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We extend the generating function technique for calculation of single molecule photon emission statistics
(Zheng, Y.; Brown, F. L. HPhys. Re. Lett.2003 90, 238305) to systems governed by multi-level quantum
dynamics. This opens up the possibility to study phenomena that are outside the realm of purely stochastic
and mixed quantum-stochastic models. In particular, the present methodology allows for calculation of photon
statistics that are spectrally resolved and subject to quantum coherence. Several model calculations illustrate
the generality of the technique and highlight quantitative and qualitative differences between quantum
mechanical models and related stochastic approximations when they arise. Calculations suggest that studying
photon statistics as a function of photon frequency has the potential to reveal more about system dynamics
than the usual broadband detection schemes.

I. Introduction the chromophore and environment is very weak but can become
Single molecule spectroscopy (SMS) has become a Versat”esubstantial in other regimes and for more realistic chromophore

and powerful tool for the study of condensed phase systems iandeI_S' . . )
chemistry, physics, and biolody!2 Unfortunately, the very Until recently, Monte Ce_trlo Wave_ Function S|mulat|on_s
qualities that make SMS such a powerful technique have also (MCWF)*t and related techniques provided the only fully satis-
led to significant theoretical challenges in describing experi- factory route to theoretllcal cglculatlon of single mollecule photon
mental data. The ultra-microscopic nature of the physical counting observ_ablé%mcludmg quantum _n_"lechanlcal effects.
systems under study leads to randomness in the behavior of few other studies have touched on specific aspects of quantum
experimental signals due both to thermal agitation of the photo- dynamics applicable to SM&?733:35 but without complete
active portion of the system and to the inherent randomness ofgenerality. Recent work by #5% and other®** has estab-
the spontaneous emission process itself. While SMS has beerfiShed generating function techniques as a general means for
hailed for its ability to probe these fluctuations directly, it calculating statistical quantities of single molecule photon
remains difficult to extract physical pictures for molecular counting experiments. The only fgndamental limitations to '.[hIS.
dynamics based solely on SMS data streams. Some of thisdPproach are that you must consider the spontaneous emission
difficulty is likely fundamental (current SMS experiments may ©f Photons to be governed by rate processes and the directly
not collect sufficient data to allow for direct inversion to calculated quantities are statistical moments of the number of
molecular dynamics), but even if SMS data were sufficient to Photons em|tteé‘?’37’4.1 . _ .
differentiate between all viable physical hypotheses, it remains ~ The bulk of previous work with the generating function
an open question as to the best means to simulate such model@Pproach has focused on two-level chromophores with stochastic
to allow for comparison with experiment. Indeed, much effort Modulation by the environment, however the method is equally
has been expended on the theory of interpreting/modeling SMsapplicable to multi-state quantum systems. The extension to
trajectories, particularly in the context of stochastic models for Multi-state quantum systems was suggested Byans formally
chromophore dynamids-3° Stochastic models, though certainly ~ carried out by Mukamet: Sanda and Mukantélhave recently
illustrative and powerful, ultimately face certain limitations in Used the generating function approach to derive formal pertur-
the modeling of phenomena that are inherently quantum bative expressions (in the applied field strength) for low-order
mechanical, such as spectroscopy. Quantum coherence canndthoton counting moments. Though interesting from a theoretical
be captured, quantization of nuclear eigenstates is not naturallyStandpoint, the derived expressions are complex enough that
formulated within a stochastic scheme, and the parameters ofimplementation will be impossible for all but the simplest model
stochastic models are often difficult to equate with their micro- SysStéms (second-order moments require solution of a six point
scopic origins. As the following work will show, even stochastic duantum correlation function, higher moments need larger
models systematically derived from underlying quantum con- correlations). As a numerical technique, the generating function
siderations can lead to quantitative and qualitative differences @Pproach has promise to study varied systems without limitation
from fully quantum calculations. As expected, these deviations t0 low field strengths.
are small for two-level chromophores when coupling between  The present paper considers several model systems to dem-
onstrate the use of the generating function approach as a numer-
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molecular transitions and degenerate sets of transitions. Forthe coupling between the system and quantum radiation field
systems where vibrational structure is well resolved compared as the perturbation)
with natural line widths, this is equivalent to the calculation of

spectrally resolved emission statistics. From a conceptual and wij3Dij2
numerical standpoint, these calculations are no more difficult i = 3 2)
than broadband detection calculations. The simulations we have 3mehc

carried out suggest that significantly more information stands
to be learned from photon counting experiments when photon

statistics are broken down by color. Th lecti ¢ ing in thi ion h
This paper is organized as follows. Section Il presents the "€ collection of constants appearing in this expression have

