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Abstract

Background: The role of the lipidome as a biomarker for Parkinson’s disease (PD) is a relatively 

new field that currently only focuses on PD diagnosis.

Objective: To identify a relevant lipidome signature for PD severity markers.

Methods: Disease severity of 149 PD patients was assessed by the Unified Parkinson’s Disease 

Rating Scale (UPDRS) and the Montreal Cognitive Assessment (MoCA). The lipid composition 

of whole blood samples was analyzed, consisting of 517 lipid species from 37 classes; these 

included all major classes of glycerophospholipids, sphingolipids, glycerolipids, and sterols. To 

handle the high number of lipids, the selection of lipid species and classes was consolidated via 

analysis of interrelations between lipidomics and disease severity prediction using the random 

forest machine-learning algorithm aided by conventional statistical methods.

Results: Specific lipid classes dihydrosphingomyelin (dhSM), plasmalogen 

phosphatidylethanolamine (PEp), glucosylceramide (GlcCer), dihydro globotriaosylceramide 

(dhGB3), and to a lesser degree dihydro GM3 ganglioside (dhGM3), as well as species 

dhSM(20:0), PEp(38:6), PEp(42:7), GlcCer(16:0), GlcCer(24:1), dhGM3(22:0), dhGM3(16:0), 

and dhGB3(16:0) contribute to PD severity prediction of UPDRS III score. These, together with 

age, age at onset, and disease duration, also contribute to prediction of UPDRS total score. We 

demonstrate that certain lipid classes and species interrelate differently with the degree of severity 

of motor symptoms between men and women, and that predicting intermediate disease stages is 

more accurate than predicting less or more severe stages.

Conclusions: Using machine-learning algorithms and methodologies, we identified lipid 

signatures that enable prediction of motor severity in PD. Future studies should focus on 

identifying the biological mechanisms linking GlcCer, dhGB3, dhSM, and PEp with PD severity.
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Introduction

The role of lipids, specifically glycosphingolipids, in Parkinson’s disease (PD) pathogenesis 

has been highlighted by recent discoveries [1]. The association between PD and lysosomal 

lipid hydrolases, specifically glucocerebrosidase (GBA) and potentially others (e.g., 

SMPD1), further supports the need to examine the role of lipids as biomarkers in PD 

[2]. GBA plays an important role in the glycosphingolipid metabolic pathway, encoding 

the lysosomal enzyme β-glucosidase (GCase), which hydrolyzes glucosylceramide and 

glucosylsphingosine to ceramide and sphingosine, respectively. In GCase deficient cells, 

α-synuclein aggregation has also been linked to reduced ceramide production [3].

In a previous study, we tested the association between plasma lipid concentration 

and PD diagnosis [4]. Using univariate logistic regression, two lipid classes, 

monosialodihexosylgangliosides (GM3) and triglycerides (TG), were significantly different 

between PD and healthy controls. A link between GM3 and PD pathology had been 

previously demonstrated through research on the high affinity of α-synuclein via its 

ganglioside-binding domain to GM3, and by a study demonstrating that saturating 

membranes with GM3 accelerates the aggregation of α-synuclein [5, 6]. However, 

the analysis was limited to univariate regression models, which assumed variable 

independencies and did not explore interactions across lipids or the potential of joint impact 

on the probability of diagnosis. In this study, neither GM3 nor TG were found significant to 

PD severity prediction of the Unified Parkinson’s Disease Rating Scale (UPDRS) score.

Recently, machine learning (ML) has been used in biomedical studies for better predictions 

and richer insights in PD [7–20] and other neurodegenerative diseases [21]. For example, 

neural networks and regression trees examined the ability to diagnose PD based on 

biomedical voice measurements [9], and other regression trees such as a random forest 

(RF) were used to estimate the UPDRS score based on a speech test [16]. Similarly, ML 

algorithms predicted PD severity using non-motor PD symptoms [7] and a voice data set 

[15].

Here, we extend our previous investigation of linear connections between lipids and PD 

diagnosis [4] to a prediction of disease severity using the multivariate non-linear RF 

algorithm. We also identify interrelations among a lipidome of 517 species from 37 classes 

and PD severity measured by the UPDRS and the Montreal Cognitive Assessment (MoCA) 

scores. To our knowledge, this research is the first to study the interrelations between the 

lipidome and PD severity using a combination of a relatively large cohort and multivariate 

non-linear ML algorithms.
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Material and Methods

Participants and clinical evaluation

The cohort analyzed was as described in an earlier study [4]. In brief, participants in the 

‘Spot’ study [22, 23] were recruited between 2010–2016 from the Center for Parkinson’s 

Disease at Columbia University Irving Medical Center in New York, NY. Among the 

participants, we randomly selected PD patients (n=150). All participants were non-carriers 

of SNCA, LRRK2, and GBA mutations (with the exception of one PD case who was a 

carrier of the GBA variant E326K, n=1). Evaluation of all participants included the MoCA 

[24], and the UPDRS in the “on” state. Medical history, current medications, family history 

of PD, and demographics were also collected. The original study also included 100 controls, 

which were not analyzed here, as our primary aim was to test the link between lipids and 

disease severity. Data from these controls are presented only in Figure 2 for illustrative 

purposes. Plasma collection for lipidomics was as previously described [4]. In brief, blood 

samples were collected in single EDTA tubes (10cc in volume) and centrifuged, after which 

1cc plasma aliquots were extracted and stored in a −80°C freezer within one hour of 

collection. Table 1 includes all the lipids measured in the study and lipid class membership. 

