajectories, each is a sequence of 24 consecutive
POIs, in trajectory vectors, which are 14-dimensional representations of two consecutive
weeks (Sect. 3.6).

In neural language models, such as word2vec, the word probability given other (previous
and next) words is:

P(wt|wt–m, . . . , wt+m) =
exp(hᵀv′

wt)
∑V

i=1 exp(hᵀv′
wi

)
, (1)

where v′
wt is the output vector for input word wt [this is column t in weight matrix W′

(Fig. 3)], V is the size of the vocabulary, m is the number of previous and next words to
look at, and h is equal to W T x, e.g., the hidden vector of the input layer. In Fig. 3, the input
and output layers indicated as x and v, respectively, are one-hot vectors to each word w
in the data. Word2vec is a word embedding algorithm based on an NN, and it can have
different architectures. Although it has several implementations, we limit our discussion
to only CBOW.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 9 of 27

Figure 3 Word2vec. Word2vec represented as an NN

Figure 4 CBOW. CBOWmodel (See [7])

Continuous bag-of-words (CBOW). In CBOW (Fig. 4), word wt is predicted according
to its context, i.e., the words surrounding it (the context words) where their order has no
impact. wt in (Eq. 1) is the output, and the context window of size 2m, wt±m is the input
(C in Fig. 4 is equal to 2m).

Negative sampling (NEG). Sampling-based approaches do away with the softmax layer.
They do this by approximating the normalization in the denominator of the softmax (Eq. 1)
with some other loss that is inexpensive to compute. However, sampling-based approaches
are only useful at training time, while during inference time, the full softmax still needs to
be computed to obtain a probability.

NEG is an alternative to hierarchical softmax [2], which is an approximation to noise
contrastive estimation (NCE) [35]. NCE can be shown to approximate the loss of the soft-
max as the number of samples k increases. NEG simplifies NCE, and does away with this
guarantee, as the objective of NEG is to learn high-quality word representations rather
than achieving low perplexity on a test set, as is the goal in language modeling.

NEG also uses a logistic loss function to minimize the negative log-likelihood of words in
the training set. For every word wt given its context ct of m previous words wt–1, . . . , wt–m+1

in the training set, we generate k noise samples w̃tk from a noise distribution Q (in NEG, we
set the most expensive term, kQ(w), to 1). We can sample from the uni-gram distribution
of the training set. As we need labels to perform our binary classification task, we designate
all correct words wt given their context ct as true (y = 1) and all noise samples w̃tk as false

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 10 of 27

(y = 0). NEG calculates the probability that a word w comes from the empirical training
distribution P given a context c as follows:

P(y = 1|w, c) =
exp(hᵀv′

w)
∑V

i=1 exp(hᵀv′
wi

) + 1
. (2)

P(y = 1|w, c) can be transformed into the sigmoid function:

P(y = 1|w, c) =
1

1 + exp(–hᵀv′
w)

. (3)

And then the logistic regression loss is:

Jθ = –
V∑

i=1

[

log
1

1 + exp{–hᵀv′
wi

} +
K∑

k=1

log
1

1 + exp{hᵀv′
w̃ik

}

]

. (4)

While NEG may thus be useful for learning word embeddings, its lack of asymptotic
consistency guarantees makes it inappropriate for language modeling.

Each element of the 14-dimensional trajectory representation of two consecutive weeks
(Sect. 3.6) (which represents a day) holds the index of the cluster (Fig. 2), of the 3K pos-
sible clusters (Sect. 3.5), to which the corresponding trajectory was clustered. Then if, for
example, we choose to train the CBOW model, each of the 14 trajectory representations
is turned using 1-of-c coding to a 3000-dimensional vector, where all vector elements are
zero except that corresponding to the cluster index, which is one. Such a vector for a pre-
dicted trajectory (day) feeds the NN output layer, while similar vectors for the context
window, i.e., trajectories for the previous and following days, feed the NN input (Fig. 4).
That is, we use neighboring days to predict the current day using the CBOW model. At the
end of the learning process, the (3000 × n) input-hidden and (n × 3000) hidden-output
weight matrices are seen as embedded trajectories (n is the dimension of the trajectory
vector; Fig. 4), whose dimensions are further reduced (Sect. 3.8) using t-SNE from n to
two (Fig. 2) before being clustered and identified by a lifestyle.

In the next section, we describe how we found the lifestyles from the embedded trajec-
tories.

3.8 Identifying a lifestyle for a trajectory
After trajectory embedding (Sect. 3.7), we reduced the dimension of the embedded tra-
jectories (represented by the two NN weight matrices) using non-liner dimensionality re-
duction by t-SNE (Fig. 2). The t-SNE [3] algorithm is well suited for embedding high-
dimensional data into a two-dimensional space in such a way that similar objects (trajec-
tories in our case) in the high dimension are projected close to each other in the two-
dimensional space, and dissimilar objects are projected far apart.

The t-SNE algorithm has been used in a wide range of applications including cancer
research [36], music analysis [37], and bioinformatics [38]. The algorithm has two main
stages. First, a t-SNE builds a probability distribution over all pairs of objects in the high-
dimensional map. The objects have a very high probability to peak if they are similar, and
very low probability to peak if they are dissimilar. Second, the t-SNE defines a similar prob-
ability distribution over all pairs in the low-dimensional map, and it tries to minimize the

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 11 of 27

KL-divergence between the two distributions concerning the locations of the points on
the map.

By clustering hierarchically these two-dimensional trajectory clusters with the Euclidean
distance, we can associate each trajectory cluster with a lifestyle (Fig. 2). Note that hierar-
chical clustering groups the N two-dimensional original clusters into a reduced number
of hierarchically-clustered clusters, each identified with a lifestyle, and this lifestyle is as-
sociated with all the original clusters grouped in the hierarchically-clustered clusters.

4 Predicting a lifestyle by trajectory
In this section, we show an approach to predict a lifestyle by a trajectory with a system of
NNs. Based on the trajectories identified in an unsupervised manner for each user indi-
vidually (Sect. 3), we can now use all unique trajectories of all the users to train this NN
system to predict a lifestyle for a trajectory in a supervised manner.