underlying theory and notation necessary to introduce our their usual meaningg (s the permittivity /i is Planck’s constant

calculations. Although there are many details to be considereddivided b)c/j 2z, ﬁnﬁc is .thehgpeed I:’f\;\i/ghht)’_bﬁ‘t we will not be
here, the conceptual framework for calculating photon statistics cr?ncderne dW't them Ihn this work. it atl IS important :19 ﬁs 1S
in the many-level case is no more complex than that for two- € dépendence on the transition dipole momjt whic

level chromophores. Given the reduced Liouvillian operator for S(;.;I’VGS t?‘ medlate_ _relatlvle rates :)f emission :_or_ different
density matrix dynamics of the chromophore system, calculation ¢ romop;] ore transmor:is.b n prlnc}l1p ﬁ,benergy SP |t(§|ngs},-1)( |
of the generating function for photon number and/or low-order 'MPact the rates as well, but we shall be concerned with elec-

statistical moments is immediate. Most of section Il is dedicated [ronic transitions whe_r_e differences in this quantity bet\/\_/e_en
to describing the Liouvillian operator itself, not the extension various allowed transitions are much smaller than the splitting

of this matrix to calculation of experimental observables itself. In this limit, we expect inconsequential variations on the
Sections Il and IV present numerical calculations for chromo- Pasis of energy differences. . . .
phores coupled to a two-level system and a harmonic vibrational Pert_urbatlon theory app_lled o t_he entire system d_enS|ty matrix
coordinate. Many different regimes are considered, both to evolution (as opposed to just a single rate calculation) addition-

display the flexibility of the present formulation in numerical a”)(/j tells us that.thelpop.ulatlonlipst frhom ﬁ‘iﬂe"?‘ T depgy,
calculations and to highlight differences between fully quantum €NdS Up In statg. Also, it specifies that the — | transition

calculations and commonly employed stochastic approximations. causes all associated coherenggs fu) to dec_ay_at the rate of .
In section V. we conclude. I'j/2. The net effect of all spontaneous emission processes in

the system is the additive contribution of these three effects

Dy = Mgl j0

II. Theoretical Background (loss of population from statg gain in population of statg
) ) ) and loss of coherence for all allowed— j transitions.) We
A. General Considerations for Chromophore Dynamics. neglect radiative level shifts in the system states and ignore all

The picture we present is the natural extension of the optical other couplings (virtual photon transitions) caused by the
Bloch equations to multi-level quantum systems in a condensedpresence of the quantum radiation field. These other couplings
phase. Our methodology has been adopted both to make conyre unimportant when system energy levels are nondegenerate
nection with our previous work on two-level chromophgfe® as the implied perturbations are nonsectgf.The nondegen-
and because the necessary theoretical/computational tools fokracy condition is met by the systems studied in this work.
chromophore dynamics are well established in the literature.  Keeping those contributions specified in the last two para-
We imagine a single chromophore in a condensed phase envigraphs implies that we supplement our chromophore equations
ronment driven by an external laser field. Itis assumed that the of motion with non-Hamiltonian evolution terms corresponding
field is strong enough to warrant a classical treatment of this to spontaneous emission. The form of this augmentation is most
perturbation so that dynamics, in the absence of any otheriransparent in the basis 6fs eigenstates. Rewriting eq 1 in
system-field interactions, would be dictated by this form yields (The summation convention over repeated
P i density matrix labels is assumed throughout this work.)
p) = — 7 [H%p] + 2 E(ty[ia.p] 1)
A P (1) = LYaow + LinE (Do + Lil;;klpkl )
In the above equatior®¥s is the Hamiltonian for the unper-
turbed chromophoreenvironment systemg is the electric Here, LS and LE(t) are Liouville superoperators (matrices)
dipole moment for this system, aft) is the classical applied  corresponding to the commutator expressions in é¢Note
laser field. p(t) specifies the density matrix for the molecule that our definition incorporates the facteii/A within LsYsand
only. This evolution assumes the radiation is of sufficiently long LE(t). LT is the matrix effecting spontaneous emission processes.
wavelength (and the chromophore sufficiently localized) to allow The elements of this matrix are provided by the arguments of

the dipole approximation. the preceding paragraphis=£ j assumed in the following)
What the above dynamics neglects is the relaxation of the

driven molecular system. The coupling between system and the L{.” = — Z T,

guantum radiation field provides a route for this relaxation to ' =

occur: the spontaneous emission of photons. It is these photons

that are registered in SMS experiments, and hence, inclusion . =T.

of the spontaneous emission process is absolutely essential. s !

