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We extend the generating function technique for calculation of single molecule photon emission statistics
(Zheng, Y.; Brown, F. L. H.Phys. ReV. Lett.2003, 90, 238305) to systems governed by multi-level quantum
dynamics. This opens up the possibility to study phenomena that are outside the realm of purely stochastic
and mixed quantum-stochastic models. In particular, the present methodology allows for calculation of photon
statistics that are spectrally resolved and subject to quantum coherence. Several model calculations illustrate
the generality of the technique and highlight quantitative and qualitative differences between quantum
mechanical models and related stochastic approximations when they arise. Calculations suggest that studying
photon statistics as a function of photon frequency has the potential to reveal more about system dynamics
than the usual broadband detection schemes.

I. Introduction

Single molecule spectroscopy (SMS) has become a versatile
and powerful tool for the study of condensed phase systems in
chemistry, physics, and biology.1-12 Unfortunately, the very
qualities that make SMS such a powerful technique have also
led to significant theoretical challenges in describing experi-
mental data. The ultra-microscopic nature of the physical
systems under study leads to randomness in the behavior of
experimental signals due both to thermal agitation of the photo-
active portion of the system and to the inherent randomness of
the spontaneous emission process itself. While SMS has been
hailed for its ability to probe these fluctuations directly, it
remains difficult to extract physical pictures for molecular
dynamics based solely on SMS data streams. Some of this
difficulty is likely fundamental (current SMS experiments may
not collect sufficient data to allow for direct inversion to
molecular dynamics), but even if SMS data were sufficient to
differentiate between all viable physical hypotheses, it remains
an open question as to the best means to simulate such models
to allow for comparison with experiment. Indeed, much effort
has been expended on the theory of interpreting/modeling SMS
trajectories, particularly in the context of stochastic models for
chromophore dynamics.12-30 Stochastic models, though certainly
illustrative and powerful, ultimately face certain limitations in
the modeling of phenomena that are inherently quantum
mechanical, such as spectroscopy. Quantum coherence cannot
be captured, quantization of nuclear eigenstates is not naturally
formulated within a stochastic scheme, and the parameters of
stochastic models are often difficult to equate with their micro-
scopic origins. As the following work will show, even stochastic
models systematically derived from underlying quantum con-
siderations can lead to quantitative and qualitative differences
from fully quantum calculations. As expected, these deviations
are small for two-level chromophores when coupling between

the chromophore and environment is very weak but can become
substantial in other regimes and for more realistic chromophore
models.

Until recently, Monte Carlo Wave Function simulations
(MCWF)31 and related techniques provided the only fully satis-
factory route to theoretical calculation of single molecule photon
counting observables32 including quantum mechanical effects.
A few other studies have touched on specific aspects of quantum
dynamics applicable to SMS24,27,33-35 but without complete
generality. Recent work by us36-39 and others40-44 has estab-
lished generating function techniques as a general means for
calculating statistical quantities of single molecule photon
counting experiments. The only fundamental limitations to this
approach are that you must consider the spontaneous emission
of photons to be governed by rate processes and the directly
calculated quantities are statistical moments of the number of
photons emitted.36,37,41

The bulk of previous work with the generating function
approach has focused on two-level chromophores with stochastic
modulation by the environment, however the method is equally
applicable to multi-state quantum systems. The extension to
multi-state quantum systems was suggested by us37 and formally
carried out by Mukamel.41 Sanda and Mukamel44 have recently
used the generating function approach to derive formal pertur-
bative expressions (in the applied field strength) for low-order
photon counting moments. Though interesting from a theoretical
standpoint, the derived expressions are complex enough that
implementation will be impossible for all but the simplest model
systems (second-order moments require solution of a six point
quantum correlation function, higher moments need larger
correlations). As a numerical technique, the generating function
approach has promise to study varied systems without limitation
to low field strengths.

The present paper considers several model systems to dem-
onstrate the use of the generating function approach as a numer-
ical tool for predicting SMS photon counting observables. In
addition to calculation of photon counting moments for broad-
band detection schemes, as has been considered previously, we
also calculate emission statistics for photons specific to particular

† Part of the special issue “Robert J. Silbey Festschrift”.
* To whom correspondence should be addressed. E-mail: flbrown@

chem.ucsb.edu.
‡ Present address: School of Physics and Microelectronics, Shandong

University, Jinan 250100, Shandong, China.

19066 J. Phys. Chem. B2006,110,19066-19082

10.1021/jp062345v CCC: $33.50 © 2006 American Chemical Society
Published on Web 09/21/2006



molecular transitions and degenerate sets of transitions. For
systems where vibrational structure is well resolved compared
with natural line widths, this is equivalent to the calculation of
spectrally resolved emission statistics. From a conceptual and
numerical standpoint, these calculations are no more difficult
than broadband detection calculations. The simulations we have
carried out suggest that significantly more information stands
to be learned from photon counting experiments when photon
statistics are broken down by color.

This paper is organized as follows. Section II presents the
underlying theory and notation necessary to introduce our
calculations. Although there are many details to be considered
here, the conceptual framework for calculating photon statistics
in the many-level case is no more complex than that for two-
level chromophores. Given the reduced Liouvillian operator for
density matrix dynamics of the chromophore system, calculation
of the generating function for photon number and/or low-order
statistical moments is immediate. Most of section II is dedicated
to describing the Liouvillian operator itself, not the extension
of this matrix to calculation of experimental observables.
Sections III and IV present numerical calculations for chromo-
phores coupled to a two-level system and a harmonic vibrational
coordinate. Many different regimes are considered, both to
display the flexibility of the present formulation in numerical
calculations and to highlight differences between fully quantum
calculations and commonly employed stochastic approximations.
In section V, we conclude.

II. Theoretical Background

A. General Considerations for Chromophore Dynamics.
The picture we present is the natural extension of the optical
Bloch equations to multi-level quantum systems in a condensed
phase. Our methodology has been adopted both to make con-
nection with our previous work on two-level chromophores36-38

and because the necessary theoretical/computational tools for
chromophore dynamics are well established in the literature.

We imagine a single chromophore in a condensed phase envi-
ronment driven by an external laser field. It is assumed that the
field is strong enough to warrant a classical treatment of this
perturbation so that dynamics, in the absence of any other
system-field interactions, would be dictated by

In the above equation,Ĥsys is the Hamiltonian for the unper-
turbed chromophore-environment system,µ̂ is the electric
dipole moment for this system, andE(t) is the classical applied
laser field.F(t) specifies the density matrix for the molecule
only. This evolution assumes the radiation is of sufficiently long
wavelength (and the chromophore sufficiently localized) to allow
the dipole approximation.

What the above dynamics neglects is the relaxation of the
driven molecular system. The coupling between system and the
quantum radiation field provides a route for this relaxation to
occur: the spontaneous emission of photons. It is these photons
that are registered in SMS experiments, and hence, inclusion
of the spontaneous emission process is absolutely essential.
Within the standard approximations, the quantum radiation field
is integrated over to provide rate constants for emission of
photons between various molecular transitions.45,46 This leads
to a master equation approach for incorporating emission events
as pure rate processes. The rate for spontaneous emission of a
photon, causing a jump from system eigenstatei to eigenstate
j, is calculated by the application of Fermi’s golden rule (using

the coupling between the system and quantum radiation field
as the perturbation)

The collection of constants appearing in this expression have
their usual meanings (ε is the permittivity,p is Planck’s constant
divided by 2π, andc is the speed of light), but we will not be
concerned with them in this work. What is important to us is
the dependence on the transition dipole momentDij, which
serves to mediate relative rates of emission for different
chromophore transitions. In principle, energy splittings (ωij)
impact the rates as well, but we shall be concerned with elec-
tronic transitions where differences in this quantity between
various allowed transitions are much smaller than the splitting
itself. In this limit, we expect inconsequential variations on the
basis of energy differences.

Perturbation theory applied to the entire system density matrix
evolution (as opposed to just a single rate calculation) addition-
ally tells us that the population lost from statei, via Γij decay,
ends up in statej. Also, it specifies that thei f j transition
causes all associated coherences (Fik, Fki) to decay at the rate of
Γij/2. The net effect of all spontaneous emission processes in
the system is the additive contribution of these three effects
(loss of population from statei, gain in population of statej,
and loss of coherence for all allowedi f j transitions.) We
neglect radiative level shifts in the system states and ignore all
other couplings (virtual photon transitions) caused by the
presence of the quantum radiation field. These other couplings
are unimportant when system energy levels are nondegenerate
as the implied perturbations are nonsecular.45,46The nondegen-
eracy condition is met by the systems studied in this work.