4.1 Predicting a lifestyle by trajectory with NN
In predicting lifestyles, there is a high level of uncertainty even when trying to predict the
lifestyles of individual people. This uncertainty increases when we predict the lifestyles of
a society of people. To lower the uncertainty and to be able to accurately predict lifestyles,
we exploit:

1. Semantic similarities along trajectories representing the same lifestyle;
2. Sub-sequences of co-occurring POIs that compose mobility patterns in the

trajectory; and
3. The order of the POIs in the trajectory, and temporal relations between past/future

POIs and the current one.
To accomplish these three features, our system of three NNs: (1) Embeds POIs in

lifestyles accompanied by t-SNE to project categorical POIs, e.g., “home”, “work”, “gym”
onto a continuous representation (needed by the next NN, which is CNN), while keeping
semantically close POIs (with respect to lifestyles) also close in their embedding (Sect. 3.7);
(2) Detects high-frequency sub-sequences (mobility patterns) of size n of co-occurring
POIs that are associated with the lifestyles using a CNN with a filter size of n (Sect. 4.1.3);
and (3) Exploits the order of the POI sequences in the trajectories to classify a trajectory to
a lifestyle using a flexible memory to the past by the LSTM (Sect. 4.1.1) or using a flexible
memory also to the future (as we have the whole trajectory) by the BLSTM (Sect. 4.1.2),
which can potentially improve prediction by considering temporal relations from the past
and to the future for each POI in the sequence.

Therefore, we explore five NN system architectures based on different intuitions and
combinations of these features, each implemented as an NN layer, and compare these
architectures (all explained below) to the recurrent neural network (RNN) as a reference:

• RNN: Word embedding layer → Dropout → RNN layer → Dropout.
• LSTM: Word embedding layer → Dropout → LSTM layer (Fig. 5) → Dropout (see

Fig. 6).
• BLSTM: Word embedding layer → Dropout → BLSTM layer → Dropout (see Fig. 7).
• CNN: Word embedding layer → Dropout → CNN and max pooling layer →

Dropout → Neuron layer (see Fig. 8).
• CLSTM: Word embedding layer → Dropout → CNN and max pooling layer →

Dropout → LSTM layer → Dropout (see Fig. 9).

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 12 of 27

Figure 5 LSTM. Long short-term memory

Figure 6 Predicting with LSTM. The LSTM model for predicting a lifestyle to trajectory. A one-hot vector has
zeros for all trajectories except the specific trajectory (which is one)

Figure 7 Predicting with BLSTM. The BLSTM model for predicting a lifestyle to trajectory. A one-hot vector
has zeros for all trajectories except the specific trajectory (which is one)

• CBLSTM: Word embedding layer → Dropout → CNN and max pooling layer →
Dropout → BLSTM layer → Dropout (see Fig. 10).

In the next sections, we will give explanations about the RNN-based and CNN models.

4.1.1 LSTM
RNNs are a family of models which are able to capture time dynamics. In theory, RNNs
are capable of capturing long-distance dependencies; however in practice, they fail due to
the gradient vanishing problem [39].

LSTMs [40] are variants of RNNs which are designed to cope with the gradient van-
ishing problem. The LSTM unit (Fig. 5) has three multiplicative gates which control the
proportions of information to forget and pass on to the next time step. Formally, in time t,

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 13 of 27

Figure 8 Predicting with CNN. The CNN model for predicting a lifestyle to trajectory. A one-hot vector has
zeros for all trajectories except the specific trajectory (which is one). Each feature in a feature map is
represented in a different color (could have more than three features)

Figure 9 Predicting with CLSTM. The CLSTM model for predicting a lifestyle to trajectory. A one-hot vector
has zeros for all trajectories except the specific trajectory (which is one). Each feature in a feature map is
represented in a different color (could have more than three features)

the formulas to update an LSTM unit are [for the input gate (i), forget gate (f), and output
gate (o)]:

it = σ (W iht–1 + Uixt + bi), (5)

f t = σ (W f ht–1 + Uf xt + bf), (6)

c̃t = tanh(Wcht–1 + Ucxt + bc), (7)

ct = f t � ct–1 + it � c̃t , (8)

ot = σ (Woht–1 + Uoxt + bo), (9)

ht = ot � tanh(ct), (10)

where σ is the element-wise sigmoid function, � is the element-wise product, xt is the
input vector (e.g., word embedding) at time t, it is the input gate vector which acquires
new information, f t is the forget gate vector which remembers old information, ot is the
output gate vector which is the output candidate, c̃t is in the tanh layer which creates a

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 14 of 27

Figure 10 Predicting with CBLSTM. The CBLSTM model for predicting a lifestyle to trajectory. A one-hot
vector has zeros for all trajectories except the specific trajectory (which is one). Each feature in a feature map is
represented in a different color (could have more than three features)

vector of new candidate values that can be added to the state if the input gate vector (it)
is larger than the forget gate vector (f t), ct is the cell state vector, and ht is the hidden
state vector (also called the output). We put the cell state through tanh to push the values
to be between –1 and 1. All the state vectors are memory units, which store all the useful
information at, and before, time t. Ui, Uf , Uc, and Uo denote the weight matrices of different
gates for input xt , and W i, W f , Wc, and Wo are the weight matrices for the hidden state ht .
bi, bf , bc, and bo denote the bias vectors.

4.1.2 BLSTM
An LSTM remembers information only from the past/left of a sequence. In our study,
when the whole trajectory exists (but not its corresponding lifestyle, which we wish to
predict), we can also employ the future/right of a sequence. Dyer [41] suggested an ele-
gant solution—bi-directional LSTM (BLSTM)—whose effectiveness was proven in previ-
ous work. The idea is to present each part of a sequence, one forward and one backward,
for two different LSTM memory units. One should capture the past, and one the future.
Then the two memory units are concatenated to one output.

4.1.3 CNN
We use CNN [42] to identify high-frequency sub-sequences of co-occurring POIs in the
trajectories (i.e., mobility patterns), which are valuable for lifestyle prediction. Using a filter
W ∈R

h×k of height h and width k as the length of the POI vector, a convolution operation
on h consecutive POI vectors starting from the tth POI outputs a scalar feature

ct = ReLU(W • Xt:t+h–1 + b),

where Xt:t+h–1 ∈R
k×n is a POI sequence matrix whose ith column is xi ∈R

k , e.g., a specific
POI vector; n is the length of the trajectory; and b ∈R is a bias. The symbol • refers to the
dot product, and ReLU(·) is an element-wise rectified linear unit function.