Within the standard approximations, the quantum radiation field 1

is integrated over to provide rate constants for emission of Lir-r =— _(Z T+ > Ty 4)
photons between various molecular transititi®. This leads i 2 & .

to a master equation approach for incorporating emission events

as pure rate processes. The rate for spontaneous emission of with all other elements being zero.

photon, causing a jump from system eigenstate eigenstate In what follows, it will be convenient to partition the matrix
i, is calculated by the application of Fermi's golden rule (using LT into its positive and negative pieces, so that

Z)



19068 J. Phys. Chem. B, Vol. 110, No. 38, 2006

t'=r"+1" (5)
with LT consisting of the terms specified by the second line
of eq 4 andLT comprised of the remaining terms from the
first and third lines.

One final important point is that while eq 3 provides effective
dynamics for the system with implications of field fluctuations
handled implicitly, this dynamic will still be far too complicated
for exact practical treatment when the system of interest is

composed of a chromophore embedded in a condensed phase.

The problem is simply one of a complex dynamic associated
with a quantum mechanical many-body system. When it is

Bel et al.

oy(t) =

r ] +Ty
Li®0g + Tadij pOutaa0ia = Li (®0y + Loy

8

whereL'(t) is that portion ofL(t) not pulled out inL*Tab. In
exact analogy to the case with only a two-level chromophore,
it is the operatoi.™T=» that dictates when am— b spontaneous
emission event occurs. Following exactly the same arguments
as in ref 37 allows us to write

. — +Iy —1
o(t) = L, (Dol + L igtold

9)

wherec® is that portion of the reduced density matrix corre-

possible to make some effective separation between the relevangponding to systems that have previously emitted exactly
part of the system and a weakly coupled (and fast) bath, this photons viaa — b transitions.

problem can be overcome in exactly the same method employed To facilitate the extraction of photon counting moments, we

to remove the radiative field from explicit consideration. Writing

A= A4 {0 4§ )
for a “system” Hamiltonian composed of two parts, ch (the
chromophore which is directly coupled to the applied field) and
b (the bath) weakly coupled by, we arrive at an equation of
motion for the reduced chromophore density madrithrough
application of standard Redfield thed#y®

oy(t) =
: E r

—iw;oy + L) 0y + Ljo + R0 = Loy (7)
Here, the matrixR is the usual Redfield matrix to account for
bath perturbations on the chromophore and the madt(tx
reflects the entire dynamics fer. We note that additivity of
contributions stemming from quantum field, bath, and classical
(laser) field perturbations to the dynamics of the chromophore

introduce a generating function version of eq 9

'{/)ij (ts) = Li'j;kl(t)&,’d(t,s) + SLﬁlab'%(tas) = Lij;kl(tvs AUES)

Jte) =S )

n=

(10)

The actual generating function far— b photon emissions is
obtained by summing over all “population” elementsdg,t)

Glst) = ¥ 4i(sh)

(11)

which allows for the usual extraction of probabilities for
photon emissior8

19"
pn(t) = H

i E (12)

G(st) ‘FO

should be viewed as an approximation of “independent rates of and factorial moment8

variatiqn”.46 We neglect frequency shifts of the chromophore

due toV, so that the label§ now correspond to the eigenstates

of He". We consider this set of approximations as the natural
extension of the optical Bloch equations to multi-level systems
in a condensed phase. Specification of the matrige&!, and

R will allow us to apply this formalism to various physical

™) = M(n — 1)(N—2) ... (— m+ 1)) =
am
e G(s,t)Ll (13)

Our primary concern in this work shall be the calculation of

problems, and several model systems will be considered in themoments. To this end, we differentiate eq 10 with respest to

following sections.
B. Extraction of Photon Counting Moments. Extending the
picture of the preceding section to calculation of photon counting

statistics for single molecule measurements proceeds in a manner

analogous to the case for two-level chromophdré8.The

formal solution has been presented in ref 41, and we present

here a brief derivation following ref 37 to clarify our notation
and to extend this picture to the calculation of photon counting
moments for individual spontaneous emission transitions (as will
be useful in spectrally resolved emission spectroscopy).

yielding equations for thed™as™¢” elements which, when
summed over population elements, yield the moments (when

s=1).
st me m-1
9 (#) = L(t,9) (8_/ I Rt (8__1/) (14)
at\ o as" ag"
The high-order derivatives are dependent upon all lower deriv-
atives as can be seen by iterating this equation. For example,
moments up to and including second order are generated by