Keeping those contributions specified in the last two para-
graphs implies that we supplement our chromophore equations
of motion with non-Hamiltonian evolution terms corresponding
to spontaneous emission. The form of this augmentation is most
transparent in the basis ofĤsys eigenstates. Rewriting eq 1 in
this form yields (The summation convention over repeated
density matrix labels is assumed throughout this work.)

Here, Lsys and LE(t) are Liouville superoperators (matrices)
corresponding to the commutator expressions in eq 1.47 Note
that our definition incorporates the factor-i/p within Lsys and
LE(t). LΓ is the matrix effecting spontaneous emission processes.
The elements of this matrix are provided by the arguments of
the preceding paragraphs (i * j assumed in the following)

with all other elements being zero.
In what follows, it will be convenient to partition the matrix

LΓ into its positive and negative pieces, so that

F̆(t) ) - i
p

[Ĥsys,F] + i
p

E(t)·[µ̂,F] (1)

Γij )
ωij

3Dij
2

3πεpc3
(2)

Dij ) 〈i|µ̂| j〉

F̆ij(t) ) Lij ;kl
sysFkl + Lij ;kl

E (t)Fkl + Lij ;kl
Γ Fkl (3)

Lii ;ii
Γ ) - ∑

k*i

Γik

Ljj ;ii
Γ ) Γij

Lij ;ij
Γ ) -

1

2
(∑

k*i

Γik + ∑
k*j
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with L+Γ consisting of the terms specified by the second line
of eq 4 andL-Γ comprised of the remaining terms from the
first and third lines.

One final important point is that while eq 3 provides effective
dynamics for the system with implications of field fluctuations
handled implicitly, this dynamic will still be far too complicated
for exact practical treatment when the system of interest is
composed of a chromophore embedded in a condensed phase.
The problem is simply one of a complex dynamic associated
with a quantum mechanical many-body system. When it is
possible to make some effective separation between the relevant
part of the system and a weakly coupled (and fast) bath, this
problem can be overcome in exactly the same method employed
to remove the radiative field from explicit consideration. Writing

for a “system” Hamiltonian composed of two parts, ch (the
chromophore which is directly coupled to the applied field) and
b (the bath) weakly coupled byV̂, we arrive at an equation of
motion for the reduced chromophore density matrixσ through
application of standard Redfield theory48,49

Here, the matrixR is the usual Redfield matrix to account for
bath perturbations on the chromophore and the matrixL(t)
reflects the entire dynamics forσ. We note that additivity of
contributions stemming from quantum field, bath, and classical
(laser) field perturbations to the dynamics of the chromophore
should be viewed as an approximation of “independent rates of
variation”.46 We neglect frequency shifts of the chromophore
due toV̂, so that the labelsij now correspond to the eigenstates
of Hch. We consider this set of approximations as the natural
extension of the optical Bloch equations to multi-level systems
in a condensed phase. Specification of the matricesLE, LΓ, and
R will allow us to apply this formalism to various physical
problems, and several model systems will be considered in the
following sections.

B. Extraction of Photon Counting Moments.Extending the
picture of the preceding section to calculation of photon counting
statistics for single molecule measurements proceeds in a manner
analogous to the case for two-level chromophores.37,40 The
formal solution has been presented in ref 41, and we present
here a brief derivation following ref 37 to clarify our notation
and to extend this picture to the calculation of photon counting
moments for individual spontaneous emission transitions (as will
be useful in spectrally resolved emission spectroscopy).

Imagine a detector capable of differentiating between photons
that are emitted for particular chromophore transitions. In certain
cases, this would be possible by only selecting photons within
a certain frequency window, in other cases this might not be
experimentally feasible but should be regarded as a gedanken
experiment. That portion ofL(t) responsible for placing the
chromophore in a lower energy state immediately following the
transition of interest is of special importance for calculating
statistics associated with this transition. From eq 4, this is the
elementLbb;aa

+Γ with the numerical valueΓab, assuming that we
are followinga f b emissions. We partition eq 7 to give this
single part of the evolution a unique status

whereL′(t) is that portion ofL(t) not pulled out inL+Γab. In
exact analogy to the case with only a two-level chromophore,
it is the operatorL+Γab that dictates when ana f b spontaneous
emission event occurs. Following exactly the same arguments
as in ref 37 allows us to write

whereσ(n) is that portion of the reduced density matrix corre-
sponding to systems that have previously emitted exactlyn
photons viaa f b transitions.

To facilitate the extraction of photon counting moments, we
introduce a generating function version of eq 9

The actual generating function fora f b photon emissions is
obtained by summing over all “population” elements ofG(s,t)

which allows for the usual extraction of probabilities forn
photon emissions50

and factorial moments50

Our primary concern in this work shall be the calculation of
moments. To this end, we differentiate eq 10 with respect tos
yielding equations for the∂m/∂smG elements which, when
summed over population elements, yield the moments (when
s ) 1).

The high-order derivatives are dependent upon all lower deriv-
atives as can be seen by iterating this equation. For example,
moments up to and including second order are generated by
solving the set of equations

Evaluation ats ) 1 provides the moments up to second order
by way of eq 13. SinceL(t,s) andL+Γab areN2 × N2 matrices
for a quantum system withN states, the above expression

L
Γ ) L

+Γ + L
-Γ (5)

Ĥsys) Ĥch + Ĥb + V̂ (6)

σ̆ij(t) )

-iωij σij + Lij ;kl
E (t)σkl + Lij ;kl

Γ σkl + Rij ;klσkl ≡ Lij ;kl(t)σkl (7)

σ̆ij(t) )

L′ij ;kl(t)σkl + Γabδij ,bbδkl;aaσkl ≡ L′ij ;kl(t)σkl + Lij ;kl
+Γabσkl (8)
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(n)(t) ) L′ij ;kl(t)σkl

(n) + Lij ;kl
+Γabσkl

(n-1) (9)

G i̇j(t,s) ) L′ij ;kl(t)Gkl(t,s) + sLij ;kl
+ΓabGkl(t,s) ) Lij ;kl(t,s)Gkl(t,s)
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n)0

∞

snσ(n)(t) (10)
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i
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pn(t) ) 1
n!
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∂sn
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m
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∂t (∂mG (s,t)
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+Γab (∂m-1G
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L
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19068 J. Phys. Chem. B, Vol. 110, No. 38, 2006 Bel et al.



corresponds to solving 3N2 coupled equations. In the cases
considered in this work, we will takeE(t) to have sinusoidal
time dependence so that the explicit time dependence within
L(t) may be removed by moving to a rotating reference frame
and applying the rotating wave approximation (RWA). In this
case, solution of these equations is easily accomplished by
directly exponentiating the 3N2 × 3N2 matrix as outlined in the
next section. Equation 15 is central to all results in this paper
and, in principle, could have been directly solved to reproduce
all the calculations presented below. In practice, we used a
numerically simpler scheme to obtain our results derived from
eq 15. This numerical technique is elaborated on in section IID.
Formation of the matricesL(t,s) and L+Γab for use in any
numerical scheme follow from the preceding section. Specific
choices for these matrixes depend on the physical systems under
consideration and will be detailed with presentation of our
chosen applications.

The above derivation has assumed that we are interested in
the statistics of photons emitted from one particular chromo-
phore transition (a f b). When we are interested in broadband
detection with all photons counted equivalently, the structure
of eq 15 remains unchanged. However, the matricesL(t,s) and
L+Γab have different forms. In that case, we substituteL+Γ for
L+Γab and L(t,s) is now the matrix formed by appendings to
every spontaneous emission matrix element withinL(t) having
a positive sign (i.e., the whole ofL+Γ). Calculation of moments
for photons associated with some subset of transitions (perhaps
transitions inside a certain frequency window) proceeds by
generalizing to placement ofs variables only on the elements
associated with the relevant transitions and making the corre-
sponding changes toL+Γ. In principle, we could introduce a
number of different auxiliary variablesseach variable corre-
sponding to a particular transition or subset of transitions. This
leads to expressions for cross correlations between various
transitions. The extension is straightforward, but not explicitly
presented here, as we do not calculate any such cross correlations
in this work.