In this study, we checked the convolution operation with m different filters and denoted
resulting features such as ct ∈ R

n–h–1, each of whose dimensions comes from a distinct
filter. We repeated the convolution operations for each window of h consecutive POIs in

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 15 of 27

the trajectory and obtained c1:n–h+1. The trajectory representation is computed in the max
pooling layer, s ∈ R

n–h–1, where the element-wise maximum of c1:n–h+1 is the output of the
max pooling layer.

4.1.4 Dropout
Srivastava et al. [43] suggested a simple regularization technique named “Dropout” to
solve the overfitting problem and to improve the performance of the NN. It randomly
chooses units to drop out and removes them from the layer temporarily. In each training
stage, each node (together with its incoming and outgoing edges) is either “dropped out”
of the net with probability 1 – p or kept with probability p. Training at this stage is only of
the reduced network. During the test, the removed nodes are reinserted into the network
with their original weights.

4.2 Optimization of models for predicting lifestyles
The parameters of all the architectures were optimized using 5-fold cross-validation
(CV5). We created five folds from all the users’ trajectories: three folds used for the training
set, one fold used for the validation set, and one fold for the test set, and changed the roles
of the folds five times. It is important to note that the CV5 performs on approximately 12K
unique trajectories—every trajectory in the training set was different from every other.
Also, the trajectories in the validation and test sets were not seen during training.

In the next sections, we describe how we found the best parameters for the different
models.

4.2.1 NN optimization
For each NN layer or mechanism (e.g., word embedding, dropout, RNN/LSTM/BLSTM,
and CNN; see Sect. 4.1), we optimized its different parameters. In the word embedding
layer, the parameter was the hidden node number in the hidden layer, which was checked
between 500 and 1300 with a 100 hidden-node jump. In the CNN layer, the parameters
were the filter size, which was evaluated between two and seven with a one-step jump, and
the number of filters, which was checked between 500 and 1300 with a 100 hidden-node
jump. The max pooling layer was set to be global. Last, in the RNN/LSTM layer (used by
all LSTM variants; Sect. 4.1), the memory unit number was tested between 500 and 1300
with a 100 hidden-node jump. For all the models, we used 35 epochs and 64 trajectories
as the batch size. For each of the evaluated parameters, its best value was selected using
the validation set, as described in Sect. 5.

4.2.2 Optimization of the traditional models
We compared the six NN system architectures (Sect. 4.1) with traditional models: NBC,
support vector machine (SVM), and HMM, with respect to accuracy and generalizability.
The preprocessing stage of representing trajectories using TFs for the SVM is similar to
that for the NBC (Sect. 3.2). However, since some terms can be more common than others
in trajectories (e.g., {home, work, work} is more common than {school, work, gym}), and
thus can be less effective in distinguishing trajectories (and lifestyles), we weighted terms
by the inverse of their frequency using the inverse document frequency (IDF) [44] for both
the NBC and SVM (where whether to use IDF or not was a model’s parameter to evaluate).

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 16 of 27

We tested four SVM models: linear SVM (LSVM), radial basis kernel function SVM
(RSVM), polynomial kernel function SVM (PSVM), and linear support vector classifica-
tion (SVC). A parameter to evaluate for the SVM models was the cost-function term C.
For all SVM-based algorithms, C was checked between 0.2 and one with a 0.2-step jump.
Other parameters tested for the NBC and SVM-based algorithms were n for the n-gram,
which was checked between two and fourteen with a two-step jump.

In addition, we tested several HMM models, one for each lifestyle (a lifestyle was found
as explained in Sect. 3.8). The parameters of the model were the number of hidden states,
where values checked were between ten and 40 with a ten hidden-state jump, and the
convergence threshold of the expectation maximization (EM) algorithm, which was ex-
amined in between 0.01 and 0.1 with a 0.01-step jump. In the test, we tested each HMM
model (for a different lifestyle) on each trajectory and calculated the log-likelihood of the
trajectory given the model. The lifestyle was predicted by the HMM model that had the
best log-likelihood on this trajectory.

For all algorithms, the best parameter valuess were determined by the validation set, as
described in Sect. 5.

5 Results
For training the different models, we implemented the NNs with different Python pack-
ages and different computation resources: For the NNs that were used to predict lifestyles,
we used Keras [45] based on TensorFlow [46]. The computations for a single model were
run on a GeForce GTX 1080 GPU. For the traditional models that were used to predict
the lifestyles, we used Scikit-learn [47]. The computations for a single model were run on
an Intel core I7-6800K CPU 3.4 GHz × 12.

We used a “society” of 38 users for whom data is presented in Table 2. We re-
cruited the users from three different sources: (1) The Upwork–freelancer platform
(http://www.upwork.com). (2) Academic institutes in Israel, and (3) Friends and family.
We obtained Ethical Committee approval from the Ben Gurion University of the Negev
and Sapir Academic College. All users signed a consent form. The users’ distribution is as
follows:

• Recruited sources: Upwork: 2; Academic institutes: 18; Friends and family: 18.
• Gender: Female: 15; Male: 23.
• Age: Between 20–30: 21; Between 30–40: 10; Between 40–60: 5; Over 60: 2.
• Profession: Undergraduate students: 16; Graduate students: 7; Engineers: 4,

Freelancers: 3; Others: 8.
• Status: Married: 15; In relationship: 4; Single: 19.
As can be seen, most of the users are between the age of 20 and 30 years old, most of

them are students at some level of degree and are single. This user demographic could
have a bias on the models’ predictions, because such users have a high level of uncer-
tainty.

For identifying lifestyles by trajectory, we applied t-SNE to 1865 two-consecutive week
periods for all the users, with 11,350 unique trajectories in those weeks. To predict a
lifestyle by trajectory, we used the unique trajectories of all the users. We clustered the
trajectories (Sect. 3.5) into 3000 different clusters.