Imagine a detector capable of differentiating between photons solving the set of equations

that are emitted for particular chromophore transitions. In certain
cases, this would be possible by only selecting photons within
a certain frequency window, in other cases this might not be

experimentally feasible but should be regarded as a gedanken

experiment. That portion of.(t) responsible for placing the
chromophore in a lower energy state immediately following the
transition of interest is of special importance for calculating
statistics associated with this transition. From eq 4, this is the
eIementIL;jbr;aa with the numerical valué s, assuming that we
are followinga — b emissions. We partition eq 7 to give this
single part of the evolution a unique status

J(st) s
as(st) | [Lts) o 0 a5 (st)

s |=[L"™ Lt,9 O 3s (15)
2oy 0 2uTe Lts) | |06

s’ s

Evaluation ats = 1 provides the moments up to second order
by way of eq 13. Sincé.(t,s) andL™ = are N2 x N2 matrices
for a quantum system witlN states, the above expression
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corresponds to solvingh& coupled equations. In the cases by eq 2 and the presence @fin L&(t). We treat these matrix
considered in this work, we will takg(t) to have sinusoidal elements in the Condon approximattésuch that
time dependence so that the explicit time dependence within
L(t) may b_e removed py moving to a r(_)tatlng reference frame Dng;me = @|ﬁ|eg|me[g ”Omg|mem (18)
and applying the rotating wave approximation (RWA). In this
case, solution of these equations is easily accomplished by
directly exponentiating theN® x 3N2 matrix as outlined in the
next section. Equation 15 is central to all results in this paper
and, in principle, could have been directly solved to reproduce
all the calculations presented below. In practice, we used a
numerically simpler scheme to obtain our results derived from
eq 15. This numerical technique is elaborated on in section IID.
Formation of the matriced.(t,s) and L*Ta for use in any
numerical scheme follow from the preceding section. Specific E(t) = & cos,t) (19)
choices for these matrixes depend on the physical systems under
consideration and will be detailed with presentation of our For future notational simplicity, we define constahtsand<2
chosen applications. as

The above derivation has assumed that we are interested in

The dipole operator is assumed to act solely in the electronic
space with only off-diagonal coupling between ground and
excited states. Individual transition intensities are mediated by
the overlap of nuclear wave functions. We always consider a
monochromatic exciting field of constant intensity and polariza-
tion direction, so that

the statistics of photons emitted from one particular chromo- w, 3|.”o|2

phore transitiond — b). When we are interested in broadband L= 9—3

detection with all photons counted equivalently, the structure 3mehc

of eq 15 remains unchanged. However, the matridgs) and O — e nlh 20

L*Ta have different forms. In that case, we substituté for 0= &M (20)

L*Ta and L(t,s) is now the matrix formed by appendirsgto

every spontaneous emission matrix element witk{t) having These constants represent the spontaneous emission rate and

a positive sign (i.e., the whole &fT). Calculation of moments ~ Rabi frequency for an electronic transition between states with
for photons associated with some subset of transitions (perhapgerfect overlap of nuclear wave functions.
transitions inside a certain frequency window) proceeds by These definitions allow us to specify the form of matrices
generalizing to placement afvariables only on the elements  LE(t) andL. LT follows immediately from eq 4. All we need
associated with the relevant transitions and making the corre-are the emission rates; for all i — j transitions. Since our
sponding changes th*™. In principle, we could introduce a  models only allow transitions between excited and ground
number of different auxiliary variablessach variable corre-  electronic states, we need only consider rates of the form
sponding to a particular transition or subset of transitions. This I'ieqmeigingn= I'mn, With values
leads to expressions for cross correlations between various
transitions. The extension is straightforward, but not explicitly I, = T,lEnn,0? (21)
presented here, as we do not calculate any such cross correlations i ¢
in this work.

C. Model Hamiltonians and Practical Considerations.In
this work, we shall be concerned exclusively with model systems
consisting of a chromophore with two electronic states (ground

All positions in theLl diagonal in the electronic subspace are
necessarily zero due to our assumptions about the dipole oper-
ator, so the above completely specifies ilematrix.

|gDand excitedel), so that The formation ofLE(t) is slightly more complicated due to
the nature of the coupling to the applied field, which makes for

. ix | han th issi ix. We fi li
pych = g, + [eTH, @ (16) a matrix less sparse than the emission matrix. We first realize

that, as in the usual optical Bloch equations, density matrix
elements diagonal in the electronic subspace are coupled to those
off-diagonal in the electronic subspace and vice versa. Also,
by analogy to the optical Bloch equations we retain only those
terms corresponding to resonant excitation by the field (i.e., a
photon is absorbed and electronic state rises or a photon is
emitted and state drops) by invoking the Rotating wave approx-
imation (RWA)#6 We make use of the definition