C. Model Hamiltonians and Practical Considerations.In
this work, we shall be concerned exclusively with model systems
consisting of a chromophore with two electronic states (ground
|g〉 and excited|e〉), so that

Hg andHe are, respectively, the chromophore Hamiltonians for
nuclear motion within the ground and excited states, with
eigenfunctions and eigenvalues specified by

for me ) 1...Ne, ng ) 1,...Ng. In our numerical applications, we
consider only a finite number of eigenstates associated with
nuclear motion and adopt the convention here. The nuclear
ground state in the excited manifold is assumed to lie higher in
energy than the nuclear ground state of the ground manifold
by an amountpωeg. It is to be understood that this chromophore
Hamiltonian dictates dynamics in the sense implied by eq 6.
Ĥch is responsible for the evolution that we designate to be the
most important to chromophore dynamics. The effect of the
environment (bath) will be felt through coupling dictated byV̂.

Interactions with the radiation field depend on the matrix
elements of the system’s dipole moment operator as evidenced

by eq 2 and the presence ofµ̂ in LE(t). We treat these matrix
elements in the Condon approximation47 such that

The dipole operator is assumed to act solely in the electronic
space with only off-diagonal coupling between ground and
excited states. Individual transition intensities are mediated by
the overlap of nuclear wave functions. We always consider a
monochromatic exciting field of constant intensity and polariza-
tion direction, so that

For future notational simplicity, we define constantsΓ0 andΩ0

as

These constants represent the spontaneous emission rate and
Rabi frequency for an electronic transition between states with
perfect overlap of nuclear wave functions.

These definitions allow us to specify the form of matrices
LE(t) andLΓ. LΓ follows immediately from eq 4. All we need
are the emission ratesΓij for all i f j transitions. Since our
models only allow transitions between excited and ground
electronic states, we need only consider rates of the form
Γ|e〉|me〉;|g〉|ng〉 ≡ Γmeng with values

All positions in theLΓ diagonal in the electronic subspace are
necessarily zero due to our assumptions about the dipole oper-
ator, so the above completely specifies theLΓ matrix.

The formation ofLE(t) is slightly more complicated due to
the nature of the coupling to the applied field, which makes for
a matrix less sparse than the emission matrix. We first realize
that, as in the usual optical Bloch equations, density matrix
elements diagonal in the electronic subspace are coupled to those
off-diagonal in the electronic subspace and vice versa. Also,
by analogy to the optical Bloch equations we retain only those
terms corresponding to resonant excitation by the field (i.e., a
photon is absorbed and electronic state rises or a photon is
emitted and state drops) by invoking the Rotating wave approx-
imation (RWA).46 We make use of the definition

to give the elements ofLE(t) within the RWA

Ĥch ) |g〉Hg〈g| + |e〉He〈e| (16)

Hg|ng〉 ) εng
|ng〉

He|me〉 ) εme
|me〉 (17)

Dng;me
) 〈g|µ̂|e〉〈ng|me〉 ≡ µ0〈ng|me〉 (18)

E(t) ) ε0 cos(ωLt) (19)

Γ0 )
ωeg

3|µ0|2

3πεpc3

Ω0 ) ε0‚µ0/p (20)

Γmeng
) Γ0|〈me|ng〉|2 (21)

Ωmeng
) Ω0|〈me|ng〉| (22)

Lngmg;kelg

E ) - Lkelg;ngmg

E ) + i
2

Ωngke
eiωLtδmg,lg

(23)

Lngmg;kgle

E ) - Lkgle;ngmg

E ) - i
2

Ωlemg
e-iωLtδng,kg

Lneme;kelg

E ) - Lkelg;neme

E ) - i
2

Ωlgme
eiωLtδne,ke
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Overbars represent complex conjugation. (The above definitions
assume that our dipole operator matrix elements are real
quantities.)

The only portion ofL(t) remaining to be specified is the
Redfield matrix for transitions of the chromophore induced by
environmental bath fluctuations,R. The relaxation matrix is
given by48,49

where

are Fourier-Laplace transforms of the correlation functions of
the system and bath coupling at the specified frequency. The
bath-space Heisenberg operators are defined by

and the averages〈...〉b specify a thermal average over bath
degrees of freedom only. In all models we consider, bath
fluctuations are capable of causing transitions between levels
within a particular electronic state but are not permitted to induce
radiationless transitions between electronic states. Further dis-
cussion on the evaluation ofR will appear in sections III and
IV as specific models for chromophore and bath are introduced.

Given the particular form of our model systems, it is highly
beneficial to solve eq 7 in a rotating reference frame by
introducing new variables

The primary advantage of this formulation being that eq 7 is
recast in a form without explicit time dependence

where the diagonal matrixW is given by

The matrixLE is simply the matrix specified by eq 23, evaluated
at t ) 0, and the remaining matrices are unchanged relative to
the original basis. Since the populations ofσ̃ are identical toσ,
we may calculate photon emission statistics using these trans-
formed variables without any changes to the formalism of the
preceding subsection. In particular, we may calculate eq 15 as

where the time-independentL is specified by eq 29 andG̃ (s,t)
is given by

Summing over the “population” elements ofG̃ still returns
the original generating function for photon emissions,G(s,t),
so calculations in this frame return emission statistics equivalent
to the original formulation. Numerics in this basis are preferred,
since eq 31 may be solved simply by direct matrix exponentia-
tion.

D. Reported Quantities and Numerical Details.The bulk
of the preceding sections has been devoted to establishing
models for reduced chromophore dynamics, that is, how to
specify the superoperator matrixL(t) in eq 7 or the correspond-
ing time-independent matrixL in eq 29. Given this matrix, it is
a trivial programming task to extend the standard calculation
of density matrix evolution to photon counting observables. The
matrix L(s) is formed by appending the auxiliary variables to
elements ofL+Γ reflecting spontaneous emission transitions of
interest. In the case of a single relevant transition, only one
element is modified. In broadband detection, we append ans
to the entireL+Γ matrix. GivenL(s), the block form of eq 31
follows immediately and calculation ofG̃ is provided by
simple matrix exponentiation. Summing over population ele-
ments of∂mG̃ (s,t)/∂sm for s ) 1 yields the factorial photon
counting moment of orderm. Although the matrix in eq 31 is
specific to calculation ofm ) 2, higher order moments can be
calculated in analogous fashion by extending the block matrix
as implied by eq 15. Since we assume no photon emissions
prior to t ) 0, the initial condition employed in eq 31 is simply
G̃ ij (s,0) ) σ̃ij(0) with all s derivatives ofG̃ equal to zero.

The moments reported in this work will be presented in terms
of absorption and emission line shapes and corresponding
MandelQ parameter51 spectra. Mandel’sQ parameter is related
to the factorial moments via

and serves as a convenient means to report second-order photon
statistics. PositiveQ values reflect photon bunching behavior
(an elevated variance inn relative to Poisson processes with
the same mean), negativeQ values reflect antibunching behavior
(diminished variance inn relative to a Poisson process with
the same mean), andQ ) 0 is consistent with purely Poissonian
statistics.

(G̃˙(s,t)

∂G̃˙(s,t)
∂s

∂
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∂s2

) ) (L(s) 0 0

L
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0 2L
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∂
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∂s2
) (31)
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∞
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r

tirrk
+ + tjlik

- + tjlik
+ (25)

tljik
+ ) 1

p2 ∫0

∞
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∞
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Energy conservation implies that we may calculate absorption
line shapes, by counting the relative rate of photon emission
(photons from all transitions are counted) as a function of the
exciting frequency

Every emitted photon corresponds to a prior excitation of the
chromophore and hence a quantum of energy (pωL) extracted
from the incident field. We evaluate line shapes in the limit of
long times to ensure that the system is in a steady state. The
time dependence of d〈n〉/dt at early times is interesting as
well36,37 but not specifically considered in this work. TheQ
parameter absorption spectra are calculated in analogous fashion,
although the definition ofQ, with 〈n〉(t) in the denominator,
ensures saturation to a constant value as time becomes large;
the Q parameter itself as a function of exciting frequency is
reported. Again, in the “absorptionQ spectra”, we collect all
photon emissions (broadband detection).

Emission line shapes and theQ parameter are calculated in
similar fashion, but we resolve the photon statistics by frequency
of the emitted photons. More precisely, we resolve by the
transitions where the photons originate from.