As we can see in Fig. 11(A), the t-SNE projection created groups of trajectories, i.e., sim-
ilar trajectories are close to one another, and dissimilar trajectories are more distant from

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 17 of 27

Table 2 Description of the 38 users

User Gender Age Profession Status

1 Female 24 A student Single
2 Male 23 A soldier Single
3 Female 24 A student Single
4 Male 24 A student Single
5 Male 25 A student In relationship
6 Male 35 A Ph.D candidate Married + 3
7 Male 38 A Ph.D candidate Married + 1
8 Female 32 An M.Sc. student Married + 1
9 Female 27 An M.Sc. student Single
10 Male 23 A student Single
11 Female 27 A teacher Married + 1
12 Male 40 A Ph.D candidate Married + 1
13 Male 25 A student Single
14 Female 60 A pensioner Married + 2
15 Female 24 A student Single
16 Male 32 A Ph.d Single
17 Female 40 A teacher Single + 2
18 Female 31 A translator Married
19 Male 25 A student Single
20 Male 26 A student Single
21 Male 40 A freelancer Married + 2
22 Male 35 An engineer Married + 1
23 Female 44 A manager Married + 3
24 Male 32 An engineer Married + 1
25 Female 24 A student Single
26 Male 27 An M.Sc. student Single
27 Female 24 A student Single
28 Female 30 An engineer In relationship
29 Male 28 A freelancer Engaged
30 Female 48 An assistant professor Married + 3
31 Female 33 A medical doctor Married + 1
32 Male 25 A student Single
33 Male 26 A student Single
34 Male 30 An M.Sc. student In relationship
35 Male 26 A student Single
36 Male 26 A student Single
37 Male 26 A student Single
38 Male 66 A engineer Married + 2

each other. We checked a changing lifestyle number between 2 and 80 on the t-SNE pro-
jection with hierarchical clustering. In Fig. 11(B), we can see the potential candidates of
the lifestyle number, which are 5, 14, and around 18. The likely candidates were chosen by
the peaks of the Calinski–Harabaz index. We decided the lifestyle number as 14 because
less than this number was not interesting enough, and as we see in Fig. 11(A), there are
more than five groups of trajectories. We did not choose 18 lifestyles because we did not
have enough data to support our models, especially for the deep neural networks. Future
studies could examine more significant numbers than 14 conditioned on data availabil-
ity.

Table 3 and Fig. 12 show trajectory distribution over the 14 lifestyles that were identified
by the hierarchical clustering with the Euclidean distance on the t-SNE projection. We can
see that most users (almost 70% of them) have seven or less lifestyles, and more than 30%

of the users have three or less lifestyles.
In predicting lifestyles, we used two architectures; One for predicting a lifestyle for a

never-seen-before trajectory and another for predicting a lifestyle for a never-seen-before

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 18 of 27

(A) The 11,350 unique trajectories’ distribution due to

t-SNE projection

(B) The Calinski–Harabaz index result of the

hierarchical clustering with Euclidean distance on the

t-SNE projection

Figure 11 Preprocessing results. Results for identifying lifestyles

Table 3 Trajectory distribution over lifestyles

Lifestyle index # trajectories % trajectories

1 1395 12.28
2 1124 9.9
3 1277 11.25
4 578 5.09
5 1205 10.61
6 906 7.98
7 1153 10.15
8 611 5.38
9 810 7.13
10 219 1.92
11 940 8.28
12 142 1.25
13 123 1.08
14 868 7.64

Figure 12 Trajectory distribution over lifestyles

user. The first architecture was implemented using CV5 over all the unique trajectories
to optimize/maximize the models’ hyper-parameters based on the accuracy score. The
second architecture was implemented using a leave-one-out methodology over the users

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 19 of 27

Table 4 Confusion matrix for the binary case

Total population Predicted condition

No Yes

True condition No True Negatives (TN) False Positive (FP)
Yes False Negative (FN) True Positive (TP)

using the hyper-parameters from the first architecture, and different performance mea-
sures were calculated for the prediction models alternatively trained using data of all but
a single user, when that user is tested.

In the next section, we describe the performance measures that evaluated the prediction
of lifestyle for a trajectory.

5.1 Performance measures for lifestyle prediction
Although our task is (lifestyle) multiclass classification, to simplify the explanation and
notation, we introduce our performance measures using a confusion matrix for the binary
case (Table 4).

Accuracy. Accuracy is calculated as: TP+TN∑
Total population (Table 4), and is between 0 and 1,

where 1 is a perfect prediction, and 0 is the worst prediction.
Recall. Recall is calculated as: TP

TP+FN (Table 4), and is between 0 and 1, where 1 indicates
the model has no false negatives, and 0 means all positive examples are misclassified.

Precision. Precision is calculated as: TP
TP+FP , and is between 0 and 1, where 1 indicates the

model has no false positives, and 0 means all positive examples are misclassified.
F1 score. The f1 score is calculated as: 2 · Precision·Recall

Precision+Recall , and is between 0 and 1, where 1
shows perfect precision and recall, and 0 shows that either one or both of the measures
are 0.

Cohen’s Kappa score. The Cohen’s Kappa score is calculated in several steps: (1)
P0 = TP+TN∑

Total population , (2) PYes = TP+FN∑
Total population · TP+FP∑

Total population , (3) PNo = FP+TN∑
Total population ·

FN+TN∑
Total population , 4) Pe = PYes + PNo, and finally, κ = (P0 – Pe)/(1 – Pe). The Cohen’s Kappa

score is between 0 and 1, where 1 indicates complete agreement between two raters who
each classify items into mutually exclusive categories, and 0 indicates complete disagree-
ment.

Jaccard similarity. The Jaccard similarity (intersection over union) is calculated as:
TP

TP+FP+FN , and is between 0 and 1, where 1 indicates all examples were predicted accu-
rately, and 0 indicates none of the positive examples was predicted correctly as positive.

Hamming loss. The Hamming loss is calculated as: FP+FN∑
Total population , and is between 0

and 1, where 0 indicates no examples are incorrectly predicted, and 1 indicates all ex-
amples are incorrectly predicted.