Informed consent was signed by all participants and the Columbia University IRB approved 

all study procedures. Since the UPDRS III and UPDRS total score were missing for a single 

patient, in this analysis, we used the data of 149 participants.

Analysis of lipid classes and PD severity

The first phase of the study focused on identifying the most influential lipid classes that 

predicted PD severity as determined by the UPDRS and MoCA scores. We predicted both 

the UPDRS III and UPDRS total scores, although the latter composes of UPDRS I, II, and 

III and thus depends on the former. The 37 lipid classes, two clinical variables [age at onset 

(AAO) and disease duration], demographic variables (i.e., age, gender, height, BMI, marital 

status), and education were the predicting variables.

The root mean square error (RMSE) [25], which is the most common measure to evaluate 

prediction performance, was calculated as an average over a Monte Carlo cross validation, 

where in each of 200 datasets, 80% of the (149) observations were sampled randomly 

(without replacement) for training the algorithm, and the remaining 20% used for testing 

it. This resampling method was chosen to reinforce the significance of the research results 

when experimenting with the cohort.

In this phase, we wanted first to validate our ML algorithm, the RF, in predicting PD 

severity. The RF is a popular accurate classifier, which was shown in many previous 

studies to be efficient and beneficial in various clinical [21, 26–28] and non-clinical [29, 

30] domains. The RF classifier [31, 32] holds no assumptions about the data distribution, 

can cope with very complex problems with minimum overfitting [31, 33–35], and ranks 

variables by their contribution to accurate (or informative) prediction [36–38]. In this phase, 

we selected variables that were ranked in the top 30% as contributory by RF. For further 

explanation about the RF, see the Supplementary material.
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In our case, we expected the RF to help interpret the prediction results by indicating 

interrelations among lipid classes and species with different stages in the disease. Since the 

RF has never been used in predicting PD severity, we first validated it through conventional 

statistical methods. Each statistical method is limited by the assumptions it makes, hence 

we employed three of them. Each statistical method explored the data from a different angle 

and selected contributing variables, as specified below. The RF together with the statistical 

methods create an ensemble of classifiers (though not independent) that is used here as “a 

panel of experts”.

The statistical models that were used to validate and then to enforce the RF algorithm 

are: (1) Univariate linear regression (UR), where a variable is selected if considered 

statistically significant with p<0.05; (2) Multivariate linear regression (MR), implemented 

by considering variables using sequential backward selection, sequential forward selection, 

or sequential floating forward selection (i.e., stepwise), where the model that achieves 

the lowest Akaike information criterion (AIC) [39] is chosen, and all variables that are 

statistically significant (p<0.05) are selected; (3) Lasso regression [40], which is based on 

ordinary least squares with a penalty factor for the number of variables, forces some of the 

coefficients to equal to zero, and thereby selects the variables with coefficients greater than 

zero.

We let each of the four methods identify the most contributing variables among the 

predictors and kept only variables that at least three methods indicated as contributing highly 

to prediction of the PD severity.

Analysis of lipid species and PD severity

The second phase was done only for the UPDRS since the first phase results for the 

MoCA showed poor relation to the lipidome. The same methodology of the first phase was 

implemented here. However, in this phase, we faced another challenge since the number of 

variables exceeded the number of examples (patients); that is, the 517 lipid species and eight 

demographical and clinical variables were much greater than the 149 patients, which made 

variable selection even more challenging than in the first phase. To accommodate this, we 

selected only lipid classes that had at least two supporting methods (three methods were 

employed in the first phase). Then for the lipid species of these classes, we added the eight 

demographical and clinical variables and let the RF rank these variables as in the first phase. 

Finally, we sequentially removed lower-ranked variables as long as it did not worsen the 

RMSE, while keeping at least 10% of the variables to allow for retention of a sufficient 

number of them.

First in our research plan, we identified and ranked the most contributing lipid classes 

and species for UPDRS total and UPDRS III scores in a two-stage approach (first classes 

and then species of the most contributing classes) using the RF classifier that is validated 

using statistical methods. Second, we examined values of plasma concentrations of the most 

contributing lipid classes and species in different PD severity levels and considered their 

sensitivity to gender and age. Third, we identified lipid signatures (combinations of classes, 

species, and demographics) for different severity levels, and evaluated their interrelations 
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with age, AAO, and disease duration and the impact of the combined signatures on the 

prediction model accuracy.