In the cases we consider, the allowed transitions are either
well resolved in frequency (frequency differences much larger
than natural line widths) or perfectly degenerate, so that there
is no ambiguity in assigning photons to a particular frequency
“window”. We report our results as

The above notation specifies that we only consider photons from
transitions on resonance withωE. A collection of these statistics
follows the prescription previously described. The matrixL(s)
depends onωE as placement ofs variables is dictated by which
transitions are on resonance withωE. We note that our emission
“spectra” are thus not quite spectra in the usual sense. Our
spectral lines are infinitely sharp, without broadening (see Fig-
ure 5). In principle, we could artificially broaden these lines by
making them Lorentzians with the natural line width of each
transition, but we have not done so. What our calculations
directly provide are the statistics associated with particular
molecular transitions, not the actual frequency of the emitted
photons. Note that our line shapes will also, in general, depend
on the frequency of the exciting light as different excitations
can lead to different steady-state populations of the chromo-
phore.

The Q parameter emission spectrum follows similarly

where we stress that the photon numbersn collected above
reflect only those photons stemming from transitions on reso-
nance withωE.

For multi-level quantum systems, the matrix of eq 31 can
become very large (3N2 × 3N2 for N quantum levels). If
moments higher than second order are desired, then the matrix
becomes even bigger. Direct exponentiation of such matrices
over a wide range of frequencies is computationally expensive
and, for sufficiently largeN and/or moment order, eventually

becomes computationally intractable. In this work, we focus
on statistics calculated in the long time (steady state) limit. For
direct exponentiation, this limit has the additional computational
complications associated with the identification of a time suffi-
ciently large for the steady state to be attained, yet sufficiently
small to ensure numerical stability. When only steady-state
information is desired, analytical progress can be made on eq 31,
allowing calculation to proceed via diagonalization of matrixes
no larger thanN2 × N2 and without the need to identify a suit-
able finite time at which the long time limit is reached. The
calculation is summarized below.

The equations of motion forG̃ and itss derivatives (eq 31)
can be formally integrated to yield

Here, we have assumed that the system began in the steady
state att ) 0 and that we began counting photons att ) 0
(different initial conditions lead to negligible corrections in the
long time limit). We have introduced a prime notation fors
derivatives (i.e., (∂G̃ /∂s) ≡ G̃ ′) and we have evaluated every-
thing for s ) 1. The steady-state limit for the density matrixFss

is expected on physical grounds for systems driven by external
perturbations and allowed to relax via radiative and nonradiative
transitionssits existence was verified for the model systems
studied in this work.

The matrixL may be diagonalized, and we writeΛ ) ø-1 Lø
with Λ the diagonal representation ofL. The columns ofø
consist of the right eigenvectors ofL, and the rows ofø-1 are
the left eigenvectors ofL. The associated eigenvalues ofL are
complex numbers with negative real parts, except the single
eigenvalue associated with the steady state which is zero. Order-
ing the eigenvalues{λss ) 0, λ2, λ3, ...}, so that

we see that it is possible to partition the time evolution operator
U(τ) ) eLτ ≡ U0 + U1(τ) into two pieces such that the first
corresponds to the (lack of) evolution of the steady state and
the second piece reflects all other dynamics in the system.

Partitioning the matrices in this way allows us to explicitly
carry out the integrations in eq 37 to give (large time limit
assumed)

I(ωL) ) lim
tf∞

∂

∂t
〈n〉(t) ≡ lim

tf∞

∂

∂t [ ∂

∂s
G(s,t)|s)1] (34)

I(ωE;ωL) ) lim
tf∞

∂

∂t
〈nωij)ωE

〉(t) (35)

Q(ωE;ωL) ≡
〈n2

ωij)ωE
〉 - 〈nωij)ωE

〉2

〈nωij)ωE
〉

- 1 (36)

G̃ ′(t) ) ∫0

t
dt′eL(t-t′)

L
+ΓFss

G̃ ′′(t) ) 2∫0

t
dt′eL(t-t′)

L
+Γ∫0

t′
dt′′eL(t′-t′′)

L
+ΓFss (37)

Λ ) (0 0 0 ‚‚‚
0 λ2 0 ‚‚‚
0 0 λ3 ‚‚‚
l l l ‚‚‚

) (38)

U0 ) ø(1 0 0 ‚‚‚
0 0 0 ‚‚‚
0 0 0 ‚‚‚
l l l ‚‚‚

) ø-1

U1(τ) ) ø(0 0 0 ‚‚‚
0 eλ2τ 0 ‚‚‚
0 0 eλ3τ ‚‚‚
l l l ‚‚‚

) ø-1
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The long time (steady state) limit for the rate of photon emission
(intensity) and theQ parameter follow immediately

where the summations are over the population elements of the
resulting vectors.

Equation 40 was used in the computation of all quantities
reported in the examples discussed below. We stress that no
approximations have been introduced into these equations. The
simplifications we obtain are due to the fact that we only
consider the infinite time limit in eq 40. The numerical advan-
tages of eq 40 relative to direct matrix exponentiation are
manyfold. First, it is not necessary to pick a time to evaluate
your expressions and somehow confirm that this time is both
large enough to ensure the steady state yet small enough to avoid
numerical instabilities. Equation 40 assumest f ∞. Using this
method one only has to find the eigenvalues and eigenvectors
of the matrixL for a given excitation frequency to obtain both
the intensity and theQ parameter. This matrix is 3 times smaller
in the linear dimension than the matrix that must be exponen-
tiated to solve eq 31. If higher moments are required, one still
has only to diagonalize theL matrix for use in expressions
similar to eq 39. Finally, while matrix exponentiation requires
that one repeat the entire calculation to obtain statistics for
various detection possibilities (broadband, a single transition
counted, several transitions counted, etc.), the present scheme
only requires a single diagonalization for all possible detection
schemes. Different detection possibilities manifest themselves
only through the matrixL+Γ which does not have to be diag-
onalized. The pieces of eq 40 dependent on matrix diagonal-
ization (X, U0, Fss) do not vary with different detection schemes.
This is a significant computational advantage when calculating
emission spectra since the bulk of the calculation need only be
performed a single time.

III. Chromophore Coupled to a Two-Level System

A. Model Description. As a first example, we consider the
case of a chromophore coupled to a two-level system (TLS).
The two-level system model is of interest both for theoretical
reasons (it is arguably the simplest case of dynamics beyond
that of an isolated two-level chromophore) and also for its utility
in describing the thermal behavior of low-temperature glasses.52,53

The model is also frequently applied to the spectroscopy of

chromophores embedded in low-temperature glasses.54 Although
TLS dynamics is often treated as a purely stochastic perturbation
of the chromophore system, we adopt a more precise, quantum
mechanical picture here. The following description of coupled
chromophore-TLS dynamics is quite terse. We refer readers
to the review by Silbey54 for more detail on the Redfield
dynamics that we employ.

The nature of TLS dynamics within the glass is presumably
the localized rearrangement of a small cluster of atoms52,53corre-
sponding to movement between two distinct energy minima.
The coupling between TLS and chromophore enters as a differ-
ent effective splitting between chromophore ground and excited
states depending on which minima the TLS resides in. Assuming
this coupling is due to strain dipole interactions between chromo-
phore and TLS, we expect the interaction to scale as 1/r3 in the
distance between TLS and chromophore centers.54 The basis
of TLS “minima” states is not expected to be diagonal as
tunneling may occur between minima. In addition, coupling
between the TLS and long wavelength phonons in the glass
acts as mechanism for coupling the TLS-chromophore system
to its glassy environment. Adopting the notation of section IIC,
the mathematical formulation of this picture is54,55

Here,A andJ are, respectively, the asymmetry and tunneling
matrix element for the TLS andσz

TLS and σx
TLS are Pauli

matrices in the basis of TLS localized “minima” states.ωeg is
the chromophore transition frequency in the absence of interac-
tions. The indexq labels the phonon modes of the system, and
bq

†, bq, ωq, andgq are the creation operator, annihilation oper-
ator, frequency, and TLS strain field coupling constants for the
qth mode.

We diagonalize the chromophore-TLS portion of our Hamil-
tonian and label the four eigenstates|a〉, |b〉, |c〉, and |d〉 (see
Figure 1) in order of increasing energy (we assumepωeg to be
by far the largest energy scale in the problem). In this basis,
eq 41 can be written

Figure 1. Energy level diagram for the composite chromophore-TLS
system.

