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Abstract

Background: Under- or late identification of pulmonary embolism (PE)—a thrombosis of 1 or more pulmonary arteries that
seriously threatens patients’ lives—is a major challenge confronting modern medicine.

Objective: We aimed to establish accurate and informative machine learning (ML) models to identify patients at high risk for
PE as they are admitted to the hospital, before their initial clinical checkup, by using only the information in their medical records.

Methods: We collected demographics, comorbidities, and medications data for 2568 patients with PE and 52,598 control
patients. We focused on data available prior to emergency department admission, as these are the most universally accessible
data. We trained an ML random forest algorithm to detect PE at the earliest possible time during a patient’s hospitalization—at
the time of his or her admission. We developed and applied 2 ML-based methods specifically to address the data imbalance
between PE and non-PE patients, which causes misdiagnosis of PE.

Results: The resulting models predicted PE based on age, sex, BMI, past clinical PE events, chronic lung disease, past thrombotic
events, and usage of anticoagulants, obtaining an 80% geometric mean value for the PE and non-PE classification accuracies.
Although on hospital admission only 4% (1942/46,639) of the patients had a diagnosis of PE, we identified 2 clustering schemes
comprising subgroups with more than 61% (705/1120 in clustering scheme 1; 427/701 and 340/549 in clustering scheme 2)
positive patients for PE. One subgroup in the first clustering scheme included 36% (705/1942) of all patients with PE who were
characterized by a definite past PE diagnosis, a 6-fold higher prevalence of deep vein thrombosis, and a 3-fold higher prevalence
of pneumonia, compared with patients of the other subgroups in this scheme. In the second clustering scheme, 2 subgroups (1 of
only men and 1 of only women) included patients who all had a past PE diagnosis and a relatively high prevalence of pneumonia,
and a third subgroup included only those patients with a past diagnosis of pneumonia.

Conclusions: This study established an ML tool for early diagnosis of PE almost immediately upon hospital admission. Despite
the highly imbalanced scenario undermining accurate PE prediction and using information available only from the patient’s
medical history, our models were both accurate and informative, enabling the identification of patients already at high risk for
PE upon hospital admission, even before the initial clinical checkup was performed. The fact that we did not restrict our patients
to those at high risk for PE according to previously published scales (eg, Wells or revised Genova scores) enabled us to accurately
assess the application of ML on raw medical data and identify new, previously unidentified risk factors for PE, such as previous
pulmonary disease, in general populations.
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Introduction

Pulmonary Embolism Diagnosis—a Challenge Faced
by Modern Medicine
Pulmonary embolism (PE) occurs when a blood clot enters and
blocks (either fully or partially) the pulmonary veins, usually
because of a dislodged thrombosis in the deeper veins of the
lower limbs (also termed “deep vein thrombosis” [DVT]), which
is an aspect of the venous thromboembolism (VTE) phenomenon
[1]. After myocardial infarction and cerebral stroke, PE is the
third most common cause of death from cardiovascular diseases.
The worldwide financial burden of PE is immense. Reports
have found the estimated cost of a thromboembolic event in the
United States to be US $3000 to US $10,000, the total annual
cost related to VTE to be US $33,000, and that of VTE
complications to be more than US $40,000, with the US health
care system’s total annual expenses due to VTE reaching US
$12 billion [2,3]. This cost is not significantly different in
Europe. By considering the general population admitted to the
hospital, we can help reduce mortality rate of later-diagnosed
patients, employ early prevention means, and better use hospital
resources [4], thereby alleviating this financial burden and
improve health care.

Early Identification of Patients at Risk of PE
Along the VTE continuum, there is a clear correlation between
the rapidity of diagnosis and the risk of mortality [5]. Various
risk factors and symptoms of PE have been suggested over the
years. In addition to previous cases, which increase the risk of
recurrence, other patient characteristics associated with this
condition include being older than 70 years, active malignancy,
congestive heart failure, chronic obstructive pulmonary disease,
systolic arterial hypertension, presenting with tachypnea, and
right ventricular hypokinesis on echocardiography [1]. New or
worsening shortness of breath, chest pain, or sustained
hypotension without an obvious alternative cause [5], as well
as cigarette smoking, diabetes, obesity, and any type of
immobility, is also a contributing factor [6]. For suspected PE,
hospital wards commonly use scoring methods designed to
predict plausibility, such as the Wells score and the revised
Geneva score, to decide whether to send a patient for
confirmatory tests [7]. However, it is difficult to compare the
Wells score for PE with scoring methods that rely entirely on
medical facts, and the revised Geneva score, which is based
entirely on clinical variables rather than the experience of the
physician, also requires a reasonable pretest probability or initial
suspicion of PE. Moreover, while the former score is considered
subjective, the latter is ineffective in safely reducing the number
of unnecessary computed tomographic scans [8].