Hg andHe are, respectively, the chromophore Hamiltonians for
nuclear motion within the ground and excited states, with
eigenfunctions and eigenvalues specified by

HglngL= eng|ngD

HolmO= €, |m0 17)
N Qp, = Lol (I (22)
for me = 1..Ne, Ng = 1,..Ng. In our numerical applications, we
consider only a finite number of eigenstates associated with
nuclear motion and adopt the convention here. The nuclear
ground state in the excited manifold is assumed to lie higher in
energy than the nuclear ground state of the ground manifold
by an amountiweg It is to be understood that this chromophore
Hamiltonian dictates dynamics in the sense implied by eq 6.

to give the elements dfE(t) within the RWA

LE,. =410

E — it
Lngmg;kelg kel gingmy 2 ngkee 6mg'|g (23)

Heh is responsible for the evolution that we designate to be the LE . =—1E =_lgo gia
most important to chromophore dynamics. The effect of the NoMykgle KNy 277lm, kg
environment (bath) will be felt through coupling dictated\ay

Interactions with the radiation field depend on the matrix LE — _E __ 1 Q, _dots
elements of the system’s dipole moment operator as evidenced NdMakd klgname 2 g Neke
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The matrixLE is simply the matrix specified by eq 23, evaluated
att = 0, and the remaining matrices are unchanged relative to
the original basis. Since the populationsiadre identical tag,
Overbars represent complex conjugation. (The above definitionswe may calculate photon emission statistics using these trans-
assume that our dipole operator matrix elements are realformed variables without any changes to the formalism of the
quantities.) preceding subsection. In particular, we may calculate eq 15 as
The only portion ofL(t) remaining to be specified is the
Redfield matrix for transitions of the chromophore induced by & ~
environmental bath fluctuation®. The relaxation matrix is 7 (_S't) g (~S’t)
given byt8:49 3.(s) L(s) O 0 29(st)

=+29Q,e",  (24)

E _ E
Logmeige =~ Ligiangn, 2 =endy

_ _ R s |=[LT* s 0 || os (31)
Rij;kl = =0y Z tlrrj 5|j Z b T tjlik + tjlik (25) 82,,5/;)(5, ) 0 oL T L(s) | |42 &:( st)
where s’ 05’
1 (o 0 o (¢ S : " 5
tlj+ik = FTZ fo dre @ik IV (r)V, (0)] \i/;/hgre ths time-independehtis specified by eq 29 and{s;)
given by
e = = [ dre T, OV, (D) (26) ) ©
e p2Jo J Sty =S 5701 (32)

Es
are Fourier-Laplace transforms of the correlation functions of ~
the system and bath coupling at the specified frequency. The Summing over the “population” elements ofstill returns

bath-space Heisenberg operators are defined by the original generating function for photon emissioGs,t),
. o so calculations in this frame return emission statistics equivalent
V(@) = g/ V€ /P to the original formulation. Numerics in this basis are preferred,
R R since eq 31 may be solved simply by direct matrix exponentia-
V,; = KV|iO (27) tion.

D. Reported Quantities and Numerical Details.The bulk

and the average8l.[y specify a thermal average over bath of the preceding sections has been devoted to establishing
degrees of freedom only. In all models we consider, bath models for reduced chromophore dynamics, that is, how to
fluctuations are capable of causing transitions between levelsspecify the superoperator mattixt) in eq 7 or the correspond-
within a particular electronic state but are not permitted to induce ing time-independent matrik in eq 29. Given this matrix, it is
radiationless transitions between electronic states. Further dis-a trivial programming task to extend the standard calculation
cussion on the evaluation & will appear in sections Ill and  of density matrix evolution to photon counting observables. The
IV as specific models for chromophore and bath are introduced. matrix L(s) is formed by appending the auxiliary varialsléo

Given the particular form of our model systems, it is highly elements of.* reflecting spontaneous emission transitions of
beneficial to solve eq 7 in a rotating reference frame by interest. In the case of a single relevant transition, only one

introducing new variables element is modified. In broadband detection, we append an
. ot to the entireL*T matrix. GivenL(s), the block form of eq 31
Onm, = Onm€ t follows immediately and calculation of” is provided by
simple matrix exponentiation. Summing over population ele-
5. =0 got ments of Mo(s;t)/as™ for s = 1 yields the factorial photon
T T counting moment of ordem. Although the matrix in eq 31 is
5 =g specific to calculation ofn = 2, higher order moments can be
NeMe NeMe calculated in analogous fashion by extending the block matrix
5 =g 28) as implied by eq 15. Since we assume no photon emissions

prior tot = 0, the initial condition employed in eq 31 is simply
. . ) . _ Yii(s,0) = (0) with all s derivatives of¢" equal to zero.
The primary advantage of this formulation being that eq 7 i The moments reported in this work will be presented in terms