Results

Data description

Table 2 presents descriptive statistics for the demographical and clinical data of the 149 

PD patients’ cohort. The AAO is platykurtic (kurtosis=−0.52, skewness =0.029), the disease 

duration is leptokurtic and positively skewed (kurtosis=1.99, skewness =1.35), with 82% 

of the patients with disease durations shorter than 10 years. Gender, by design, is evenly 

distributed )75 males and 74 females). The medication dosage distribution for different 

UPDRS III scores is presented in Supplementary Figure S1, showing, as expected, that the 

dosage increases with the severity.

Lipid classes for prediction of disease severity

Table 3 shows the most contributing variables (as defined above and based on at least three 

out of four algorithms) from all lipid classes and the demographical and clinical variables for 

the UPDRS total and UPDRS III scores. As expected, age and disease duration were found 

among the most influential variables especially for UPDRS total score. Our data shows that 

dihydroglobotriaosylceramide (dhGB3), dihydrosphingomyelin )dhSM), glucosylceramide 

(GlcCer), and plasmalogen phosphatidylethanolamine (PEp) are the most contributory lipid 

classes in prediction of both UPDRS total and UPDRS III scores. While the UR and MR 

sometimes gave conflicting results regarding the significance of a variable, RF and Lasso 

were more consistent. Similar to age and disease duration, higher GlcCer, dhGB3, and 

globotriaosylceramide (GB3) values were associated with higher scores (the first two classes 

for both UPDRS total and III scores). In contrast, dhSM and PEp (for both UPDRS total 

and III scores) as well as monoacylglycerol (MG), phosphatidylethanolamine (PE), and 

dihydro GM3 (dhGM3) (only for UPDRS III score) affected UPDRS negatively. In addition, 

lipid classes sulfatide (Sulf), free cholesterol (FC), acyl phosphatidylglycerol (APG), 

lysophosphatidylcholine (LPC), phosphatidylglycerol (PG), and dhGM3, as well as lipid 

classes triacylglycerol (TG), dihydrolactosylceramide (dhLacCer), lysophosphatidylinositol 

(LPI), APG, and Sulf had only two supporting methods for UPDRS total and UPDRS III 

scores, respectively, and thus are not presented in Table 3. Additionally, BMI was not found 

to be a contributing variable.

Average plasma concentrations divided by tertiles of the UPDRS III and UPDRS total scores 

for the cohort are presented in Figure 1 for dhSM, GlcCer, PEp, and dhGB3. Figure 1 

shows that in most of the cases (e.g., dhSM and PEp), a clear trend can be observed (either 

increasing or decreasing monotonicity) between the scores in the lower and higher cohorts 

for both UPDRS total and UPDRS III scores. The figure also demonstrates that while 

female patients have higher concentrations than male patients in the lower score ranges 

UPDRS (both UPDRS total and UPDRS III scores), the difference almost always becomes 

insignificant in the higher severity level.
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Figure 2A demonstrates differences between PD patients in three tertiles of their UPDRS 

III scores with respect to values of their lipid classes and demographics, showing distinct 

demographic-lipidomic signatures of patients with different disease severities in comparison 

with controls.

Finally, the results for the MoCA indicate four variables that had three or four supporting 

methods: age, education, disease duration, and PE. Age and disease duration were negatively 

correlated with the MoCA score, the older the patient or the longer the disease duration, the 

lower the score. Education was positively correlated with MoCA score; the more educated 

the patient, the higher the score. Note that the MoCA analysis is the sole place where 

education came up as contributable. PE has a strong monotonic negative impact on the 

MoCA score (data not presented).

Lipid species for prediction of disease severity

We started this analysis with 517 species and 8 demographical and clinical variables and 

then minimized this list using the feature selection ML methodology (described in the 

Material and Methods section), identifying the species that contributed the most for PD 

severity. This was implemented for UPDRS III and UPDSR total scores, as presented in 

Tables 4 and 5, respectively. As in the lipid class analysis, age and disease duration are 

highly ranked in predicting PD severity in the lipid species analysis of UPDRS total score 

(Table 4). Predictors of the UPDRS total score included 18 species from 11 classes, but 

the majority of the influential species (n=15; 83%, Table 4) are from five classes: PEp 

(5), GB3 (3), dhSM (3), GlcCer (2), and dhGM3 )2). In addition to age and AAO that 

are influential on both UPDRS total and UPDRS III scores, half of the species (9/18) are 

influential on both scores (with the same directionality). Most of the classes (9/12) identified 

for UPDRS III in the first phase have representative species in Table 5. There are three 

species, highlighted in dark grey, whose directions are not corresponding with those of their 

class directions. Two of them, PEp (42:7) and dhGM3(16:0), also appear influential on the 

UPDRS total score with no corresponding directions with their classes (Table 4).

Average plasma concentrations of the cohort divided by tertiles based on the UPDRS III 

score are presented in Figure 3 for most of the contributing lipid species in Table 5. In 

most of the cases [e.g., GlcCer(16:0), dhSM(20:0), dhGM3(22:0), and dhGM3(22:1)], the 

cohort concentration increases/decreases linearly with the disease severity, whereas in other 

cases [e.g., GlcCer(24:1) and dhGM3(16:0)], a point in an intermediate severity shows a 

change in the trend of the concentration. We believe this change point is responsible for the 

mismatch in directionality of impact between a species and its class, as was observed before 

[e.g., dhGM3(16:0) in Tables 4 and 5]. We also see a similar pattern to that of lipid classes 

(Figure 1), where female patients usually have higher concentrations in the low and medium 

severities, but the difference to male patients usually vanishes for the highest UPDRS III 

scores. Similar to the lipid class analysis, we show in Figures 2B-2D radar plots presenting 

distinct demographic-lipidomic signatures of patients with different disease severities in 

comparison with controls.