In current practice, after a clinical probability assessment, the
diagnostic workup should be tailored to the severity of the
clinical presentation based on whether the patient’s condition

is hemodynamically stable or unstable. In patients with
hemodynamic stability, the diagnosis of PE should follow a
sequential diagnostic workup potentially consisting of D-dimer
blood testing and (if necessary) multidetector computed
tomographic angiography (CTA; considered to be the gold
standard diagnostic procedure for PE) or ventilation-perfusion
scanning (mainly in cases where CTA is contraindicated).
Patients with a high pretest probability for PE should not
undergo D-dimer blood testing but should immediately be sent
for a confirmatory test [5].

However, many cases of PE are diagnosed late or misdiagnosed,
and there are 2 main reasons for this. The first is that risk factors,
which are presumably known, have yet to be proven connected
to the disease, and the second is that the diagnostic methods
currently used in hospitals are limited; they are not accurate,
safe, or sufficiently available for routine use. Over the years,
studies on PE have focused mainly on improving its diagnosis
by analyzing CTA images, and when considering early
diagnosis, the focus was on risk factors and symptoms that may
indicate an elevated or high risk for PE.

Prediction Tools for Patients at Risk of PE
In the recent years, research on prediction tools for PE has
studied several aspects of the disease, for example, by suggesting
clinical prediction rules (eg, the Wells and revised Genova
scores) [9] and comparing them [10], predicting PE in clinically
suspected patients [11,12], predicting adverse outcomes in PE
[13], and the application of statistical means for prediction
[11-13].

In addition, with the advent of artificial intelligence (AI) as a
predictive tool, several studies applied AI to the diagnosis of
PE. For example, 1 study [14] used AI and non-AI tools to
predict PE-imaging outcomes based on the patient’s electronic
medical record to provide a patient-specific risk score for those
referred for computed tomography. Other studies used feature
engineering and an artificial neural network to predict PE [15]
or clustering to differentiate typical clusters of patients [16].
Note, however, that all of these studies, like many others, were
performed using the data of patients during their hospital stay.

In a recent study, Ryan et al [17] devised an AI algorithm that
predicts the chances for PE during hospitalization. The algorithm
used data from laboratory tests conducted during the patient's
hospital stay and achieved performance values of 81%
sensitivity, 35%-70% specificity, and an area under the curve
of 0.67-0.85. However, their approach does not meet a challenge
faced by clinicians, which is the need to make a diagnosis
immediately upon a patient’s emergency department
presentation when clinical data are only partially available and
laboratory test results are still unavailable. Moreover, if we use
the performance values above to calculate the positive predictive
value (PPV), that is, precision, measuring the chances of a
true-positive result of all results predicted as positive (which
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was not reported), we obtain a value of 1.8%, which reflects
too many false positives (ie, on average, only 1.8 of 100 subjects
predicted as patients with PE are real patients). A system based
on such an algorithm will fail to become a practical diagnostic
tool, since it did not address the very high inherent imbalance
in the problem in favor of non-PE (ie, the very low prevalence
of 309 patients with PE among the 60,297 patients tested [17]).

Another recent study by Shen et al [18] concentrated on data
collected during the first 3 hours of hospitalization, mainly vital
signs and laboratory tests results, from high-risk patients
(patients who recently had heart failure, have a history of
specific diseases, or currently have cancer, risk factors that are
also included in the Wells and Geneva screening scores).
Although we acknowledge the potential value of this study, we
question its applicability to the general population of hospital
admissions. We note that making PE predictions for patients
who have already met screening score requirements (and failing
to detect those who have not), are at high risk for PE, and
collecting data after patients’ hospitalization are not relevant
when the aim is to screen the general population immediately
upon admission. Second, although predictions are based on
patients who have already met screening score requirements
and are at high risk for PE and based on data after patients’
hospitalization, the PPV performance reported is only of 20%,
again due to a failure to consider the imbalanced inhospital data
(3% PE prevalence), which also makes the models proposed by
the authors less practical for PE screening on hospital admission.

In contrast, this study focuses on the identification of patients
at high risk for PE in the general patient population presenting
at emergency departments, using only their demographic and
medical history data, prior to the generation of any inhospital
data, and using 2 methodologies to tackle the imbalance in PE
prevalence in hospital admission data.

The Aim of This Study
Our study had three main goals: (1) to identify new PE risk
factors, among those available to the medical staff upon hospital
admission, that may have been overlooked; (2) to accurately
predict PE as early as possible upon patient admission, as
assessed by all performance measures (including the PPV), in
order to create a practical diagnostic tool for PE; and (3) to
group patients using the newly identified and already known
risk factors in order to find subgroups of patients who are at
higher risk of PE upon hospital admission. That is, the main
goals of this study were not only to establish an AI tool for early
diagnosis of PE but also to identify new, previously unidentified
risk factors for PE that clinicians should have in mind when
caring for their general population of patients—and not only
those already defined as having high risk of PE—and to use
these risk factors to identify informative subgroups of patients
at risk of PE upon hospital admission. The fact that we did not
restrict our patients to those with high risk for PE according to
previously published scales (eg, Wells and revised Geneva
scores) enabled us to accurately assess the application of our
AI algorithms on raw medical data.