Mgy NgMy

recast in a form without explicit time dependence of absorption and emission line shapes and corresponding
. MandelQ parametéd spectra. Mandel'§ parameter is related
o;(t) = to the factorial moments via

; ~ E ~ r ~ ~ ~
—IWijj40ig T Lij0ig + L0 + Ryj0ig = Lij4e0g (29) )
) — M)

where the diagonal matri%/ is given by Q) = 0 1 (33)
Wi monm = ®p .
oMMy o™ and serves as a convenient means to report second-order photon
W —w statistics. PositiveQ values reflect photon bunching behavior
NeMe:NeMe NeMe (an elevated variance in relative to Poisson processes with

the same mean), negati@values reflect antibunching behavior

W“emg?”emg = Yoy T L (diminished variance im relative to a Poisson process with
. the same mean), ar@= 0 is consistent with purely Poissonian
anmemgme = Ongm, to (30) statistics.
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Energy conservation implies that we may calculate absorption becomes computationally intractable. In this work, we focus
line shapes, by counting the relative rate of photon emission on statistics calculated in the long time (steady state) limit. For
(photons from all transitions are counted) as a function of the direct exponentiation, this limit has the additional computational
exciting frequency complications associated with the identification of a time suffi-

ciently large for the steady state to be attained, yet sufficiently
I(@,) = lim a M) = lim 2[2 G(st)‘ ] (34) small to ensure numerical stability. When only steady-state
Y e Ot to Jt [3S 7|5t information is desired, analytical progress can be made on eq 31,
allowing calculation to proceed via diagonalization of matrixes
Every emitted photon corresponds to a prior excitation of the no larger thaiN? x N2 and without the need to identify a suit-
Chromophore and hence a quantum of enefgyLI extracted able finite time at which the |0ng time limit is reached. The
from the incident field. We evaluate line shapes in the limit of calculation is summarized below.
long times to ensure that the system is in a steady state. The The equations of motion fo¢” and itss derivatives (eq 31)
time dependence of(dt at early times is interesting as can be formally integrated to yield
well®6:37 but not specifically considered in this work. Tl
parameter absorption spectra are calculated in analogous fashion, ff’(t) = f ' ekt L+Fpss
although the definition ofQ, with [A{t) in the denominator, 0
ensures saturation to a constant value as time becomes large;

S s — U L(t—t) ¢ 4T LU e U —t") ¢ +T
the Q parameter itself as a function of exciting frequency is gy =2 fjare LT [Fdre ™ LT e (37)
reported. Again, in the “absorptio@ spectra”, we collect all
photon emissions (broadband detection). Here, we have assumed that the system began in the steady

Emission line shapes and tiggparameter are calculated in  state att = 0 and that we began counting photonst at 0
similar fashion, but we resolve the photon statistics by frequency (different initial conditions lead to negligible corrections in the
of the emitted photons. More precisely, we resolve by the long time limit). We have introduced a prime notation for
transitions where the photons originate from. derivatives (i.e., {¢70s) = <) and we have evaluated every-

In the cases we consider, the allowed transitions are eitherthing fors = 1. The steady-state limit for the density matpix
well resolved in frequency (frequency differences much larger is expected on physical grounds for systems driven by external
than natural line widths) or perfectly degenerate, so that there perturbations and allowed to relax via radiative and nonradiative
is no ambiguity in assigning photons to a particular frequency transitions-its existence was verified for the model systems

“window”. We report our results as studied in this work.
The matrixL may be diagonalized, and we write= 1 Ly
(wgw,) = !im E)Qt mwuszmw (35) with A the diagonal representation @&f The columns ofy

consist of the right eigenvectors bf and the rows of~* are

the left eigenvectors df. The associated eigenvaluesioére
The above notation specifies that we only consider photons from complex numbers with negative real parts, except the single
transitions on resonance withg. A collection of these statistics ~ eigenvalue associated with the steady state which is zero. Order-
follows the prescription previously described. The maili{z) ing the eigenvalueiss = 0, 12, 43, ..}, so that
depends ome as placement o variables is dictated by which

transitions are on resonance with. We note that our emission 00 O -
“spectra” are thus not quite spectra in the usual sense. Our 04 0 -
spectral lines are infinitely sharp, without broadening (see Fig- A=|00 45 - (38)

ure 5). In principle, we could artificially broaden these lines by
making them Lorentzians with the natural line width of each
transition, but we have not done so. What our calculations
directly provide are the statistics associated with particular o see that it is possible to partition the time evolution operator
molecular transitions, not the actual frequency of the emitted U(z) = e = Up + Us() into two pieces such that the first
photons. Note that our line shapes will also, in general, depend ., regponds to the (lack of) evolution of the steady state and
on the frequency of the exciting light as different excitations ¢ second piece reflects all other dynamics in the system.
can lead to different steady-state populations of the chromo-

phore.