5.2 CV5 results
Table 5 shows the best hyper-parameters for the tested models based on the validation
sets in the CV5 experiment over all unique trajectories of all users together. These hyper-
parameters were chosen from wide and substantial sets of ranges. As can be seen for the
embedding layer, the hidden node number “Embed” of the hidden layer is much greater
than 34, which is the number of different POIs (our vocabulary of POIs for all users). Also
for the RNN and all its variations, the number of memory units is much larger than 24,
the trajectory size. This evidence is supported by Livni et al. [48], who showed that when

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 20 of 27

Table 5 The best parameters for the tested models. “States” and “Threshold” are the hidden state
number and convergence threshold of the EM algorithm of the HMM. “n-gram” is the gram size in
the preprocessing for the NB and SVMmodels, “IDF” is if to include inverse document frequency (see
Sect. 4.2.2) in the preprocessing for the NB and SVMmodels, and “C” is the penalty parameter of the
error term for the SVM models. “Embed” is the hidden node number in the embedded layer (see
Sect. 4.1), “DOi” is the ith fraction of the input units to drop in the dropout layer, “Filter size” is the size
of the filter in the convolution layer, “# filters” is the number of filters in the convolution layer,
“# Pooling” is the number of neurons to pool in the pooling layer, “Neuron” is the hidden node
number in the CNN model, and “Memory” is the memory unit number of the LSTM

States Threshold
HMM 30 0.01

n-gram IDF
NB 14 TRUE

n-gram IDF C
LSVM 14 TRUE 10
RSVM 2 TRUE 10
PSVM 2 FALSE 0.2
SVC 14 TRUE 10

Embed DO1 Filter size # filters DO2 Neuron
CNN 1300 0.2 1000 7 0.2 1150

Embed DO1 Memory DO2
RNN 650 0.4 500 0
LSTM 550 0.8 1050 0.2
BLSTM 550 0.8 1250 0

Embed DO1 Filter size # filters # Pooling DO2 Memory DO3
CLSTM 1100 0.6 550 7 2 0.6 1250 0.6
CBLSTM 600 0.2 950 7 2 0.6 1250 0.4

the network is over-specified, i.e., it is larger than needed, the NN results improve much
more.

Table 6 and Fig. 13 show that the average accuracy of the best model, CLSTM, in the
CV5 experiment is 52%. This accuracy is pretty good because the dependent variable,
lifestyle, has 14 classes, and if we were predicting a lifestyle for a trajectory based on the
a-priori probabilities (Table 3), we would have achieved accuracy of approximately 12%,
which is more than four times less than that of the CLSTM. Therefore, we believe the
CLSTM has identified meaningful mobility patterns to distinguish the users and predicted
them to their lifestyles relatively correctly. Also all the other performance measures peak
for CLSTM. The performance measures of the traditional models are poor, e.g., showing
accuracy similar to the a-priori probability of the majority class.

5.3 Leave-one-out results
Table 7 and Fig. 14 show that also in the leave-one-out experiment, when 38 times another
user is tested on a model trained using the other 37 users, the CLSTM is the best model
with respect to all performance measures. Its results for the leave-one-out experiment
are almost identical to those for the CV5 experiment, except for the recall, precision, and
thus also the f1, measures. For these three performance measures, the results in the CV5
experiment are better than in the leave-one-out experiment, especially for CLSTM. We
attribute this result to the variability among the users that affect the leave-one-out setting
more than the CV5 one. Thus, also the standard deviations (STD) of the measures (not
shown) over the CV5 experiment are smaller than for the leave-one-out setting. This is
because when we identify lifestyles and predict lifestyles for trajectories using all data, we

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 21 of 27

Table 6 Performance measures averaged over all trajectories of all users in a CV5 experiment. For all
measures, except the Hamming loss, higher is better. CK is for Cohen’s Kappa score; JS is for Jaccard
similarity

Accuracy f1 score Precision Recall CK score JS score Hamming loss

HMM 0.14 0.13 0.14 0.16 0.07 0.14 0.86
NB 0.18 0.09 0.17 0.12 0.07 0.18 0.82
LSVM 0.25 0.21 0.23 0.21 0.18 0.25 0.75
RSVM 0.15 0.05 0.06 0.09 0.04 0.15 0.85
PSVM 0.12 0.02 0.01 0.07 0.00 0.12 0.88
SVC 0.25 0.22 0.23 0.22 0.18 0.25 0.75
CNN 0.34 0.30 0.32 0.30 0.27 0.34 0.66
RNN 0.35 0.31 0.32 0.31 0.28 0.35 0.65
LSTM 0.48 0.45 0.46 0.44 0.43 0.48 0.52
BLSTM 0.49 0.46 0.47 0.45 0.44 0.49 0.51
CLSTM 0.52 0.48 0.50 0.48 0.47 0.52 0.48
CBLSTM 0.51 0.48 0.50 0.47 0.46 0.51 0.49

Figure 13 Performance measures over CV5. Performance measures averaged over all trajectories of all users
in a CV5 experiment

smooth the noise over the users’ data, and as a result, the STD is smaller than if we were
using the leave-one-out setting. Also here, the performance measures of the traditional
models are poor.

Table 8 shows some statistics (numbers of trajectories, lifestyles, and POIs) about the
data of each of the 38 users and the accuracy for each user of the CLSTM model, which
is the best model on average over the users. We see that the number of lifestyles for all
users is quite similar (11–14), and that the number of trajectories usually increases with
the number of POIs a user has. Accuracy performance varies dramatically among users,
from a low value of around 0.3 to a very high one of around 0.8, and even 0.86, but cannot
be related to the numbers of trajectories, lifestyles, or POIs, and thus it is attributed only
to the complexity of the mobility patterns a user has.