Prediction model accuracy for UPDRS III and UPDRS total scores as measured by the 

RMSE is presented in Figure 4, with an average of 6.81 and 9.42, respectively. We see that 
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our models are most accurate in predicting UPDRS III and UPDRS total scores in those 

50% of the patients whose scores range between 9 and 22, with RMSE values of 2.85–5.72 

and 4.48–7.56, respectively, and less accurate in those extreme scores (with UPDRS III 

score under 5 or over 27). As Supplementary Figure S2 shows, this difference in accuracy 

is because of few extreme prediction errors due to outliers and high variability in the patient 

data in the extreme severity ranges.

Supplementary Figures S3A and S3B show the result of excluding age, AAO, and disease 

duration (both the variables and their interactions with the lipids) from the models, relying 

only on the prediction capability of the contributing lipid species (Tables 4 and 5). While 

excluding age and AAO (duration was not found contributory to prediction in Table 5 

probably because it is a derivation of the former two) did not affect UPDRS III score 

(Supplementary Figure S3A; RMSE increase of only 3%−4% for all severities), our data 

show that the absence of these two variables together with duration increased the prediction 

error for UPDRS total score for most of the severities (Supplementary Figure S3B) between 

26% and 198%. We believe that age, AAO, and disease duration mostly affect UPSRS 

II score (Activities of Daily Living) and especially UPDRS I score (Mentation, Behavior, 

and Mood) and to a lesser degree the motor examination in the test (UPDRS III score). 

Supplementary Table S1 shows ranked by RF values of variable importance (ordered by the 

Gini index) for UPDRS total and UPDRS III scores, reinforcing that age and duration (much 

more than AAO) contribute to more accurate prediction of UPDRS total score, whereas age 

and AAO are less influential compared to lipid species (and duration is not even ranked) 

for accurate prediction of UPDRS III score (compare Gini index values of these variables 

between UPDRS total and UPDRS III scores). However, the lowest (under 10) and highest 

(above 36) severities for UPDRS total score (Supplementary Figure S3B) show the opposite 

picture. The improvement in the average error while excluding age, AAO, and duration is 

explained by a skewed disease duration in the lowest range (the 25th and 48th percentiles 

are almost identical) and high variability of this variable in the highest range that together 

undermine the accuracy of the model that uses all variables.

Discussion

In this current age where large databases (e.g., of omics data) are available for analysis, 

traditional statistical tools may not be sufficient to gain deep clinical understanding of 

interrelations within the data. Lipidomics data are a classical example of such an instance. 

First, lipids are inherently related to one another and assumptions of independence often 

made by statistical models may not be accurate. Second, as is the case of this study, the 

amount of data collected on each participant exceeds the number of participants (525 lipid 

species together with clinic and demographic variables vs. 149 participants), which further 

requires a careful variable selection procedure as we have applied here. Our contribution 

in this study is in: 1) providing an RF-based ensemble for PD severity prediction and 

statistically supported lipidome feature selection that is both accurate and informative; 

and 2) identifying severity-related lipid class and species signatures that can be used as 

age-gender-specific PD severity markers.
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Our analysis showed several influential lipid classes, and, within each class, several lipid 

species that contribute to high PD severity prediction accuracy, especially in intermediate 

severities. This analysis also demonstrated interesting interrelations between lipid classes/

species and different UPDRS score ranges representing different stages of the disease. We 

showed that different lipid classes/species are expressed in different disease stages. Although 

this result needs further validation, it may open new avenues of research in investigating 

the roles of the lipids in the progression of PD. A key finding is that plasma levels of four 

specific lipid classes may predict UPDRS performance of people with PD. Higher levels 

of GlcCer and dhGB3 are associated with worse performance, and higher levels of dhSM 

and PEp are associated with better (lower scores) UPDRS performance. Our models did not 

identify key associations with cognitive performance as measured by the MoCA.

Glucosylceramide is a main substrate of glucocerebrosidase (GCase), which is encoded by 

GBA. Carriers of GBA mutations with PD have faster motor and cognitive progression [41]. 

Studies have shown faster alpha synuclein aggregation in the presence of glucosylceramide 

[42]. Of note, our study participants were non-carriers of GBA mutations (with the exception 

of one), highlighting the potential role of glucosylceramide levels even among non-carriers. 

The association between higher glucosylceramide levels and more severe PD phenotype has 

been previously reported in a cohort of 52 PD cases (26 with normal cognition and 28 

with impaired cognition) [43]. However, a similar association was not reported with motor 

functioning [43]. In summary, our findings of higher glucosylceramide levels predicting 

more severe motor phenotype are consistent with the literature and support the consideration 

of this lipid class as a drug target.