Hg ) -
pωeg

2
+ (A2 - R

4r3) σz
TLS + J

2
σx

TLS

He ) +
pωeg

2
+ (A2 + R

4r3) σz
TLS + J

2
σx

TLS

V̂ ) ∑
q

gq(b-q
† + bq) σz

TLS

Ĥb ) ∑
q

bq
†bqpωq (41)

G̃ ′ ) (tU0 + X) L
+ΓFss

G̃ ′′ ) t2(U0L
+Γ)2Fss+ 2t(U0L

+ΓXL
+Γ + XL

+ΓU0L
+Γ)Fss

X ≡ ø (0 0 0 ‚‚‚
0 -λ2

-1 0 ‚‚‚
0 0 -λ3

-1 ‚‚‚
l l l ‚‚‚

) ø-1 (39)

d〈n〉

dt
) ∑

PE

U0L
+ΓFss

Q ) 2

∑
PE

U0L
+ΓXL

+ΓFss

∑
PE

U0L
+ΓFss

(40)
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whereωa, ωb, ωc, ωd, ωg, andωe are the frequencies

and we have set (P/2) ≡ (R/4r3). Note that we have intentionally
omitted all (system) diagonal contributions to the system-bath
coupling since these terms will yield no contribution to the
Redfield matrix.

Specification ofR is quite simple (if tedious) and proceeds
by calculating the terms specified in eqs 25 and 26. Since the
bath is formed by a set of bosons (phonons), evaluation of the
correlation functions is dictated by the well-known properties
of these operators. In particular since

the correlation functions become

The coupling constantsgq are chosen to reflect strain field
coupling between TLS and the phonon bath;54 they scale with
q as q1/2. The ij and kl suffixes ongq indicate that there are
additional constants that need to be includedseither J/ωe or
J/ωg depending on which specific terms the indices refer to.
Integration in time over these terms as specified by eq 26 serves
to create a delta function in frequency which makes evaluation
of the sum overq trivially easy if we approximate the sum as
an integral. By this approach, we calculate, for example

whereC is a collection of constants incorporating the coupling
strength between TLS and bath, which is typically taken as a
parameter used to fit experiment rather than estimated from first
principles.14 Of course, the top two lines just express the phonon
assisted transition rates from stated to c andb to a as expected.
Other elements follow similarly. We make no effort to imple-
ment the customary secular approximations to these equations
as the equations are solved numerically and the highly oscillatory
terms will remove themselves from consideration naturally.

B. Numerical Results.In this section, we present numerical
results for the model system described above. The framework
for calculating the fully quantum dynamical results are spelled
out in section II. Physical constants have been chosen to corre-
spond with typical situations for a glassy material.14,55To com-
pare with our previous work on stochastic models, it is necessary
to map the above quantum description to a stochastic picture.
Details for calculating photon statistics for a stochastic TLS
coupled to a chromophore have been presented in detail else-
where.37 Readers are referred there for a discussion, where we
have employed notation identical to the present work. Deter-
mination of appropriate model parameters for the stochastic
model, based upon the above quantum picture, is well estab-
lished.54 In the stochastic picture, the TLS acts solely to
modulate the transition frequency of the chromophore, causing
hops betweenωeg + ν and ωeg - ν. The rate of hopping is
given byRv for transitions to the less thermally occupied TLS
state andRV for the reverse direction. The difference in energy
of the two TLS states is provided by detailed balance. Corre-
spondence with the quantum model is accomplished by

The idea of the stochastic approach is that coupling between
TLS and chromophore only manifests itself through modulation
of the absorption frequency of the chromophore as modulated
by TLS hops. TLS dynamics and thermal properties are
completely unaffected by the chromophore, hence the total
independence of TLS energy scale and flip rates on chromophore
properties, that is, these quantities are calculated by setting the
TLS-chromophore coupling constantR to zero in our earlier
expressions. Of course, it is crucial to keepR in the frequencies,
otherwise the TLS would have no effect on the chromophore
at all. The stochastic approximation is expected to work quite

Rcc;dd ) eâpωeRdd;cc ) CωeJ
2 1

1 - e-âpωe

Raa;bb ) eâpωgRbb;aa ) CωgJ
2 1

1 - e-âpωg

Rca;db ) 1
2 [ωe

ωg
Rcc;dd +

ωg

ωe
Raa;bb]

Rdb;ca ) 1
2 [ωe

ωg
Rdd;cc +

ωg

ωe
Rbb;aa] (46)

ν ) 1
2

(ωe - ωg)

Rv ) CEJ2 e-âE

1 - e-âE

RV ) CEJ2 1

1 - e-âE

E ) xA2 + J2 (47)

Hg ) ωa|a〉〈a| + ωb|b〉〈b|

He ) ωc|c〉〈c| + ωd|d〉〈d|

V̂ ) ∑
q

gq(b-q
† + bq) [ J

ωg

(|b〉〈a| + |a〉〈b|) +

J

ωe

(|c〉〈d| + |d〉〈c|)] (42)

ωa ) - 1
2

ωeg - 1
2

xJ2 + (A - P)2

ωb ) - 1
2

ωeg + 1
2

xJ2 + (A - P)2

ωc ) + 1
2

ωeg - 1
2

xJ2 + (A + P)2

ωd ) + 1
2

ωeg + 1
2

xJ2 + (A + P)2

ωg ) ωb - ωa

ωe ) ωd - ωc (43)

bq(t) ) e-iωqtbq(0)

bq
†(t) ) e+iωqtbq

†(0)

〈bqbq
†〉b ) (1 - e-âpωq)-1

〈bq
†bq〉b ) e-âpωq(1 - e-âpωq)-1 (44)

〈V̂ij(τ)V̂kl(0)〉b )

∑
q

gq
ij gq

kl(1 - e-âpωq)-1[e-iωqτ + e-âpωqeiωqτ] (45)
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well when R is small. In that case, transition elements of the
Redfield matrix are well approximated by using rates inferred
from eq 47. It should be noted that the stochastic approach is
obviously deficient in one sense. There are four possible
transition frequencies implied by the quantum level diagram in
Figure 1, and the stochastic picture only predicts two. For small
R and/or larger, half the transitions rarely occur because of
poor Franck-Condon overlap. Given our notation, the transi-
tions c f a and d f b are the strong ones (assuming weak
coupling). At high couplings strengths, half of the transitions
will necessarily be missed by the stochastic picture. The follow-
ing numerical examples highlight both the practicality of the
present fully quantum approach in calculations as well as the
shortcomings of the popular stochastic approximation over
certain parameter regimes.

1. Weak Coupling between Chromophore and TLS.“Weak”
coupling between the chromophore and TLS is dictated by the
condition A . (R/2r3) ) P. Physically, this can result from
either a small coupling constantR or a large distance between
the chromophore and TLS. As discussed above, in this case,
results of the quantum model and stochastic model should be
quite similar (at least for the line shapes54). In the left panes of
Figure 2, we present the long-time line shape and corresponding
Q parameter spectrum for the case of slow TLS modulation
and weak TLS-chromophore coupling. The physical constants
chosen are detailed in the figure caption and represent realistic
numbers for an organic dye molecule embedded in an amor-
phous host.55 We compare the quantum model with the asso-
ciated stochastic approximation. As expected, the line shapes
for the two approaches are identical at the resolution of the
figure. The two peaks represent the two optical transitions with
appreciable overlap (a f c andb f d). The other transitions
are so weak as to be invisible at this scale. The difference in
peak heights is due to the difference in thermal occupation prob-
abilities for the two TLS states (which are basically unmodified

by the chromophore state due to the small value ofP in the
quantum model). Peak shape is Lorentzian with both line widths
given by the spontaneous emission rate (full width at half-
maximum isΓ0). The TLS flipping is so slow in this case that
it contributes negligibly to the line widths.