1 0 O «--
The Q parameter emission spectrum follows similarly 000 -
m2w= - m _ ﬁ U0=X000'" X71
i~ g W =wg oo
) = -1 36 ;
Qlwgw,) mwij:wED (36)
00 O
where we stress that the photon numbersollected above 0 &7 0
reflect only those photons stemming from transitions on reso- . 1
nance withwe. U(t) =»[0 0 & |y
For multi-level quantum systems, the matrix of eq 31 can I : .

become very large (& x 3N? for N quantum levels). If

moments higher than second order are desired, then the matrix

becomes even bigger. Direct exponentiation of such matrices Partitioning the matrices in this way allows us to explicitly
over a wide range of frequencies is computationally expensive carry out the integrations in eq 37 to give (large time limit
and, for sufficiently largeN and/or moment order, eventually —assumed)
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Figure 1. Energy level diagram for the composite chromophoreS

. . L tem.
The long time (steady state) limit for the rate of photon emission system

(intensity) and theQ parameter follow immediately
chromophores embedded in low-temperature gla&sdthough
dm0 or TLS dynamics is often treated as a purely stochastic perturbation
E = ; UoL™ pss of the chromophore system, we adopt a more precise, quantum
mechanical picture here. The following description of coupled
chromophore-TLS dynamics is quite terse. We refer readers

; UoL "L o g to the review by Silbe¥ for more detail on the Redfield
_ dynamics that we employ.
Q=2 (40) The nature of TLS dynamics within the glass is presumably
; UL oes the localized rearrangement of a small cluster of atéfiisorre-
sponding to movement between two distinct energy minima.

The coupling between TLS and chromophore enters as a differ-
ent effective splitting between chromophore ground and excited
states depending on which minima the TLS resides in. Assuming

Equation 40 was used in the computation of all quantities this coupling is due to strain dipole interactions between chromo-

reported in the examples discussed below. We stress that ng?hore and TLS, we expect the interaction to scale eSirithe
approximations have been introduced into these equations. ThefiStance between TLS and chromophore ceritehe basis
simplifications we obtain are due to the fact that we only of TLS minima” states Is not prected to b.e' dlagonallas
consider the infinite time limit in eq 40. The numerical advan- tUnneling may occur between minima. In addition, coupling
tages of eq 40 relative to direct matrix exponentiation are Petween the TLS and long wavelength phonons in the glass
manyfold. First, it is not necessary to pick a time to evaluate 2CtS as mechanism for coupling the Tt&hromophore system
your expressions and somehow confirm that this time is both to its glassy environment. Adopting the notation of section IIC,

5
large enough to ensure the steady state yet small enough to avoid® Mmathematical formulation of this picture4s

where the summations are over the population elements of the
resulting vectors.

numerical instabilities. Equation 40 assunies . Using this ho

method one only has to find the eigenvalues and eigenvectors H=—-—%4 (ﬁ — &) TLS J olts
of the matrixL for a given excitation frequency to obtain both 9 2 2 g4t 27
the intensity and th® parameter. This matrix is 3 times smaller

in the linear dimension than the matrix that must be exponen- ) A 3
tiated to solve eq 31. If higher moments are required, one still Ho=+—"+ (— + —3) oS+ =gt
has only to diagonalize th& matrix for use in expressions 2 2 4 2

similar to eq 39. Finally, while matrix exponentiation requires

that one repeat the entire calculation to obtain statistics for = (bT +b) TLS

various detection possibilities (broadband, a single transition Z Y Iz

counted, several transitions counted, etc.), the present scheme

only requires a single diagonalization for all possible detection N

schemes. Different detection possibilities manifest themselves AP = Z bgbqhwq (41)
only through the matrix.*T which does not have to be diag-

onalized. The pieces of eq 40 dependent on matrix diagonal-

ization (X, Uo, psg do not vary with different detection schemes. Here, A andJ are, respectively, the asymmetry and tunneling
This is a significant computational advantage when calculating matrix element for the TLS and!*° and o]"° are Pauli
emission spectra since the bulk of the calculation need only be patrices in the basis of TLS Iocahzed "mlnlma states, is

performed a single time. the chromophore transition frequency in the absence of interac-

tions. The indexq labels the phonon modes of the system, and

b;, by, wq, andgq are the creation operator, annihilation oper-
A. Model Description. As a first example, we consider the ator, frequency, and TLS strain field coupling constants for the

case of a chromophore coupled to a two-level system (TLS). gth mode.