There are 3 novelties in our study. First, unlike previous studies,
our study concentrates on the data of a general population of
patients admitted to tertiary care and not just those with a high

probability or suspicion of PE. Since straightforward modeling
of PE is prone to imbalance due to the low disease prevalence
among the admitted patient population, where only a minority
of patients admitted to the hospital will later be diagnosed with
PE, our second novelty is in proposing 2 methodologies aimed
at overcoming the highly imbalanced scenario that provide
reasonable PPV values. The third novelty is in a new
performance measure we apply to a conventional clustering
algorithm to identify clusters that maximize the
minority-to-majority (PE to non-PE) ratio and thereby help us
focus on PE risk factors and groups of patients at risk on hospital
admission from the additional angle of a clustering measure.

In the sections that follow, we describe the data used in our
study and how we addressed the imbalance challenge
(“Methods” section), our modeling methods (“A Methodology
for Meeting Our 3 Main Goals on Hospital Admission” section),
and derived results (“Results” section) before summarizing and
proposing future research directions (“Discussion” section).

Methods

In this section, we present the patient cohort and database, along
with our data understanding and preparation methods. Our
methods for tackling imbalance, which are described in
Multimedia Appendix 1 [19-34], use the features and past
diagnoses that we identify in this section as being most effective
in differentiating PE from control patients.

Patients
The data were obtained by Sheba Medical Center (SMC) using
the MDClone ADAMS Platform, maximizing collaboration
with synthetic data while maintaining patient privacy and
maximizing data use [35]. Balancing patient privacy, legal,
compliance, and security issues often hinders individuals, teams,
and organizations from working together to share data. However,
the MDClone ADAMS Platform overcomes these common
obstacles by allowing users to access and share data and
information across both internal and external entities with
synthetic data safely and securely. It provides data not only for
research purposes but also for real-time clinical applications,
which ensures the high reliability of the extracted data. Several
publications have validated the usage of MDClone-generated
synthetic data for epidemiological studies. In 1 study, Foraker
et al [36] thoroughly compared the synthetic and real data of
septic patients and did not find differences in the statistical
conclusions derived. Benaim et al [37] also validated the
application of MDClone-generated synthetic data in 5
observational studies and concluded that predictability was
highly preserved. In this study, 2600 patients diagnosed with
PE and 53,250 patients with non-PE diagnoses (controls) were
represented by their demographic, clinical, laboratory test
results, and medical history data.

Ethical Considerations
The synthetic data were sampled from the real-world, raw data
distribution such that the statistical characteristics of their
distribution replicate those of the true distribution and do not
contain identifiable information included in the real data.
Clinical events in the synthetic samples are slightly and
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randomly shifted in time to avoid the possibility of
de-anonymizing the data. To protect patient privacy, the SMC
database consists of synthetic data generated from the data of
all patients who were hospitalized in the center’s internal
medicine departments between 2008 and 2020. Patients’ data
were retrieved, and the MDClone system was used after the
Sheba Medical Center institutional review board approval of
this study (7864-20-SMC).

Data Understanding and Preparation
We suggest a model capable of predicting PE in a patient upon
his or her admission to the hospital, based only on the data
available in the patient’s electronic medical record before
admission. We focus exclusively on data available prior to
emergency department admission, as these are the most
universally accessible data worldwide. This approach allowed
us to overcome the challenge stemming from variability in
hospital-specific clinical decisions and routines, which could
limit the broader applicability of our findings. We collected
demographics, comorbidities, and chronic medications data for
2568 patients with PE and 52,598 control patients. While patient
records for the age and sex variables were complete, the BMI
variable was frequently missing; thus, we removed records with
missing BMI values. This left us with the data of 1942 patients
with PE (PE=1) and 44,697 control patients (PE=0). Table 1
provides some descriptive statistics for age, sex, and BMI for
the patients with PE and controls. Since the 2 populations were
of unequal sample sizes and variances, to check significance,
we applied a Welch’s t test (unequal variance 2-tailed t test).
According to this test, patients with PE were significantly older
(mean 69.4, SD 16.8 vs mean 65.3, SD 17.5; P<.001) and
significantly more obese (mean 27.2, SD 5.9 vs mean 26.8, SD
5.3; P<.001). Moreover, female patients were diagnosed with
PE significantly more often than male patients (1097/1942,
56.5% vs 845/1942, 43.5%; P<.001). Note, however, that our
data were obtained for all patients admitted to the internal
department of SMC, and, thus, case subjects and control subjects
were not matched, which may explain some of the differences
between the 2 groups.