Using [49], we compared all models using the Friedman and Nemenyi post-hoc
tests [50], with a significance level of 5%, on the accuracy measure over the 38 users
(this cannot be done with CV5 that has only five data sets). We chose to use the Friedman
test because the accuracy is not distributed normally, the number of the models is greater

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 22 of 27

Table 7 Performance measures averaged over 38 users in a leave-one-out experiment. For all the
metrics, except the Hamming loss, higher is better. CK is for Cohen’s Kappa score; JS is for Jaccard
similarity

Accuracy f1 score Precision Recall CK score JS score Hamming loss

HMM 0.18 0.11 0.14 0.13 0.10 0.18 0.82
NB 0.21 0.08 0.10 0.12 0.09 0.21 0.79
LSVM 0.32 0.23 0.25 0.24 0.23 0.32 0.68
RSVM 0.20 0.07 0.07 0.11 0.07 0.20 0.80
PSVM 0.14 0.02 0.01 0.07 0.00 0.14 0.86
SVC 0.31 0.23 0.24 0.24 0.23 0.31 0.69
CNN 0.32 0.23 0.25 0.23 0.24 0.32 0.68
RNN 0.37 0.28 0.31 0.29 0.29 0.37 0.63
LSTM 0.49 0.40 0.42 0.40 0.43 0.49 0.51
BLSTM 0.49 0.40 0.42 0.41 0.42 0.49 0.51
CLSTM 0.52 0.42 0.44 0.42 0.45 0.52 0.48
CBLSTM 0.51 0.41 0.44 0.42 0.44 0.51 0.49

Figure 14 Performance measures over leave-one-out. Performance measures averaged over 38 users in a
leave-one-out experiment

than two, and the number of datasets is greater than twice the number of the models (38
datasets/users vs. 12 models), as required for a Friedman test. For the accuracy measure,
the null hypothesis, H0, of the Friedman test was rejected with a p-value = 0, meaning
that there are differences among the models. Table 9 shows that according to the Fried-
man test, the best ranked model is CLSTM, and according to the Nemenyi post-hoc test,
this model is identical to the LSTM, BLSTM, and CBLSTM because they are all in the
same group. This group of the LSTM models is superior to, and well separated from, all
other models. These results demonstrate the strength of the convolution and LSTM layers
in significantly improving the prediction results.

6 Summary and discussion
In this study, we presented a full framework for identifying and predicting lifestyles from
human mobility patterns represented in, and extracted from, trajectories of movement.
We generalized a previous study that modeled only individual users to models for a “soci-
ety” of people and thereby could identify and predict social lifestyles. We developed and

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 23 of 27

Table 8 Numbers of trajectories, lifestyles, and POIs as well as the CLSTM accuracy for each of the 38
users

User # trajectories # lifestyles # POIs CLSTM accuracy

1 1106 14 17 0.53
2 518 14 17 0.34
3 322 14 11 0.46
4 182 12 7 0.48
5 448 13 14 0.54
6 532 14 12 0.55
7 1008 14 18 0.47
8 112 11 8 0.73
9 322 14 10 0.42
10 588 14 19 0.50
11 1092 14 14 0.63
12 1330 14 17 0.57
13 392 12 12 0.53
14 1260 12 7 0.86
15 868 14 15 0.42
16 1008 14 18 0.31
17 434 12 9 0.79
18 280 13 11 0.68
19 1302 14 15 0.70
20 364 14 9 0.57
21 154 14 7 0.27
22 362 14 14 0.59
23 196 14 12 0.43
24 1386 14 20 0.29
25 546 14 12 0.41
26 98 13 6 0.54
27 1498 14 17 0.34
28 210 13 8 0.34
29 378 14 12 0.54
30 140 12 8 0.39
31 1064 14 12 0.64
32 182 14 7 0.48
33 826 14 16 0.43
34 686 13 12 0.65
35 1946 14 22 0.46
36 826 14 13 0.65
37 993 14 14 0.70
38 1190 14 20 0.39

Table 9 Results of the Friedman and the Nemenyi post-hoc tests. The rank row shows the rank of the
models according to the Friedman test (lowest is best). A table entry 1 indicates that the model in
the column is in the same group with the model in the row and vice versa, i.e, they are not
significantly different according to the Nemenyi post-hoc test

CLSTM CBLSTM LSTM BLSTM RNN LSVM CNN SVC NB RSVM HMM PSVM
Rank 1.94 2.21 2.89 3.09 5.39 6.82 6.88 7.15 9.38 9.93 10.6 11.67

CLSTM 1 1 1 1
CBLSTM 1 1 1 1
LSTM 1 1 1 1 1 1
BLSTM 1 1 1 1 1 1
RNN 1 1 1 1 1 1
LSVM 1 1 1 1 1
CNN 1 1 1 1 1
SVC 1 1 1 1 1
NB 1 1 1 1 1 1 1
RSVM 1 1 1 1 1
HMM 1 1 1 1
PSVM 1 1 1 1

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 24 of 27

applied a system of NNs: (1) to embed POI-based daily trajectories that always appear
together with others in consecutive weeks in lifestyles, (2) to identify high-frequency sub-
sequences of co-occurring POIs (mobility patterns) in the embedded trajectories, and (3)
to train a model to predict a social lifestyle for a trajectory never-seen-before.

Comparing Table 8 and Table 2, and adding some background knowledge we have about
most of the 38 users, we can conclude that when the mobility patterns of a user have a
low level of “uncertainty,” e.g., his routine is stable, the CLSTM model has a high level of
accuracy. We identify three groups of users according to the variability/uncertainty in their
mobility patterns. Those with stationary mobility patterns; those with changing mobility
patterns, but still some stationarity; and those with mobility patterns that change very
frequently.

For example, User 14 is a 60-year old pensioner (Table 2) with a very stable life. In most
weeks, she goes to the market on Tuesday, and on specific days of the month she goes to
the theater, hair stylist, and several social events. This user belongs to the first group of
users, and the CLSTM model was very accurate (with 0.86 accuracy) for her (Table 8). User
26 is an M.Sc. student, who has some routine in his life as being student, but also has non-
regular mobility patterns when he goes to the market, does his volunteering duties, and
attends some social group activities. This user belongs to the second group of users, and
the CLSTM model was moderately accurate for him (with 0.54 accuracy). Finally, User 21
is a freelancer with a low level of stationarity in his mobility patterns. Every week and even
every day, he has a new project in a new location, which causes his routine to change very
often. This user belongs to the third group, and the model predicts his lifestyles poorly
(with 0.27 accuracy).

7 Conclusions
Using a system of NN models, we can (1) embed in social lifestyles daily trajectories that
always appear together with others in consecutive weeks in cellular data of a society of
people, (2) identify mobility patterns in the embedded trajectory, and (3) train a model to
predict a social lifestyle based on mobility-pattern representation of a trajectory.