GB3 is a globoside that contains glucosylceramide as its base cerebroside. This 

glycosphingolipid and its analogs [44] are the primary lipids accumulated in Fabry disease, 

a lysosomal storage disease. In Fabry disease, the accumulation of GB3 and its analogs is 

due to the deficiency of the enzyme α-galactosidase A [45]. We have previously shown that 

reduced α-galactosidase A is associated with PD status,[46] and that there may be a higher 

incidence of PD among Fabry disease patients [47]. The cause of the elevations in these 

specific dehydrosphingolipids is unknown. However, we note that increases in this class of 

lipids could be the result of reduced activity of Ceramide synthases 5/6 (DEGS) due to 

hypoxic stress as the lipid desaturases are known to be modulated by oxygen concentrations.

dhSM is one of the few phospholipids not synthetized from glycerol. In our data, dhSM 

levels are higher among those with lower UPDRS scores. This finding correlates with 

observations in Alzheimer’s disease (AD) where it is believed that high levels of SM and 

dhSM are protective, and lower levels of SM and dhSM are observed in AD patients [48]. 

The mechanism behind lower dhSM levels and AD or PD progression is unknown. Reduced 

levels may be the result of an increased rate of ganglioside biosynthesis and a reduction in 

the pool dihydro ceramides for the synthesis of dhSM. dhCer is the precursor of dhSM (as 

Cer is for SM). All four sphingolipids are enriched in the brain and are major components 

of neuronal membranes. Alterations of these sphingolipids have been reported in AD and 

PD [48–54]. In particular, decrease of SM has been observed in samples from PD patients 

[55–57].
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PE and PEp are also phospholipids. PEp is a plasmalogen phospholipid almost identical 

to PE, other than the vinyl-ethyl bond in place of the ether bond. The presence of vinyl­

ether bonds confers plasmalogens with specific biophysical properties that differ from non­

plasmalogen phospholipids [59] such as an increase in the saturation of cellular membranes.

Plasmalogens are highly abundant in the nervous system. The physiological relevance 

of alterations in plasmalogen synthesis is underscored by disorders such as Zellweger 

syndrome or chondrodysplasia [60]. While the link between elevation in PEp and better 

performance on motor examination is unknown, we note that elevations in the synthesis 

and levels of plasmalogens have been associated with reductions in the biosynthesis of 

non-plasmalogen glycerophospholipids. Two independent studies in different models linked 

lower PE levels with PD, supporting this hypothesis. In the first study, cellular and animal 

models of familial PD that carried pathogenic mutations in SNCA showed significant 

reduction in PE synthesis [61]. Likewise, Chan et al., 2017 showed reduced levels of 

PE in plasma samples from male idiopathic Parkinson’s disease (iPD) patients compared 

to controls [4]. Additionally, Riekkinen et al., 1975 found significant reductions in the 

levels of PE in the substantia nigra [62]. The relatively high abundance of PEp makes this 

phospholipid an ideal biomarker candidate since it is easy to detect by regular and consistent 

lipidomics analysis.

Strengths and limitations

One strength of our study is the novel machine-learning technologies applied to the data. 

These offer a solid prediction framework around the RF by: 1) designing a careful, 

statistically-supported training-validation-test ML methodology; 2) initially applying the 

classifier to select lipid classes (and demographics) that contributed to the smallest 

prediction error; 3) repeating this application with only highly ranked classes (and 

demographics) to select the most contributing lipid species; 4) validating and reinforcing this 

selection using statistical methods; and 5) profiling gender-age lipid signatures in relation to 

PD severity, establishing lipid-based markers of disease progression.

A second strength of the study is the extensive unbiased lipidomic analysis we applied 

using our ML methodology to validate our findings. The cohort is carefully phenotyped, 

and SNCA, GBA (with the exception of one), and LRRK2 mutation carriers were not 

included. The main limitation of the study is that the participants did not fast at time of 

the blood extraction. Fasting status could affect the levels of blood sphingolipids [63]. 

Therefore, ideally, our findings should be confirmed in larger studies, ideally including 

fasting participants with longitudinal data points, like in the Parkinson’s Progression 

Markers Initiative (PPMI) study.

In conclusion, we demonstrated lipid signatures for motor disease severity in PD. The links 

between PD status, disease severity, and lipidomics require further investigation, but we 

believe ML adds an extra tool that improves the level of interpretation for large and 

interconnected lipidomics data.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Average plasma concentrations (pmol/μl) for different ranges of the UPDRS total score (left) 

and UPDRS III score (right) for four contributory lipid classes common to UPDRS total 

and III scores (Table 3). Numbers in parentheses indicate numbers of observations (patients) 

in different ranges of severities. The solid, dotted, and broken lines represent all patients, 

female patients, and male patients, respectively. The distributions of females and males over 

UPDRS III and UPDRS total scores ranges are given at the top of the figure. The confidence 

interval (CI) results for multi comparisons between the severities are based on a post-hoc 

Tukey HSD test and those between females and males on a two-sample t-test [both CIs are 

presented below each plot only for statistically significant (p<0.05) differences].
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FIG. 2. 
(A) Radar plot representing UPDRS III scrores and average values of the most contributing 

lipid classes (Table 3), age, AAO, and gender for three PD stages: early (low severity; 

yellow), intermediate (red), and late (high severity; blue) in comparison to control (green). 