Since the time of past diagnoses is not always recorded in
hospital records, and sometimes it is even based on patient
memory, we ignored this parameter and treated each of these
clinical events as a binary variable indicating whether a patient
had received this diagnosis in the past. Then we merged 19 past
diagnoses into 9 categories of diagnostic “families,” as is
frequently done. In addition to the clinical motivation, this

merging also helped us unify sparse diagnoses into denser
categories. We treated past PE as a stand-alone category and
did not associate it with the thrombosis category, as would be
customary, because it is a known risk factor for PE, and we
wanted to examine it as a “stand-alone” diagnosis in our model.
Also, we converted the only chronic medication variable existing
in our data, the registration date of a patient receiving treatment
with anticoagulants, into a binary variable indicating whether
the patient had received such treatment in the past. Table 2
shows the prevalence of the 9 categories of past diagnoses and
that of anticoagulant use for the 2 patient groups. Except for
the gastrointestinal past diagnosis, the differences in prevalence
between the 2 groups for all past diagnoses are statistically
significant according to the Welch’s t test.

Using the PrefixSpan algorithm, which is designed to discover
sequential patterns in sequence databases [38], we looked for
common combinations of 2 or more past diagnoses (plus the
single variable indicating the use of anticoagulants) in each of
the PE and control patients. In general, we found that the patients
with PE had a richer background of past diagnoses than the
control patients, with only 15.7% (305/1942) of them not having
any past diagnosis, compared with 46.8% (20,918/44,697) of
the control patients (P<.001). In addition, we found that the 2
patient groups showed a high incidence of cardiovascular disease
in the past. As for the combinations, pulmonary and
cardiovascular background diagnoses were the most common,
with 13.1% (254/1942) of the patients with PE having both
(compared with only 3.1% [1386/44,697] of the control
patients), while the combination of cardiovascular and past PE
affected 9.1% (177/1942) (447/44,697; 1% control), pulmonary
and past PE affected 9% (175/1942; 447/44,697, 1% of the
control group), and cardiovascular and anticoagulant usage
affected 7.3% (142/1942; 1609/44,697, 3.6% of the control
group). We also identified 16 combinations of 3 variables and
1 combination of 4 variables (anticoagulants, pulmonary,
cardiovascular, and past PE) affecting more than 1% (20/1942)
of patients with PE. It is notable that the control patients did
not have a single combination of 3 or more variables in more
than 1% of the population. Figure 1 presents the prevalence (%)
of past diagnoses and chronic medications for PE and control
patients for single diagnoses, pairs of past diagnoses, and
combinations of 3 past diagnoses. The past diagnoses identified
here served as the basis for patient representation when tackling
imbalance in training and testing PE classifiers (Multimedia
Appendix 1).
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Table 1. Descriptive statistics for patients with pulmonary embolism (PE) and control patients.

P valueSex distributionVariable

ControlPEa

<.001Sex (%)

55.443.5Male

44.656.5Female

<.00165.3 (17.5)69.4 (16.8)Age (years), mean (SD)

.00326.8 (5.3)27.2 (5.9)BMI, mean (SD)

aPE: pulmonary embolism.

Table 2. Composition and prevalence of past diagnosis categories and anticoagulant use in our database.

P valuePrevalence (%)Past diagnosisCategory

ControlPEa

<.015.36.9Surgery • Past surgery documentation
• Past surgery procedure

<.0017.630.2Pulmonary • Pneumonia
• Pleural effusion
• Chronic obstructive pulmonary disease
• Restrictive lung disease

<.0013.315.1Thrombosis • Deep vein thrombosis
• Coagulopathies

.033633.6Cardiovascular • Ischemic heart disease
• Atrial fibrillation or atrial flutter
• Congestive heart failure

<.0016.28.8Kidney • Chronic kidney disease

.071.30.9Gastrointestinal • Inflammatory bowel disease

<.0010.71.6Joints • Rheumatoid arthritis

<.0014.710.0Neurologic or psychiatric • Dementia
• Mental disorders
• Mood disorders
• Psychosis

<.0011.139.5Past PE • Past PE

<.0016.113.8Anticoagulants • Anticoagulants

aPE: pulmonary embolism.
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Figure 1. Prevalence for a single past diagnosis or medication in each of the study populations (top left), a pair of past diagnoses or medications in
each population (top right), and a triple past diagnosis or medication in each population (bottom). PE: pulmonary embolism.

A Methodology for Meeting Our 3 Main Goals on
Hospital Admission
The 3 main goals of this study were to identify new PE risk
factors, among those available to the medical staff upon hospital
admission that may have been overlooked, to accurately predict
PE as early as possible upon patient admission, and to group
subgroups of patients who have the newly identified together

with known risk factors and are at higher risk of PE. To achieve
the first goal, we identified important features (previous
diagnoses in the patient’s medical records) according to the
classifier, validated this identification using an ablation study,
and focused the analysis on important individual diagnoses that
may be considered potential risk factors. To achieve the second
goal, we used performance measures dedicated to imbalanced
scenarios to estimate the ability of the 2 methodologies we
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suggested (Multimedia Appendix 1) and establish a common
benchmark that would enable the comparison of the 2 methods.
To achieve the third goal, we clustered the population on
hospital admission to identify some homogenous clusters that
maximize the minority-to-majority (PE to non-PE) ratio and
then focused on risk factors that established these risk groups.