The right panes of Figure 2 display similar information to
the left but with parameters chosen to ensure that the TLS flip
rate is faster than the difference in transition frequencies,ν.
For simplicity, we increased the flip rate by increasing the value
of C. While this is physically questionable, it does provide the
only direct means to increase the TLS flip rate while leaving
all other behavior identical. In this case, the line shape consists
of only a single peak due to motional narrowing of the optical
transition.54,56As in the slow modulation limit, we find quanti-
tative correspondence between stochastic and quantum models
for the line shape calculation. The stochastic model does deviate
slightly from the quantum result in the calculation of theQ
parameter. Though the deviation is slight, it is interesting to
note that there are cases where the stochastic model is perfect
for line shapes, yet imperfect for higher order statistics. All in
all though, for weak coupling, the stochastic approximation is
seen to perform well both at slow and fast TLS modulation
rates. We note that, in the limiting cases of slow and fast
modulation displayed here, the observed spectra can also be
predicted on the basis of the physical approximations introduced
in ref 39.

2. Strong Coupling between Chromophore and TLS.“Strong”
coupling is ensured by the conditionA ∼ P ) (R/2r3). In this
case, the quantum model differs from its associated stochastic
approximation in both line shape and Mandel’sQ parameter.
The left panes of Figure 3 display results for the strong coupling
and slow modulation parameter regime of both the quantum
and stochastic dynamic treatments. In contrast to our earlier
example, strong coupling now implies that transitions between
statesd f a and c f b are important and occur with some

Figure 2. Absorption line shapes and Mandel’sQ parameter spectrum in the limit of weak coupling between the chromophore and TLS. Line
shapes are presented in arbitrary units. Left and right halves correspond to slow and fast modulations, respectively. Physical parameters used in this
calculation includeΓ0 ) 100 M s-1, Ω0 ) 1 M s-1, T ) 1.7 K, and quantum model parameters taken from ref 55, namely,A ) 2.8 K, R ) 3.75
× 1011 nm3 s-1, r ) 5.72 nm,J ) 3 × 10-4 K. For the slow modulation, we usedC ) 3.9 × 108 s-1 K-3, while for the fast modulationC ) 3.9
× 1018 s-1 K-3. Within the stochastic approximation, these numbers translate to (eq 47)ν ) 1.02× 109 s-1 andE ) 2.8 K. The upward flip rate
Rv ) 23.5 s-1 for the slow modulation and 2.35× 1011 s-1 for the fast modulation. In the slow modulation, no discrepancy between quantum and
stochastic treatments is found. For the fast modulation, the line shape is the same for both quantum and stochastic treatments while in theQ
parameter there is a small difference between the models. The inset focuses on this difference.
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finite probability within the fully quantum treatment. Since peak
widths are smaller than interpeak spacing, peaks corresponding
to all four possible transitions are clearly visible in the quantum
mechanical modeling. The relative height of the two central
peaks in the line shape are (as in the previous example) related
to TLS thermal occupation probabilities. SinceE , kT for the
chosen parameters, both central peaks have effectively the same
height. The intensity of the outer two peaks is predicted based
on the probability to excite an “off diagonal” transition (a f d
or b f c) relative to diagonal transitions. Mathematically, this
probability is dictated by the square of the Rabi frequency for
the transition in question. Equivalently (see eqs 21 and 22), the
ratio of the left two peaks or the right two peaks is predicted to
be Γdb/Γda (1.94 for the case shown), which agrees with the
numerical results. It is obvious that the stochastic approximation
predicts a very different line shape andQ parameter since it
does not account for the transitionsd f a andc f b. While
one could argue that the stochastic model does do a good job
in predicting that portion of the absorption line shape which it
is capable of reproducing (the center two peaks), even the center
two peaks are clearly off in magnitude for theQ parameter.
The stochastic model fares very poorly in this parameter regime
(strong coupling, slow modulation).

The failure of the stochastic model in this case was predict-
able, and we can trace its origins back to failures to reproduce
the full system dynamics in a realistic manner. The right panes
of Figure 3 are meant to display that we understand exactly
where these failures are coming from. These panes actually
display two different cases (although they overlap so only a
single line is visible): the stochastic calculation from the left
panes and a modified quantum calculation where the evolution
operator was altered such that all nondiagonal transitions were
turned off (Ωad ) Ωbc ) Γad ) Γbc ) 0 andΩac ) Ωbd ) Ω0

andΓac ) Γbd ) Γ0) and all Redfield elements were calculated
assuming thatωg ) ωe ) E. While these two changes do not
fully reduce the quantum calculation to the stochastic treatment
from a mathematical standpoint, the physical basis is clear. The
alterations explicitly remove the nondiagonal transitions that
the stochastic model necessarily misses, and it evaluates the
TLS jump rates in the same approximation inherent to the
stochastic approach. There are more subtle effects within the
Redfield treatment (as in the evolution of coherences) so that
our ad hoc alterations do not fully limit to a stochastic model,
however these effects clearly do not contribute to the line shape
and Q spectrum calculations. The primary problem with a
stochastic model in predicting photon counting observables is
in the loss of “off-diagonal” nuclear transitions and incorrect
estimation of relaxation rates.

In Figure 4, we show two cases of reasonably fast modulation
speed and strong coupling; the difference between the left and
right panes is quantitative (see the figure axes forQ) and is
intended to display the fact that one can tune theQ parameter
by adjusting field strengths. For a simple (no coupling to a bath)
two-level chromophore, antibunching is maximized when
excitation and emission rates are equalized57 and a qualitatively
similar effect is seen here. Although both quantum and stochastic
models will eventually narrow into a single peak for high enough
flip rates, it is interesting to see in this intermediate regime that
the stochastic model has already narrowed, while the quantum
picture retains a more complex structure. This structure is visible
in both the line shape andQ parameter calculations.

3. Emission Spectra.In Figure 5, we display emission line
shapes and Mandel’sQ parameter spectra for the same physical
parameters selected in Figure 3 (except the Rabi frequency,
which was set to provide relatively large magnitudes of theQ
parameter in the antibunching regimes). As discussed previously,

Figure 3. Left panes: the line shape and Mandel’sQ parameter spectrum for slow TLS modulation with strong coupling between the chromophore
and TLS. Due to the strong coupling,d f a andc f b transitions are significant within a fully quantum framework and result in two additional
peaks relative to weak coupling results. The stochastic approach completely misses these additional spectral lines and fares poorly in reproducing
the magnitude of peaks in theQ spectrum. The plots correspond to the following quantum model parameters:Γ0 ) 40 M s-1, Ω0 ) 0.1 M s-1, T )
1.7 K, A ) 0.006 K,J ) 0.008 K,C ) 3.9 × 108 K-3 s-1, R ) 3.75× 1011 nm3 s-1, andr ) 5.72 nm. Corresponding stochastic parameters are
as follows: ν ) 501 M s-1, E ) 0.01 K, andRv ) 42307 s-1. The right panes display that it is possible to reduce the fully quantum mechanical
treatment to the stochastic results by turning off half of the allowed transitions and calculating Redfield elements in a manner consistent with the
stochastic approach (see text). In other words, it is relatively simple to trace the failures of stochastic modeling.
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our simulation methodology does not allow for true calculation
of emission spectra. The frequency dependence we obtain is
resolved solely on the basis of individual state-to-state transitionss
we assign all photons emitted for a given transition the resonance
frequency of that transition. Hence, the “line shapes” in Fig-
ure 5 are not broadened by the radiative lifetime of the chromo-
phore or by any other source and line shifts are not captured.
Physically, the spectra we obtain would match an experimental

measurement with an instrument unable to resolve frequency
differences less than the radiative line width.

The multiple panels in both rows of Figure 5 reflect different
laser exciting frequencies. Four different resonant excitations
corresponding to all possible transitions and two off resonant
frequencies are considered. Clearly, there is a strong dependence
in the emission spectra on the exciting frequency. This is
expected since TLS dynamics are slow enough in this problem

Figure 4. Line shape and Mandel’sQ parameter for intermediate TLS modulation rate, with “strong” coupling between the chromophore and TLS.
The quantum model parameters are the same as those in Figure 3 except for the coupling constant which is modified toC ) 3.9 × 1012 K-3 s-1,
corresponding to upward flip rateRv ) 4.23× 108 s-1 in the stochastic model. In the left panes, the Rabi frequency coefficient isΩ0 ) 105 s-1,
while in the right panesΩ0 ) Γ0 ) 40 M s-1. Comparison of the left and right panes shows that antibunching increases as excitation and emission
rates become comparable.