The controls are 100 subjects genetically unrelated frequency-matched by gender and 

age (Avg.=66.11 years, std.=9.4) with average and std. BMI values of 25.7 and 4.4, 

respectively. AAO for the control was set to the value of the low severity. Numbers in 

parentheses indicate numbers of observations (patients). As we move along an axis from 
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the center/origin of the outer polygon to any of its vertices, the corresponding variable 

increases its value, e.g., towards higher age, AAO, and lipid class concentrations (and for 

higher percentages of men than women for the gender variable). The figure demonstrates 

differences between PD patient groups in three tertiles of UPDRS III scores of 0–11 (lower 

tertile), 12–20 (middle tertile), and 21–48 (upper tertile) in comparison to control. Among 

the patients, early stage patients (lowest tertile), mostly women, are recognized by the 

lowest values of GlcCer (and, of course, of age and AAO values), with extreme values 

of dhSM, PEp, and PE; the latter value is extremely larger than those of the intermediate 

and late stage patients (and similar to that of control). Patients with intermediate UPDRS 

III scores (middle tertile) have dhSM and PEp values similar to those of early stage 

patients, but also the highest levels of GlcCer and lowest levels of dhGB3. The patients 

with the highest UPDRS III scores (upper tertile), as expected, are older and have higher 

AAO values, highest levels of dhGB3, intermediate levels of GlcCer, and PE, and the 

lowest values of PEp and dhSM. When considering also the control group, we notice 

two results: a) a perfect order of values from control to low, intermediate, and up to 

high severities for dhSM and almost perfect order for GlcCer and PE (the two highest 

severities swapped their order although are very similar in values), and b) for most lipid 

classes (except PEp and dhGB3), lipid levels of controls are at the extreme ends, i.e., 

having either the lowest or highest level. (B) Similar to (A) for a combination of average 

(over the patients) values of dhGM3 and its most contributing species. The figure shows 

that patients in the lower UPDRS III score tertile have the highest values of dhGM3, 

dhGM3(22:0), and dhGM3(22:1) but the lowest values of dhGM3(16:0). The case is nearly 

opposite for patients in the highest UPDRS III score tertile, i.e., the lowest values of 

dhGM3, dhGM3(22:0), and dhGM3(22:1), and relatively high values of dhGM3(16:0). 

Interestingly, while the intermediate disease severity is characterized by intermediate values 

of dhGM3, dhGM3(22:0), and dhGM3(22:1), it is also characterized by the highest values 

of dhGM3(16:0). (C) Similar to (A) for a combination of average (over the patients) values 

of GlcCer and its most contributing species together with age and AAO. The figure shows 

patients in the higher tertile of UPDRS III scores were older with later AAOs, but also had 

the highest values of GlcCer(16:0) and relatively high values of GlcCer and all of its other 

species. On the other hand, patients with the lowest UPDRS III scores are the youngest with 

the lowest AAO on average and have the lowest values of GlcCer and its species, except 

for GlcCer(24:1), where these patients have the highest plasma levels. (D) The same as (C) 

including the control group for a reference (the small values of the control subjects changed 

the scale drastically so previous differences among PD severities were diminished), showing 

that none of the species of the GlcCer class is expressed in the control subjects, and thereby 

emphasizing the role of this lipid class in PD (C).
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FIG. 3. 
Average plasma concentrations (pmol/μl) for different ranges of the UPDRS III score for 

species that were identified among the eighteenth important ones (Table 4). The solid line 

represents all the PD patients. Numbers in parentheses indicate numbers of observations 

(patients) in different ranges of severities. The dotted line represents female patients and the 

broken line the male. The distributions of females and males over UPDRS score ranges are 

given at the top of the figure. The CI results for the comparisons between the severities are 

based on a post hoc Tukey HSD test and those between females and males on a two-sample 

[both Cis t-test, are presented below each plot only for statistically significant (p<0.05) 
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differences.]. Note that dhGB3(16:0) is the only species in the dhGB3 class, what explains 

the identity between the corresponding figures here and in Figure 1.
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FIG. 4. 
Average prediction RMSE values for UPDRS III and UDPRS total scores and relatively 

equally populated UPDRS III score ranges. RMSE = 1
n ∑j = 1

n yj − yj
2, where n is the 

number of observations (patients), yj is the actual UPDRS total and UPDRS III scores for 

the jth patient, and yj is the corresponding predicted value. Numbers in parentheses indicate 

numbers of patients for different severity ranges. The figure presents the RMSE of the RF 

trained using the most contributing lipid species (Tables 4 and 5) in eight ranges of UPDRS 

III score severities. While the average RMSE for UPDRS III and UPDRS total scores for all 