Feature Importance—Initial Identification of Potential
Risk Factors
We used a random forest (RF) consisting of a collection of
tree-structured classifiers, each trained on bootstrapped samples
of the training data, that randomly searches across subsets of
the 13 input variables (the 10 in Table 2 plus the 3 in Table 1)
to determine the forest’s trees. The output of the classifier is a
majority vote of the trees. To maximize its performance, we
adjusted 3 hyperparameters of the RF: maximum depth—the
longest path possible from a tree root to a tree leaf; minimum
sample split—the minimal number of samples required to split
an internal node; and the split criterion—either the Gini impurity
or the information gain [39,40]. Our prior research demonstrates
the accuracy and efficiency of the RF classifier in several
clinical domains [41-45]. To increase confidence in the
classifiers obtained by methods 1 and 2 (a description of the
methods is provided in Multimedia Appendix 1), we repeated
the evaluation of the methods over 10 data permutations and
reported the averaged performance.

The RF model measures the contribution (ie, importance) of its
input variables (features) to classification using the Gini index,
measuring the chance of misclassifying a random record based

on the a priori probabilities of each class in a particular split in
a tree [39]. However, evaluation over 10 data permutations
yielded 10 lists of feature importance for each method.
Therefore, to determine feature importance, we proposed to
evaluate the statistical difference between 10 feature lists of
both methods using a Friedman-Nemenyi test [46], as described
in Multimedia Appendix 2.

Accurate PE Prediction Under the Imbalanced
Scenario
To perform an in-depth comparison of the performance of
methods 1 and 2, we needed to evaluate them using the same
data both in the training and tests sets, because method 1 uses
more control subjects than method 2. Therefore, we evaluated
the methods using a positive (PE) class measure, the
true-positive rate (TPR), and divided the data into training and
test sets in 2 steps (Figure 2):

1. We created the data sets for method 2 by creating a balanced
test set: 20% of the PE subjects and the same number of
control subjects and left the remaining subjects for training.

2. We created the data sets for method 1 by keeping the same
PE test and training sets used in method 2. Then, we
balanced the remaining control patients (beyond those used
in method 2) between the control training and test sets to
include 80% and 20% of the original control data set,
respectively.

To focus the evaluation of methods 1 and 2 on their performance
on patients with PE, we compared the TPR values of the 2
methods using a univariate 2-tailed t test [47].

Figure 2. Division into training and test sets to compare methods 1 and 2. X and Y are the numbers of patients equal to 20% of the PE and control sets,
respectively. PE: pulmonary embolism.

Clustering to Informative Homogeneous Subgroups
for PE
To add to our study additional angle on the characteristics of
patients at risk for PE on hospital admission, we wanted to find

as homogeneous subgroups as possible for PE using a different
performance measure than those already used. To achieve this
goal, first we relaxed the categorization of the 19 indications
into the 9 categories we created earlier whether there were
specific past diagnoses that had not been detected in the process
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performed so far that may be considered as potential risk factors
for PE. Second, we established different possible feature
representations for patients based on all combinations of features
(past diagnoses and demographics data). Third, we suggested
to maximize a performance measure that accounts for the
percentages of patients with PE in a clustering scheme’s clusters
to simultaneously solve 2 patient representation problems that
are usually solved separately, and their optimization is based
on results of each other. These are the optimal feature
representation and clustering scheme (number of clusters). Using
this measure and the K-means algorithm, we clustered patients
while considering different patient representations (combinations
of possible feature representations and possible clustering
schemes with K={2, 5}) to derive that which yields clusters that
maximize the percentage of patients with PE compared with
the PE prevalence in the data (1942/46,639, 4.16%).

Results

We evaluated our methodology under the imbalanced scenario
according to five criteria: (1) Gini-based feature significance,
(2) classification performance measures, (3) ablation-based
feature significance, (4) TPR-driven maximization, and (5)
identification of potential risk factors.

Gini-Based Feature Significance
Using 10 data permutations, we applied methods 1 and 2
(Figures S1 and S2 in Multimedia Appendix 1) to predict PE
and obtained 10 feature importance lists for the 13 features for
each method. Testing each method separately using a
Friedman-Nemenyi test, past PE was ranked the most significant

by both methods, and age, BMI, pulmonary, and past thrombosis
(Tables 1 and 2) were ranked not significantly differently than
past PE by both methods, as well as anticoagulant usage for
method 1 and sex for method 2. The other 6 features (ie, past
diagnoses: surgery, cardiovascular, kidney, gastrointestinal,
joints, and neurologic or psychiatric) were ranked significantly
differently than past PE.