Figure 5. Emission line shapes and Mandel’s parameterQ for slow modulation limit with “strong” coupling between the chromophore and TLS.
The excitation laser frequencies are marked in the figure using “v”. The excitation frequencies, from left to right, areωeg + ωcb, ωeg + ωca, ωeg, ωeg

+ ωdb, ωeg + ωda, andωeg + 0.6ωda (see Figure 1). The spontaneous emission rate and the Rabi frequency areΓ0 ) 40 M s-1 andΩ0 ) 4 M s-1,
respectively. The quantum model parameters are as follows:T ) 1.7 K, A ) 0.006 K,J ) 0.008 K,R ) 3.75× 1011 nm-3 s-1, C ) 3.9 × 108

K-3 s-1, andr ) 5.72 nm.
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that the TLS does typically not have a chance to relax to
equilibrium while the chromophore is excited. Resonant excita-
tion to statec, regardless of which ground state (a or b) the
transition starts from, results in the same emission line shape
(left two panes of the top row of Figure 5). The relative peak
heights simply reflect Condon overlaps in the spontaneous
emission process from statec back toa or b. These overlaps
do not care how statec was excited and generate identical
emission spectra regardless of which resonant transition is
excited. Similar arguments explain the right three panes of the
top row of Figure 5. All three excitation frequencies result in
the occupation of stated, and the emission line shapes are
insensitive to details of the excitation beyond this factseven
when the excitation is off resonance with eithera f d or b f
d transitions. When an off resonant excitation is considered that
has equal probability to excite to eitherc or d, the emission
line shapes reflect a symmetric combination of the previously
discussed cases (third pane of the top row of the figure).

In contrast to the line shapes,Q parameter spectra are highly
sensitive to excitation frequency (bottom row of Figure 5). The
basis for this effect is quite simple. When photons are counted
at the same frequency of the exciting laser, we expect to see
photon bunching. For example, looking at the leftmost peak in
the leftmost pane of the bottom row, we exciteb f c transitions
and monitorc f b emissions. Photons are repeatedly ejected
as this cycle repeats until spontaneous emission induces ac f
a transition (or the TLS flips), at which point the system is off
resonance and has to wait for a TLS flip to return the system to
the excitable stateb. The interspersion of bright and dark
intervals leads to bunching phenomena and a positiveQ
parameter. In contrast, when excitation does not correspond to
the monitored transition (second peak from left in the leftmost
pane), a three-state cycle repeatedly occurs (b f c f a f b ...
or a similar variant) as photons are detected. There is no jumping
between periods of “bright” or “dark” since the pathway for
repeated photon emission necessarily involves both TLS and
radiative/excitation dynamics. The chosen time scales in this
example ensure that no single rate is limiting over all others in
this cycling process and antibunching results (if a single time
scale were completely dominant, we would expectQ ) 0).
Similar arguments can be applied to the remaining panes of
the Q parameter spectrum. This example makes a clear case
for measurement of higher order photon counting moments.
Different aspects of system dynamics are captured in the
measurement of theQ parameter beyond what is seen in simple
line shape statistics. Furthermore, examination of the emission
statistics provides a more detailed measure than possible solely
on the basis of absorption statistics.

IV. Chromophore With Nuclear Vibrations Coupled To
A Harmonic Bath

A. Model Description. As a more complex example of multi-
level quantum dynamics, we consider the case of a chromophore
with a harmonic vibrational degree of freedom. Coupled to this
vibrational coordinate is a bath modeled by an ensemble of har-
monic oscillators. Such models are standard in the treatment of
molecular spectroscopy47 but have seen little prior use in the
treatment of photon statistics. Within the Born-Oppenheimer
approximation, the Hamiltonians of the chromophore in its
electronic ground,|g〉, and excited,|e〉, states are taken to be

whereX andP are related to the nuclear position coordinatex
and momentump by

The vibrational coordinate thus has frequencyω0 andpωeg is
the excitation energy for the 0-0 transition.x0 is the shift in
equilibrium position of the nuclear coordinate between excited
and ground states (see Figure 6). The interaction with the thermal
bath is assumed to be linear in bothX and bath coordinatesXi,
that is

whereC is a constant specifying the interaction strength between
system and bath. The harmonic bath Hamiltonian is

Figure 6. Schematic description of a system with two electronic levels
and single harmonic vibrational mode.

Figure 7. Line shape and Mandel’sQ parameter spectrum as a function
of exciting laser frequency for a chromophore with a harmonic vibra-
tional coordinate. The spontaneous emission rate and Rabi frequency
areΓ0 ) Ω0 ) 108 s-1 and the coupling strength isR0 ) 107 s-1. Physi-
cal parameters specific to the chromophore are detailed in the text.

Hg ) 1
2

pω0[P
2 + X2] (48)

He ) pωeg + 1
2

pω0[P
2 + (X - X0)

2]

X ) xmω0

p
x

P ) 1

xmω0p
p (49)

V ) CX∑
j

Xj (50)

HB ) ∑
j

1

2
pωj(Pj

2 + Xj
2). (51)
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The above definitions ofHg, He, V, andHB provide all necessary
information to proceed directly with the calculation ofL and
related quantities as detailed in section II. We make a few brief
comments related to the calculation of Redfield elements below
to clarify our notation. More detailed presentations can be found
elsewhere.47,48,58

The linear interaction between bath and system is only capable
of effecting transitions between adjacent vibrational states in
the same electronic manifold, that is,|n〉 f |n + 1〉 or |n〉 f
|n - 1〉. This is seen, by introducing the usual creation and
annihilation operators (a ) (X + iP)/(2)1/2, a† ) (X - iP)/(2)1/2)
to write the interaction matrix elements between excited-state
levels in the form

and similarly for the ground state. The creation and annihilation
operators only allow for adjacent transitions as indicated by the
above delta functions. The bath properties

are used to evaluate all correlation functions associated with
the Redfield matrix calculation. In this model, the interaction
matrix V is explicitly real leading to a slightly simplified calcu-
lation for the Redfield matrix

where

tpmnqis nonzero only if both of the pairs (p,m) and (n,q) involve
states in the same electronic manifold. The integration can be
carried out and yields

Unlike the TLS model, in this case, every allowableωqn is
exactly the same and is equal toω0. This is due to the equality
of spacing between levels in the harmonic oscillator model and
the form ofV which only allows for adjacent transitions. Thus,
the density of bath states is not important in calculating the
Redfield matrix elements in this case and only a single constant
R0 enters into the Redfield description as a measure of coupling
between system and bath. For example, elements of the form
Rnn;n+1n+1 are given in our notation by

Since this element reflects the rate of transition from harmonic
oscillator state|n + 1〉 to |n〉, it is clear thatR0 is closely related
to the relaxation rate of our vibrational coordinate.

B. Numerical Results. In the following calculations, we
choose physical parameters specifying the chromophore to be
ω0 ) 3.77 × 1013 s-1, x0 ) 0.11 Å, m ) 105 me (me is the
electron mass), andT ) 10 K. (The energy difference between
neighboring levels of the harmonic oscillatorpω0 corresponds
to a temperature of 287.75 K.) While these numbers are
suggestive of a heavy diatomic molecule (like I2) in a low-
temperature matrix, we have not made a serious attempt to
connect these calculations with physical systems. Rather, we

Figure 8. Similar to Figure 7, but withR0 ) 1010 s-1, Γ0 ) 108 s-1, andΩ0 ) 106 s-1. This system is in the linear response regime. The inset shows
the variation ofQ in the vicinity of ωL ) ωeg.

tpmnq) 1

2p2 ∫-∞

∞
dτeiωqnτ〈V̂pm(τ)V̂nq(0)〉b (55)

tpmnq) R0 [xm δp,m-1 + xp δp,m+1] [xn δq,n-1 +

xq δq,n+1] ∑
j

δ(ωj + ωqn) + e-âpωjδ(ωj - ωqn)

1 - e-âpωj

(56)

Rnn;n+1n+1 ) 2R0(n + 1)(1 - e-âpω0)-1 (57)

Vne,n′e
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1
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C[xn′e δne,n′e-1 + xne δne,n′e+1] ∑

j

(aj + aj
†) (52)

aj(t) ) e-iωjtaj(0)
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〈ajaj
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have chosenx0 to provide Condon overlaps that are close to
vertical, while still ensuring finite probability for transitions up
to 0-6. We have also set the temperature somewhat arbitrarily
while we will freely adjustR0 in the following examples to meet
our needs in displaying various phenomena. The Redfield
approach we employ is necessarily limited to a finite number
of states due to numerical considerations. We cannot solve the
equations forN ) ∞. In the numerics presented here, we used
10 levels in each of the electronic states (n ) 0 to n ) 9). It
was verified that altering the number of vibrational states to
include more levels did not change any results at the resolution

of the presented figures. We note that the size ofL for these
calculations is 400× 400. Using the methods of section IIC
requires only diagonalization of this matrix, which is a simple
task for modern computers.