Our system shows accuracy and generalizability in lifestyle identification and prediction
(both for a novel trajectory and a novel user) that are superior to those shown by state-of-
the-art algorithms.

8 Future work
Future work can optimize finding the numbers of trajectory clusters and lifestyles using
ideas recently published [51, 52]. Also, lifestyle prediction can be improved by making the
LSTM more efficient [53].

Prediction of lifestyles can be improved also by adding to the model a latent variable to
represent the “uncertainty” in the lifestyle, thereby helping the model to be more accu-
rate by trying to explain part of the noise in each user’s mobility pattern using this latent
variable.

Another avenue for possible research is in understanding the relations between types
of POIs and the ability to predict the next POI. The current research demonstrated the
accuracy of the LSTM as a suitable prediction model for the next POI; thus, by computing
a confusion matrix among all POI types, we could check for which POI types the model
is correct or incorrect, and try to improve its prediction in the latter case.

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 25 of 27

Acknowledgements
We thank Orit Zehavi for her help in data preparation including the creation of a list of common semantic POIs.

Funding
Not applicable.

List of Abbreviations
POI, Point Of Interest; LS, LifeStyle; NLP, Natural Language Processing; LDA, Latent Dirichlet Allocation; TF, Term
FSrequency; IDF, Inverse Document Frequency; CBOW, Continuous Bag-Of-Words; NEG, Negative Sampling; NCE, Noise
Contrastive Estimation; t-SNE, t-Distributed Stochastic Neighbor Embedding; NN, Neural Network; CNN, Convolutional
Neural Network; RNN, Recurrent Neural Network; LSTM, Long Short-term Memory; BLSTM, Bi-directional Long
Short-term Memory; CLSTM, Convolutional Neural Network and Long Short-term Memory; CBLSTM, Convolutional
Neural Network and Bi-directional Long Short-term Memory; CV, Cross Validation; HMM, Hidden Markov Model; SVM,
Support Vector Machine; LSVM, Linear Support Vector Machine; RSVM, Radial basis Support Vector Machine; PSVM,
Polynomial Support Vector Machine; SVC, Linear Support Vector Classification; EM, Expectation Maximization; NB, Naive
Bayes; TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative; STD, STandard Deviations.

Availability of data and materials
The code for the algorithm and data sets used in our experiments are available online.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EBZ collected the data, designed and trained the models, performed the experiments, interviewed the users, and wrote
the paper. BL supervised all these stages of the work and contributed to the writing. All authors read and approved the
final manuscript.

Authors’ information
Eyal Ben Zion received his Ph.D. from the Industrial Engineering and Management (IEM) Department at Ben–Gurion
University of the Negev under the supervision of Boaz Lerner in February 2018. In his dissertation, he studied machine
learning methods to analyze, learn, identify, and predict human mobility patterns from data. He holds a BSc and an MSc
also from the IEM Department at Ben–Gurion University. Today, Eyal works for Shoodoo Analytics LTD as a senior data
scientist. In his work, he supervises the building of data science products. Boaz Lerner is a Professor of Machine Learning
in the Industrial Engineering and Management (IEM) Department at Ben–Gurion University of the Negev. He holds a BA
(Physics and Mathematics), MSc (Electro-Optical Engineering), and PhD (Computer Engineering) from the Hebrew
University, Tel-Aviv University, and Ben–Gurion University, respectively. Before joining IEM, he did research at Aston and
Cambridge Universities (UK). During the last 25 years, Lerner has been investigating, developing, teaching, and consulting
in machine learning and data mining. In 2007, he established and has since headed the Machine Learning and Data
Mining Lab at IEM in which numerous projects for different agencies, authorities, and companies have been undertaken.
Lerner has supervised nearly 50 graduate students and has published around 100 papers in journals and conference
proceedings.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 February 2018 Accepted: 11 October 2018

References
1. Ben Zion E, Lerner B (2017) Learning human behaviors and lifestyle by capturing temporal relations in mobility

patterns. In: European symposium on artificial neural networks, computational intelligence and machine learning,
XXV. European Neural Network Society-ENNS, Bruges

2. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space.
arXiv:1301.3781

3. van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
4. Xing Z, Pei J, Keogh E (2010) A brief survey on sequence classification. ACM SIGKDD Explor Newsl 12(1):40–48
5. Ma X, Hovy E (2016) End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. arXiv:1603.01354
6. Dietterich TG (2002) Machine learning for sequential data: a review. In: Joint IAPR international workshops on

statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR), Windsor,
ON, Canada, pp 15–30

7. Rong X (2014) Word2vec parameter learning explained. arXiv:1411.2738
8. Soh W-S, Kim HS (2003) QoS provisioning in cellular networks based on mobility prediction techniques. IEEE

Commun Mag 41(1):86–92. https://doi.org/10.1109/MCOM.2003.1166661
9. Ashbrook D, Starner T (2003) Using GPS to learn significant locations and predict movement across multiple users.

Pers Ubiquitous Comput 7(5):275–286. https://doi.org/10.1007/s00779-003-0240-0
10. Choudhury T, Hightower J, Lamarca A, Legrand L, Rahimi A, Rea A, Hemingway B, Koscher K, Landay J, Lester J, Wyatt

D (2008) An embedded activity recognition system. IEEE Pervasive Comput 7(2):32–41.
https://doi.org/10.1109/MPRV.2008.39

11. Munguia E, Intille SS, Larson K (2004) Activity recognition in the home using simple and ubiquitous sensors. In:
Pervasive computing, vol 3001. Linz, Vienna, pp 158–175. https://doi.org/10.1007/b96922

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 26 of 27

12. Wyatt D, Philipose M, Choudhury T (2005) Unsupervised activity recognition using automatically mined common
sense. In: Sensors, Pittsburgh, PA, USA, vol 20, pp 21–27.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.9138

13. Liao L, Fox D, Kautz H (2007) Extracting places and activities from GPS traces using hierarchical conditional random
fields. Int J Robot Res 26(1):119–134

14. Liao L, Fox D, Kautz H (2006) Location-based activity recognition using relational Markov networks. In: Proceedings of
the 20th annual conference on neural information processing systems (NIPS), Vancouver, Canada, pp 787–794.
https://doi.org/10.1007/b96922