Classification Performance Measures
Tables 3 and 4 present confusion matrices for methods 1 and
2, respectively, and Table 5 presents performance measures of
the best model based on the 7 most important features for each
method (derived as described in the “Gini-Based Feature
Significance” section) averaged over 10 data permutations. The
tables demonstrate that method 1 achieved higher performance
values on most measures than method 2 (and similar
true-negative values) in most cases except for precision and the
F1-score. The very low precision value and very high negative
predictive values of method 1 suggest that the decision threshold
that was selected by this method is low, allowing more subjects
to pass the threshold, among them (because of the imbalance)
more controls that are thus incorrectly predicted as PE, reducing
precision. However, on the other hand, this “low” threshold
guarantees that almost all subjects that are identified as controls
are indeed controls, increasing the negative predictive values
to almost a perfect value. This “low” threshold also ensures
predicting more patients with PE as PE and fewer as controls,
both of which increase the TPR. These mechanisms represent
a trade-off in the calculation of the main performance measure,
as is expected in imbalanced scenarios.

Table 3. Method 1—confusion matrix.

Total predictedTrue positiveTrue negative

0.840.010.83Predicted negative

0.160.030.13Predicted positive

10.040.96Total true

Table 4. Method 2—confusion matrix.

Total predictedTrue positiveTrue negative

0.60.160.44Predicted negative

0.40.340.06Predicted positive

10.50.5Total true

Table 5. Performance measures (the values of measures for the best method are italicized).

GMdF1-scoreNPVcTNRbTPRaPrecisionAccuracyMeasure

0.800.300.990.860.750.190.86Method 1

0.770.760.730.880.680.850.78Method 2

aTPR: true-positive rate.
bTNR: true-negative rate.
cNPV: negative predictive values.
dGM: geometric mean.
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Ablation-Based Feature Significance
While the selection of features was Gini-based, we wanted to
back this selection based on classification performance and an
ablation study [48]. For each method, we compared a classifier
based on the 7 features that are the union of the important
features identified for both methods (past PE, age, BMI,
pulmonary, thrombosis, anticoagulants, and sex), a classifier
that is based on each method’s 6 selected features, and 6
classifiers in which each is missing 1 of the 6 important features
of a method. We trained each classifier on 10 data permutations
and examined statistical difference between the geometric mean
values of the classifiers using the validation set and the
Friedman-Nemenyi test for each method separately. We
observed that only those classifiers missing past PE, pulmonary,
or thrombosis were significantly worse in their geometric mean
value than the full classifier (the one that included all 7
important features). We also observed that there was no
significant difference between classifiers of the 2 methods. This
analysis reinforces the results presented in the “Gini-Based
Feature Significance” section about the significance of past PE,
pulmonary, and thrombosis to PE identification.

TPR-Driven Maximization
To examine whether one method was superior to the other on
the positive (PE) group when using the same patients with PE

in training and testing, we compared the TPR values of the best
models produced by the 2 methods using 10 data permutations
and the univariate 2-tailed t test. We found that there was no
significant difference between the 2 methods regarding the TPR
results at 95% CI.

Identification of Potential Risk Factors
To deepen our understanding of PE on hospital admission, we
relaxed the categorization of the 19 indications into the 9
categories we created earlier (in the “Data Understanding and
Preparation” section) to examine whether there were specific
past diagnoses that had not been detected in the process
performed so far, which may be considered as potential risk
factors for PE. Simultaneously, we also attempted to find as
homogeneous a group as possible of patients with PE. We hoped
that such a group would be characterized differently than other
groups, hinting at potential PE risk factors.

First, we examined the prevalence of each of the past diagnoses
existing in our data for each of the patients with PE and control
patients. We found that the prevalence of several of these past
diagnoses, such as past PE, pneumonia, and DVT, was higher
in patients with PE than in control patients (Figure 3). On the
other hand, the only past diagnosis having an incidence higher
than 1% in control patients compared with patients with PE was
ischemic heart disease.
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Figure 3. Prevalence of an original past diagnosis or medication in each of the study populations. CHF: congestive heart failure; CKD: chronic kidney
disease; COPD: chronic obstructive pulmonary disease; DVT: deep vein thrombosis; IBD: inflammatory bowel disease; IHD: ischemic heart disease;
PE: pulmonary embolism.

Next, to ensure our ability to find the most homogeneous group
of patients with PE, we clustered, using the K-means algorithm,
patient representations using different combinations of the
features [49]. The only features we chose to omit from the
clustering process were those with a frequency below a 2%
threshold in both populations: past surgery procedure,
rheumatoid arthritis, inflammatory bowel disease, psychosis,