1. Weak Coupling between System and Bath (R0 small) Case.
The case of weak coupling corresponds to slow vibrational
relaxation. In Figure 7, we show the line shape and theQ param-
eter for a case in which the relaxation rate is slower than all
other rates in the problem including the spontaneous emission
rate, Rabi frequency, and oscillator frequency. This leads to
nonthermal distributions of vibrational levels within both elec-

Figure 9. Similar to Figure 7, but withΓ0 ) Ω0 ) 109 s-1 andR0 ) 0.1ω0 (solid line) andR0 ) 0.05ω0 (dashed line). Note that in this case the
width of the peak at 0 is much smaller than the width of the other peaks, since it does not depend onR0. Peak widths are given by the nonradiative
lifetime of the various states for all other transitions.

Figure 10. Emission line shape and emissionQ spectrum for parameters reflecting the linear response regime. Three different excitation frequencies
are considered as noted in the legend. The chosen physical parameters parallel those of Figure 8. Since the system behaves in accord with linear
response, the emission line shapes are the same for all excitation frequencies and also in agreement (mirror image) with the integrated absorption
spectrum.
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tronic manifolds at steady state since the system is unable to
fully relax between subsequent photon emission/absorption
events. Interestingly, the variation of these steady states with
excitation frequency and the variation of Condon overlaps
between the various transitions leads toQ parameter values
spanning a range of positive and negative values depending on
the excitation frequency. It should be noted that, although the
spectra appear to have only been evaluated at the various
allowed resonance frequencies, this is not the case. It is simply
the case that the radiative line widths are much narrower than
discernible at the resolution of the figure.

Figure 8 shows the line shape andQ parameter for a case in
which the relaxation is slow relative to the harmonic oscillation
frequencyω0 but is faster than the spontaneous emission rate

and the Rabi frequency. In this case, the relative amount of
power absorbed by each possible transition is expected to agree
with linear response predictions since the vibrational state of
the chromophore should almost always be in the relaxed (n )
0) state without significant perturbation by the relatively weak
coupling to the field. Linear response theory predicts that the
strength of each transition is due to the Condon overlap between
n ) 0 in the ground state (rememberkT , pω0 in this model)
and the various excited states. The displayed line shapes appear
to contradict this prediction, most clearly due to the very tall
zero phonon peak atωL ) ωeg relative to the other peaks. How-
ever, the height of this line is due to the fact that this transition
is not broadened by nonradiative processes as are the remaining
transitions. The line width of the 0-0 line is approximately

Figure 11. Emission line shape andQ spectrum for parameters outside the linear response limit:R0 ) Γ0 ) Ω0 ) 108 s-1. The exciting fields are
the same as those in Figure 10. In this case, the linear response approximation is not valid anymore and both the line shape andQ spectra differ
with excitation frequency. The absorption line shape was calculated with the same parameters and is included for comparison purposes.
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equal toΓ0 whereas the other widths are dominated by non-
radiative decay on the order ofR0 and are 100 times wider.
The relevant quantities to compare with linear response results
are the intensities of each transition integrated over the local
vicinity of the transition. In Figure 10, we display such integrated
absorption peaks alongside emission lines (discussed below).
These integrated lines show perfect agreement with linear
response results with relative intensities directly proportional
to the square of nuclear overlap.

One interesting point to note about theQ parameter in these
calculations is that it undergoes rapid variation with excitation
frequency in the vicinity of the 0-0 line. While this behavior
does not seem amenable to simple explanation, it has been
observed previously in simpler models both numerically38 and
analytically.42 It should also be emphasized that the magnitude
of Q is largely due to the ratio betweenΓ0 andΩ0 as seen in
Figure 4. Here, this ratio is large, leading to small negativeQ
values. Smaller ratios lead to larger magnitudes ofQ (when Q
is negative).

2. Strong Coupling between the System Bath (R0 not small)
Case.An example of fast relaxation, withR0 on the order of
ω0, is shown in Figure 9. In this case, the width of the peaks is
of the same order as the distance between the peaks and line
shape is clearly not a series of thin sticks as in previous
examples. Note that since the peak atωL ) ωeg does not involve
any thermal relaxation it is independent ofR0. The width of
this peak is still specified by the spontaneous emission rate,
which is orders of magnitude lower than the remaining peak
widths (on the order ofR0) leading to its very large height. In
this plot, we have chosen identical values forΓ0 andΩ0, which
leads to sizable negativeQ values for the 0-0 line.

3. Emission Spectroscopy.In Figure 10, we show the emission
line shape andQ parameter spectra for parameters appropriate
to the linear response regime (identical parameters to Figure
8). It is shown that in this case the line shape is the same for all
excitation frequencies (in the figure we showωL - ωeg ) 0,
2ω0, 4ω0). It is also shown that integration of the absorption
spectrum over the individual transition line widths provides a
mirror image of the emission line shape as expected in the linear
response regime. Recall that our emission line shapes are
sensitive only to individual transitions, so the emission spectra
are automatically of the “integrated” type and comparison
between emission and integrated absorption is completely
natural. While emission line shapes are insensitive to excitation
frequency in this regime, theQ parameter exhibits strong
dependence on excitation frequency.

Figure 11 shows the emission line shape andQ parameter
for stronger driving fields and slower relaxation rates than those
present in Figure 10. The system is no longer in the linear
response regime, and line shapes differ for different excitation
frequencies. The parameters were chosen to equalize all relevant
physical time scales, demonstrating that there is no simple
relationship possible between excitation frequency, emission line
shape, and emissionQ parameter in general.

V. Conclusion

We have introduced a practical framework for the calculation
of photon counting statistics in quantum systems with multiple
levels and dissipative coupling to a thermal environment. The
present scheme generalizes previous work by extending the
treatment of chromophore dynamics beyond the stochastic
models historically applied to single molecule spectroscopy. Our
model calculations for TLS dynamics explicitly demonstrate
some of the failings of traditional stochastic modeling (especially

in the case of strong coupling to the environment). In the case
of harmonic vibrations, use of a stochastic model is even more
suspect since all quantization of the vibrational coordinate will
be lost. Although one could envision more elaborate kinetic
schemes in an attempt to model these systems, it seems more
straightforward to simply treat the dynamics correctly, quantum
mechanically, from the outset. The methods presented here
provide a prescription to do this.

We acknowledge that there is an unfortunate amount of
machinery behind the calculations that we have presented here,
however it is important to stress that the majority of this over-
head is associated with implementation of the Redfield formal-
ism (calculation of the matrixL in our notation). Equation 40
is very easily applied onceL is givenssimply diagonalize the
matrix and perform a few simple matrix multiplications as
implied by the formulas. The generating function approach,
while necessarily encumbered by the usual difficulties in simu-
lating dissipative quantum systems, adds no new significant
conceptual or numerical problems. Photon counting statistics
are therefore readily available at no more expense than normally
expected for calculation of density matrix dynamics. This
remarkable fact seems to be the strongest point in support of
the generating function methodology.

Several of our calculations have presented results for emission
spectra and the correspondingQ parameter quantities. Although
such measurements are not yet within the capabilities of exper-
iment, we believe that a strong case can be made for the devel-
opment of single molecule detectors with spectral resolution. It
is clear from our model calculations that emission spectroscopy
provides a different and (when combined with absorption spec-
troscopy) more revealing signature of chromophore dynamics
than obtainable from absorption alone. This is not surprising,
but the present study is (to our knowledge) the first to dem-
onstrate this fact explicitly. As we have repeatedly stated, the
present scheme for emission spectroscopy is sensitive only to
molecular transitions and not directly to emission frequency.
Emission frequency is assumed to be on resonance with specific
transitions. While this approach works well in the limit of weak
coupling to the environment, stronger coupling invariably leads
to level shifts, motional narrowing as associated complications.
A general and practical formulation of true emission photon
counting statistics has yet to be developed.
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