15. Eagle N, Pentland AS (2009) Eigenbehaviors: identifying structure in routine. Behav Ecol Sociobiol 63(7):1057–1066.
https://doi.org/10.1007/s00265-009-0739-0

16. Khoroshevsky F, Lerner B (2017) Human mobility-pattern discovery and next-place prediction from GPS data. In: IAPR
workshop on multimodal pattern recognition of social signals in human-computer interaction. Springer, Berlin,
pp 24–35

17. Toch E, Lerner B, Ben Zion E, Ben-Gal I (2018) Analyzing large-scale human mobility data: a survey of machine
learning methods and applications. Knowledge and Information System, 1–23

18. Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
19. Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. arXiv:1309.4168
20. Mikolov T, Yih W-t, Zweig G (2013) Representations, linguistic regularities in continuous space word. In: 013

conference of the North American chapter of the association for computational linguistics: human language
technologies, vol 13. Atlanta, GA, USA, pp 746–751

21. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th
ACM SIGKDD international conference on knowledge discovery and data mining. New York, NY, USA, pp 701–710

22. Tang D, Qin B, Liu T, Yang Y (2015) User modeling with neural network for review rating prediction. In: Proceedings of
the twenty-fourth international joint conference on artificial intelligence, Buenos Aires, Argentina, pp 1340–1346

23. Tang D, Qin B, Liu T (2015) Learning semantic representations of users and products for document level sentiment
classification. In: 53th annual meeting of the association for computational linguistics-ACL 2015, Beijing, China,
pp 1014–1023

24. Grbovic M, Radosavljevic V, Djuric N, Bhamidipati N, Savla J, Bhagwan V, Sharp D (2015) E-commerce in your inbox:
product recommendations at scale. In: Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, Sydney, NSW, Australia, pp 1809–1818

25. Ozsoy MG (2016) From word embeddings to item recommendation. arXiv:1601.01356
26. Ying JJ-C, Lee W-C, Tseng VS (2013) Mining geographic-temporal-semantic patterns in trajectories for location

prediction. ACM Trans Intell Syst Technol 5(1):2
27. Zhao S, Zhao T, King I, Lyu MR (2016) GT-SEER: geo-temporal sequential embedding rank for point-of-interest

Recommendation. arXiv:1606.05859
28. Le QV, Mikolov T (2014) Distributed representations of sentences and documents. In: International conference on

machine learning, Beijing, China, pp 1188–1196
29. Liu P, Qiu X, Huang X (2015) Learning context-sensitive word embeddings with neural tensor skip-gram model. In:

Proceedings of the twenty-fourth international joint conference on artificial intelligence, Buenos Aires, Argentina,
pp 1284–1290

30. Liu Y, Liu Z, Chua T-S, Sun M (2015) Topical word embeddings. In: Twenty-ninth AAAI conference on artificial
intelligence, Austin, TX, USA, pp 2418–2424

31. Gao Q, Zhou F, Zhang K, Trajcevski G, Luo X, Zhang F (2017) Identifying human mobility via trajectory embeddings.
In: Proceedings of the 26th international joint conference on artificial intelligence. AAAI Press, Menlo Park,
pp 1689–1695

32. GoogleMaps (2016) https://www.google.co.il/maps/
33. Asgari E, Mofrad MR (2015) Continuous distributed representation of biological sequences for deep proteomics and

genomics. PLoS ONE 10(11):0141287
34. Banerjee I, Chen MC, Lungren MP, Rubin DL (2017) Radiology report annotation using intelligent word embeddings:

applied to multi-institutional chest CT cohort. Journal of Biomedical Informatics
35. Gutmann M, Hyvärinen A (2010) Noise-contrastive estimation: a new estimation principle for unnormalized statistical

models. In: Thirteenth international conference on artificial intelligence and statistics, AISTATS, vol 1. Sardinia, Italy,
p 6

36. Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Bhooshan N (2010) Exploring nonlinear feature space dimension
reduction and data representation in breast CADx with Laplacian eigenmaps and t-SNE. Med Phys 37(1):339–351

37. Hamel P, Eck D (2010) Learning features from music audio with deep belief networks. In: ISMIR, Utrecht, The
Netherlands, pp 339–344

38. Wallach I, Lilien R (2009) The protein–small-molecule database, a non-redundant structural resource for the analysis
of protein-ligand binding. Bioinformatics 25(5):615–620

39. Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans
Neural Netw 5(2):157–166

40. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
41. Dyer C, Ballesteros M, Ling W, Matthews A, Smith NA (2015) Transition-based dependency parsing with stack long

short-term memory. arXiv:1505.08075
42. Kim Y (2014) Convolutional neural networks for sentence classification. arXiv:1408.5882
43. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural

networks from overfitting. J Mach Learn Res 15(1):1929–1958
44. Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for IDF. J Doc

60(5):503–520
45. Chollet F (2015) Keras. GitHub

Ben Zion and Lerner EPJ Data Science (2018) 7:45 Page 27 of 27

46. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S,
Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F,
Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on
heterogeneous systems. Software available from tensorflow.org. https://www.tensorflow.org/

47. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al
(2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

48. Livni R, Shalev-Shwartz S, Shamir O (2014) On the computational efficiency of training neural networks. In: Advances
in neural information processing systems, Montreal, QC, Canada, pp 855–863

49. Rodríguez-Fdez I, Canosa A, Mucientes M, Bugarín A (2015) STAC: a web platform for the comparison of algorithms
using statistical tests. In: Proceedings of the 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE)

50. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
51. Guo G, Chen L, Ye Y, Jiang Q (2017) Cluster validation method for determining the number of clusters in categorical

sequences. IEEE Trans Neural Netw Learn Syst 28(12):2936–2948
52. Zhou S, Xu Z, Liu F (2017) Method for determining the optimal number of clusters based on agglomerative

hierarchical clustering. IEEE Trans Neural Netw Learn Syst 28(12):3007–3017
53. He Z, Gao S, Xiao L, Barber D (2017) Wider and deeper, cheaper and faster: tensorized LSTMs for sequence learning.

In: Advances in neural information processing systems, pp 1–11