149 patients is 6.81 and 9.42, respectively (not shown in the figure), the figure shows that 

for 50% (75) of the patients, those with UPDRS III score between 9 to 22 (the four middle 

severity ranges), the average RMSE in predicting UPDRS III score is between 2.85 and 5.72, 

and that in predicting UPDRS total score is between 4.48 and 7.56. These RMSE values 

are much smaller than the 9.3 and 13.8 standard deviations of UPDRS III and UPDRS 

total scores in our data, respectively (Table 2). For another 25% (38) of the patients, in 

severity ranges of 6–8 and 23–26, the average error is between 7.07 and 7.57 for UPDRS III 

score and between 9.79 and 10.11 for UPDRS total score, which are also smaller compared 

with the corresponding 9.3/13.8 standard deviations. However, for extreme (low and high) 

UPDRS III score, 24% (36) of the patients have average error higher than the standard 

deviation, which is attributed to the high variance of, and outliers in, RMSE in these severity 

ranges (Supplementary Figure S2). Also note from comparing the graphs for UPDRS total 

and UPDRS III scores, that errors due to UPDRS I and UPDRS II scores (the difference 

between UPDRS total and III scores) are greater for extreme severity values.
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TABLE 1.

Lipids measured in the study and their class membership

Type Abbrev. Full name

Neutral Lipids

FC Free Cholesterol

CE Cholesterol Ester

MG Monoacylglycerol

DG Diacylglycerol

TG Triacylglycerol

Sphingolipids

Cer Ceramide

dhCer Dihydroceramide

SM Sphingomyelin

dhSM Dihydrosphingomyelin

GalCer Galactosylceramide

Sulf Sulfatide

dhSulf DihydroSulfatide

GlcCer Glucosylceramide

LacCer Lactosylceramide

dhLacCer Dihydrolactosylceramide

GM3 Monosialodihexosylganglioside

dhGM3 DihydroMonosialodihexosylganglioside

GB3 Globotriaosylceramide

dhGB3 DihydroGlobotriaosylceramide

Phospholipids

PA Phosphatidic acid

PC Phosphatidylcholine

PCe Ether phosphatidylcholine

PE Phosphatidylethanolamine

PEp Plasmalogen phosphatidylethanolamine

PG Phosphatidylglycerol

PI Phosphatidylinositol

PS Phosphatidylserine

LPC Lysophosphatidylcholine

LPCe lysophosphatidylcholine ether

LPE Lysophosphatidylethanolamine

LPEp lysophosphatidylethanolamine plasmalogen

Phospholipids

LPI Lysophosphatidylinositol

BMP Bis(monoacylglycero)phosphate

APG Acyl Phosphatidylglycerol

NAPE N-Acylphosphatidylethanolamines

NAPEp N-Acylphosphatidylethanolamine plasmalogen

NAPS N-Acyl Phosphatidylserine
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TABLE 2.

Descriptive statistics of demographical and clinical data of the 149 PD patients’ cohort

Variable Mean (Min, Max) Std.

Age (years) 66.5 (43, 87) 9.2

Height (inches) 66.4 (55, 76) 3.9

BMI 25.8 (17, 50) 4.8

Age at onset (years) 60.8 (43, 81) 9.0

Disease duration (years) 5.7 (0, 27) 5.2

Levodopa equivalent dose (mg) 465.8 (0, 1500) 396.6

UPDRS III score 16.3 (0, 48) 9.3

UPDRS total score 25.8 (3, 72) 13.8

MoCA 25.7 (12, 30) 3.2

UPDRS: Unified Parkinson’s Disease Rating Scale; MoCA: Montreal Cogntive Assessment

J Parkinsons Dis. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Avisar et al. Page 25

TABLE 3.

Most contributing lipid classes for UPDRS scores prediction

UPDRS total

No. of methods Variable Direction UR (p-value) MR (p-value) Lasso RF

4 Age Positive 3.91e-06 1.81e-06 + +

3 Duration Positive 1.35e-05 + +

3 dhSM Negative 0.0024 + +

3 PEp Negative 0.0035 + +

3 AAO Positive 0.0333 0.0022 +

3 GlcCer Positive 0.0001 + +

3 dhGB3 Positive 0.0127 + +

3 GB3 Positive 0.048 + +

UPDRS III

No. of Methods Variable Direction UR (p-value) MR (p-value) Lasso RF

4 Age Positive 0.0002 1.42 e-06 + +

4 MG Negative 0.0177 0.0037 + +

4 dhGB3 Positive 0.0207 0.0001 + +

3 dhSM Negative 0.0064 + +

3 PEp Negative 0.0231 + +

3 Duration Positive 0.0286 + +

3 PE Negative 0.0304 7.57 e-05 +

3 dhGM3 Negative 0.0415 0.0337 +

3 GlcCer Positive 0.0038 + +

Lipid acronyms: Dihydrosphingomyelin (dhSM), plasmalogen phosphatidylethanolamine (PEp), glucosylceramide (GlcCer), globotriaosylceramide 
(GB3), dihydro globotriaosyl ceramide(dhGB3), monoacylglycerol (MG), phosphatidylethanolamine (PE), dihydro GM3 ganglioside (dhGM3)

Univariate linear regression (UR)

Multivariate linear regression (MR)

Lipid classes and clinical and demographic variables identified as contributing/statistically significant to severity prediction [as calculated by 
UPDRS total (upper section) and UPDRS III (lower section)] scores by at least three methods. Also shown is the variable impact/direction (as 
positive/negative) based on the Lasso regression (since the Lasso coefficient for AAO was zero, we used Ridge regression to get the direction of 
impact for this variable). The p-value is presented for significant variables only. Variables supported by four or three methods are sorted according 
first to the UR and then MR p-values, and those common to UPDRS total and UPDRS III scores are in bold.
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TABLE 4.