and restrictive lung disease. Therefore, we were left with 18
possible features for patient representation: 3 demographic (age,
sex, and BMI), 14 past diagnoses, and 1 chronic medication
(anticoagulants). Because the prevalence of patients with PE in
our data was very low (1942/46,639, 4.16%), we looked for a
cluster or more where the percentage of patients with PE was
significantly higher than this threshold.
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After simultaneously considering possible clustering schemes
(K={2, 5}) and patient representations based on a combination
of features, we found 2 cluster schemes that yielded interesting
results. The first scheme (Figure 4), which yielded the cluster
with the highest frequency of patients with PE (705/1120, 63%;
cluster 4 in Table 6), is a 5-cluster scheme in which each patient
is represented by sex, age, BMI, and past PE, past pneumonia,
history of atrial fibrillation or atrial flutter, past DVT, history
of mental disorders, and history of coagulopathies. We see that
cluster 4, which is the most PE-populated cluster of this scheme,
represents a profile that is based on both demographic and
medical history features, suggesting complex relations between
such characteristics that are nontrivial and need further
exploration. Cluster 4 contained 1120 patients (1120/46,639,
2.4% of all patients): 705 were patients with PE (705/1942,
36.3% of all patients with PE in our data) and only 415 were
controls. Prominent characteristics of this cluster compared with
the others are that all its patients had a past diagnosis of PE (see
Table 7), a relatively high incidence of past DVT (12%
compared with 2% in any of the other clusters) and past
pneumonia (11% compared with 4% or less in any of the other
clusters), and a mediocre incidence of mental disorders, and
they more often took anticoagulants. Patients in this cluster
were equally mixed by sex. The other clusters had only a small
incidence of such past diagnoses and were composed of
single-sex patients (Table 7). That is, this clustering scheme
made a clear distinction between a single small, but very PE
dominant, cluster 4, and 4 other non-PE clusters that are mainly
dominated by demographics (sex and age) and BMI
characteristics. Besides showing past PE and DVT as risk
factors, which are known to clinicians (see, eg, the study by
Scarvelis and Wells [50]), patients in cluster 4 also reveal past

pneumonia history as a factor, which is evidence of a new risk
factor of PE.

The second clustering scheme (Figure 5), which resulted in 2
clusters (clusters 2 and 4) with a prevalence of patients with PE
of 61% (427/701 and 340/549) or more (Table 8), was a
5-cluster schema in which patients were represented by sex,
age, BMI, and past PE, past pneumonia, history of mental
disorders, and use of anticoagulants. All patients in these 2
clusters had a past diagnosis of PE and a higher incidence of
past diagnosis of pneumonia and usage of anticoagulants (Table
9), higher BMI values, and, interestingly, they were divided
into only women (cluster 2) or only men (cluster 4). Also, cluster
3, which has a relatively high frequency of patients with
PE—20% (301/1470) compared with 4.16% in the full database
(Table 8), is characterized by all patients having a past diagnosis
of pneumonia. That is, the chances of developing PE according
to this scheme are mainly related to either past PE and past
pneumonia or, to a lesser degree, only past pneumonia. Although
the incidence values of a past diagnosis of mental disorders and
usage of anticoagulants were low, these 2 variables were chosen
for patient representation by both clustering schemes, because
their contribution to patient segregation was significant in
maximizing the cluster PE frequency we optimized in the
clustering. The atrial fibrillation or flutter diagnosis was selected
only by the first clustering scheme, producing clusters with
either all subjects or none of them with this diagnosis, as this
partition helped maximize the target measure. Finally, in
addition to past PE, which is arguably the most important
variable for marking patients with suspected PE, past diagnoses
of pneumonia and DVT may also lead to PE. Thus, we
recommend overattention to admitted patients with these past
diagnoses.
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Figure 4. Radar plot of characteristics of the first clustering scheme. A point of a particular cluster on the axis of any feature constitutes the average
normalized value (between 0 and 1) for the patients in the cluster. DVT: deep vein thrombosis; PE: pulmonary embolism.

Table 6. PEa-control prevalence in the clusters of the first clustering scheme (the highest PE prevalence for a cluster is italicized).

PE/totalPatients, nRelative sizeCluster, n

ControlPE

0.0317,0465640.380

0.0221,3954260.471

0.0331791060.072

0.0526621410.063

0.634157050.024

aPE: pulmonary embolism.
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Table 7. Average feature values in the clusters of the first clustering scheme.

CoagulopathiesMental disordersDVTbAtrial fibrillation/flutterPneumoniaPast PEaBMIAge (years)SexCluster, n

0.020.020.0200.03026.565.510

0.010.010.0200.03026.863.201

0.020.010.0210.040.0227.772.002

0.020.020.0210.040.0327.975.613

0.040.030.1200.11127.664.30.564

aPE: pulmonary embolism.
bDVT: deep vein thrombosis.

Figure 5. Radar plot of characteristics of the second clustering scheme. A point of a particular cluster on the axis of any feature constitutes the average
normalized value (between 0 and 1) for the patients in the cluster. PE: pulmonary embolism.

J Med Internet Res 2024 | vol. 26 | e48595 | p. 13https://www.jmir.org/2024/1/e48595
(page number not for citation purposes)

Ben Yehuda et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 8. Descriptive statistics of the clusters of the second clustering schemea.

PE/totalPatients, nRelative sizeCluster, n

ControlPEb

0.0319,1615100.420

0.0223,8843640.521

0.612744270.022

0.2011693010.033

0.622093400.014

aItalicized values indicate the high prevalence of patients with pulmonary embolism in clusters 2 and 4 compared with the prevalence of 4.16% of these
patients in the cohort.
bPE: pulmonary embolism.

