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The current state —

State-of-the-art results for a variety of computer domains.
The problem —

Reasoning of their decision-making process is lacking.
Our main challenge —

Improving interpretability of the network inference process.
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Can we convert distributed representations into a human-oriented language?
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Can we learn a dictionary of visual words and model their interrelationships?
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Trained MLP inference process as a Hidden Markov Model (HMM):

Single MLP layer distribution: a mixture model of multivariate Gaussians (GMM).

Connections between layer representations: conditional probability tables between
GMM components of adjacent layers.

Post-Relu activations: rectified Gaussians via additional hidden variables.

Optimization: online Expectation Maximization (EM).
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* Each spatial location example vector x}, , located at
p=(ij)€ {{1, - HY <AL, ., Wl}}, is described as

arising from a GMM of K! components.

* Example xfo is assigned to cluster C,i iff P(hzl, = k|le,) is
the highest.

* Each cluster C,i represents a visual word (edge, texture,
body part etc.), together forming the layer dictionary.

Convolutional layer [

Wl

Hl

\o--ooo@ —




ECCV'20

ONLINE

23-28 AUGUST 2020

Train a CNN-GMM model:

1

2. For every modeled layer [, append to it a

3.

Get a pre-trained CNN.

GMM layer with the GMM parameters

Kl
Ot = {n,lc,u,l(,Z,l{}kzl as learning
weights.

Train all GMM layers and estimate their
parameters independently, using SGD.

Layers Dictionaries for CNNs
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l
Consider a graph in which visual words {C,lc} z:Li I,:zl are the nodes, and transition

probabilities between visual words of consecutive layers quantify edges.

= Given a selected subset of images to be explained
Q={I, n1\=]1 (e.g., class or a single image), a specific

subgraph can have high explanatory value.

How can we find the most explanatory visual words?

* Node selection algorithm —
iterative algorithm starting from “explaining” the
classification decision node, then explaining layers

backward, until outputting a subgraph.
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Given an instance of a single visual word hzl, = s to “explain”, we look for the visual
words T in its receptive field R(p) most contributing to its likelihood:

I — . !
T%?iczlogP (hp = s|lhg:q € R(p), hy € T)

Using location independence assumptions, a ‘t —explains—s’ score is derived:

K" !/ l
, . P\hg =tlhy = 5,9 € R(p)
st = thg = R(p){|1
(s,t) = q:hg =t,q € R(p)|log o hl —

£ (hg =1)

\ J 1 J
Y Y
the number of times visual how likely it is to see word t in the
word t appears in the receptive receptive field of s compared to seeing

field of location p it in general
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fc-1 (34%) fc-5 (100%)\

fe-4 (99%)

fe-2 (39%)

fc-3 (67%)

MLP

add-5 (13%)

add-7 (17%)  add-8 (16%)

CNN

increasing similarity
between clusters
representing the
same class.

the clusters stay
local and diverse,
even at the
uppermost layers.
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Ground truth: Pineapple

Network prediction: Swing
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Ground truth: Pineapple

Network prediction: Pineapple
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