Most contributing lipid species for UPDRS total score prediction

Rank
Variable (species)

Direction
Class

UR (p-value)
Name Direction

1 Age Positive Age Positive 3.91e-06

2 Duration Positive Duration Positive 1.35e -05

3 PEp(38:6) Negative PEp Negative 0.0002

4 GB3(24:1) Negative GB3 Positive

5 GlcCer(16:0) Positive GlcCer Positive

6 dhSM(22:0) Negative dhSM Negative 0.0009

7 dhGB3(16:0) Positive dhGB3 Positive

8 PEp(40:6) Negative PEp Negative 0.0006

9 GB3(18:0) Positive GB3 Positive

10 PEp(42:7) Positive PEp Negative

11 GB3(16:0) Positive GB3 Positive

12 dhSM(20:0) Negative dhSM Negative 0.00012

13 GlcCer(24:1) Positive GlcCer Positive

14 AAO Positive AAO Positive 0.0333

15 APG(34:2) Negative APG Negative

16 PEp(40:7) Negative PEp Negative 0.0021

17 dhGM3(22:0) Negative dhGM3 Negative 0.0230

18 PEp(36:2) Negative PEp Negative

19 dhGM3(16:0) Positive dhGM3 Negative

20 PG(32:0) Negative PG Negative 2.43 e-05

21 dhSM(18:1) Negative dhSM Negative

Lipid acronyms: Plasmalogen phosphatidylethanolamine (PEp), globotriaosylceramide (GB3), glucosylceramide, (GlcCer), 
dihydrosphingomyelin )dhSM), dihydro globotriaosylceramide (dhGB3), acyl phosphatidylglycerol (APG), dihydro GM3 ganglioside (dhGM3), 
phosphatidylglycerol (PG)

Univariate linear regression (UR)

Most contributing variables/species for prediction of UPDRS total score sorted in descending order of importance according to the RF. Light gray 
indicates that a species and its class have the same directionality based on the Lasso regression (unless the Lasso coefficient is zero; in these cases, 
we used Ridge regression to get the direction of impact), and dark gray indicates they have different directionalities. Bold indicates the variable 
is also contributing to UPDRS III score (Table 5). UR p-values were computed in a post-processing phase and are presented only for significant 
variables.
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TABLE 5.

Most contributing lipid species for UPDRS III score prediction

Rank
Variables (species)

Direction
Class

UR (p-value)
Name Direction

1 dhGB3(16:0) Positive dhGB3 Positive 0.021

2 Age Positive Age Positive 0.0002

3 AAO Positive AAO Positive 0.0138

4 LPI(18:0) Negative LPI Negative

5 PE(36:1) Negative PE Negative 0.0031

6 dhGM3(22:0) Negative dhGM3 Negative 0.0146

7 PEp(38:5) Negative PEp Negative 0.0172

8 GlcCer(24:1) Positive GlcCer Positive

9 APG(38:1) Negative APG Negative 0.0161

10 GlcCer(16:0) Positive GlcCer Positive

11 PEp(38:6) Negative PEp Negative 0.0056

12 APG(34:2) Negative APG Negative

13 dhGM3(22:1) Negative dhGM3 Negative

14 PE(40:6) Negative PE Negative 0.0183

15 LPI(18:1) Positive LPI Negative

16 dhSM(20:0) Negative dhSM Negative 0.0071

17 MG(16:0) Negative MG Negative 0.0042

18 GlcCer(22:0) Positive GlcCer Positive

19 PEp(42:7) Positive PEp Negative

20 dhGM3(16:0) Positive dhGM3 Negative

Lipid acronyms: Dihydro globotriaosylceramide (dhGB3), lysophosphatidylinositol (LPI), phosphatidylethanolamine (PE), dihydro GM3 
ganglioside (dhGM3), Plasmalogen phosphatidylethanolamine (PEp), glucosylceramide, (GlcCer), acyl phosphatidylglycerol (APG), 
dihydrosphingomyelin )dhSM), monoacylglycerol (MG)

Univariate linear regression (UR)

Most contributing variables/species for prediction of UPDRS III score sorted in descending order of importance according to the RF. Light gray 
indicates a species and its class have the same directionality based on the Lasso regression (unless the Lasso coefficient is zero; in these cases we 
used Ridge regression to get the direction of impact), and dark gray indicates they have different directionalities. Bold indicates the variable is also 
contributing to the total UPDRS score (Table 4). UR p-values were computed in a post-processing phase and are presented only for significant 
variables.
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