Table 9. Average value of each feature in each cluster of the second clustering schemea.

CoagulopathiesMental disordersPneumoniaPast PEbBMIAge (years)SexCluster, n

0.020.020026.766.710

0.010.010027.064.201

0.040.040.12127.867.312

0.030.031026.569.30.453

0.040.020.11127.563.004

aAll patients of clusters 2 and 4 (see Table 8), clusters that are mostly populated by patients with PE, have a past diagnosis of pulmonary embolism and
higher incidence of past diagnosis of pneumonia and usage of anticoagulants. While cluster 2 composes of only women relatively old, cluster 4 includes
only men relatively young (italicized values).
bPE: pulmonary embolism.

Discussion

We are not the first to address the potential benefits in applying
AI to PE, as AI does not require additional clinician input or
cause workflow disruption by automatically screening a broad
inpatient population [14-18]. These studies reported the
application of AI in interpreting chest images [14] or their
accompanying radiology reports [51] and in using laboratory
test results and vital signs [17,18] of already diagnosed patients
with PE. In addition, these studies often targeted PE at patients
who are already at elevated risk of PE [18].

To better understand and predict the occurrence and diagnosis
of PE, we have suggested tools that may be clinically available
on patient hospital admission—the earliest point in time to
model PE in the hospital. Also, we addressed the entire
population of patients presenting to a tertiary hospital, without
narrowing them to only those with high probability of PE, as
required by the Wells or revised Genova scores, to screen the
full admitted population and not only those with higher risk of
PE. Using 13 years of data from around 50,000 patients with
PE and those with no PE, we considered the medical history of
patients presenting in a hospital, where their prior chance of
being diagnosed with PE was 4%. To create reliable models,
we suggested 2 methods to address this highly imbalanced
clinical scenario. The first empirically sets a classifier decision
threshold to account for the minority-to-majority ratio in the
imbalanced data, and the second uses an ensemble of balanced

classifiers evaluating the PE class versus equal-sized disjoint
portions of the imbalanced non-PE class. To identify significant
predictive past diagnoses, we considered diagnoses in 2
resolutions, separately and categorized, and proposed a
nonparametric statistical test to consolidate feature importance
lists obtained over data permutations. An ablation study
validated results based on the test. Lists produced by the 2
methods were almost identical, and classifiers trained using
them provided similar performance, validating the correctness
of both methods. Past diagnoses of PE, pulmonary diseases,
and thrombosis, together with age, sex, BMI, and usage of
anticoagulants contributed to 80% accuracy in early
identification of both patients with PE and those with no PE,
with no statistical difference between the methods.

Although only 4% of the patients in our data set had a definitive
diagnosis of PE, we identified, by joint optimization of feature
representation and a clustering scheme, subgroups comprising
more than 60% PE-positive patients. These subgroups facilitated
a more in-depth analysis to identify demographic and past
diagnosis characteristics, demographic-clinical relations, and
potential PE risk factors. Some of our findings are not
conventionally considered. For example, in medical practice, a
past diagnosis of pulmonary disease on admission is related to
a chronic respiratory disease displaying respiratory symptoms,
but we show here that this may also be an indication of PE. This
is an important clinical pearl that should prompt clinicians
worldwide, with and without access to AI predictive algorithms.
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In summary, despite the high imbalance in the data and the very
early stage of modeling, our prediction and clustering models
were both accurate and informative in identifying patients at
high risk for PE, at the time of hospital admission, before a
patient is even seen by a hospital doctor. The main advantage
in our findings, which is relevant to every health care
professional, is the fact that applying AI enables
whole-patient-population analysis without the need to adhere
to previously published criteria (eg, Wells or revised Genova
scores), which are not sensitive enough [52], or to limit its use
to high-risk patients. In the case of PE, this approach defines
previous pulmonary disease, whether with past PE or alone, as
a new, significant risk factor to consider.

A limitation of our research is working with data, which, due
to privacy restrictions, were synthesized from real data. The
difference between real data and synthetic data derived from
real data is that the synthetic data include times of diagnosis

and measurements that are randomly shifted to up to a year
before or after the real time and thus could not be verified.
Therefore, in our study, the existence of past diagnoses was
expressed using binary variables (whether a diagnosis exists or
not) and not by the times of diagnosis, which is vital information
that could have contributed greatly to the models.

Our future research will use real data and also assimilate data
from the emergency department (validating and amending, as
necessary, the admission model) and then the internal ward,
whenever data are collected, which may necessitate the use of
dynamic modeling. In addition, while our second method was
applied to a balanced test set, it should be further examined on
a nonbalanced database that reflects the true PE prevalence.
Finally, beyond being the basis for predictive and informative
models of PE, we see our workflow as suitable for other
diseases, especially since in almost all of them, an imbalanced
scenario is involved.
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