The two-level system model is of interest both for theoretical =~ We diagonalize the chromophet&LS portion of our Hamil-

reasons (it is arguably the simplest case of dynamics beyondtonian and label the four eigenstates) |b[} |cl] and |d(see

that of an isolated two-level chromophore) and also for its utility Figure 1) in order of increasing energy (we assutngg to be

in describing the thermal behavior of low-temperature gleé®$és. by far the largest energy scale in the problem). In this basis,

The model is also frequently applied to the spectroscopy of eq 41 can be written

Ill. Chromophore Coupled to a Two-Level System
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H, = w,|alad| + w,|bbh _  Phoe _ 2 1
g = @alalR| + wy|blb] Regaa= & Rygee = Coe) 1— g Phoe

H. = o |clit| + w4 dd| 1
_ Aw _ 2 _
A | Raabp = e’ Ropaa = ng‘J 1 — g Phog

V= Z Gq(b" g + by) |— (IbiTay + |allb]) +
w W
q Wgy Reqgp = 1% Recag+— R
cadb — 21w cc,dd w aabb
g e

(et + jam))| (42)
(0]

e 1|w

_ e Dyq
Rdb;ca - E w_ Rdd;cc + J Rbb;a (46)
g e

a

wherewa,, wp, e, w4, wg, andwe are the frequencies

1 1 /3 5 whereC is a collection of constants incorporating the coupling
Wa= T 5 Weg T S NI (A—=P) strength between TLS and bath, which is typically taken as a
parameter used to fit experiment rather than estimated from first
1 113 5 prin_ciples?4 Of_c_ourse, the top two lines just express the phonon
Wp = 75 Weg + > NI+ (A—P) assisted transition rates from statt ¢ andb to a as expected.
Other elements follow similarly. We make no effort to imple-
ment the customary secular approximations to these equations

w, =+ 1 . — 1 /Jz +(A+ P)2 as the equations are solved numerically aqd the highly oscillatory
27°¢9 2 terms will remove themselves from consideration naturally.
B. Numerical Results.In this section, we present numerical
1 1 \/272 results for the model system described above. The framework
Wg =+ 5 0eg T SNVI (A+P) for calculating the fully quantum dynamical results are spelled

out in section II. Physical constants have been chosen to corre-
spond with typical situations for a glassy matet&t>To com-

pare with our previous work on stochastic models, it is necessary
to map the above quantum description to a stochastic picture.
Details for calculating photon statistics for a stochastic TLS
coupled to a chromophore have been presented in detail else-
where3” Readers are referred there for a discussion, where we
have employed notation identical to the present work. Deter-
mination of appropriate model parameters for the stochastic
model, based upon the above quantum picture, is well estab-
lished>* In the stochastic picture, the TLS acts solely to
modulate the transition frequency of the chromophore, causing
hops betweemweg + v and weg — v. The rate of hopping is
given byR: for transitions to the less thermally occupied TLS
state andr, for the reverse direction. The difference in energy
of the two TLS states is provided by detailed balance. Corre-
spondence with the quantum model is accomplished by

Wy = W, — W,

We = Wq ™ W (43)
and we have seP(2) = (a/4r3). Note that we have intentionally
omitted all (system) diagonal contributions to the systdrath
coupling since these terms will yield no contribution to the
Redfield matrix.

Specification ofR is quite simple (if tedious) and proceeds
by calculating the terms specified in egs 25 and 26. Since the
bath is formed by a set of bosons (phonons), evaluation of the
correlation functions is dictated by the well-known properties
of these operators. In particular since

by(t) = € “by(0)
U _ Hogt
bi(t) = & bi(0) V=2~ 0y

ol = (1 — e )™

_BE
RT = CEf J_e——/iE
m;bqg — —ﬂﬁ(l)q(l _ e—ﬂhwq)—l (44) e
1
the correlation functions become R= CEJZ—,[;E
1—e
Ij/ij (T)\A/kl(o)@ = > o
E=vAZ+3] 47)

Z gI(J] g:|(1 _ e—ﬂhwq)—l[e—ia)qt + e—ﬂhwqei(uq‘r] (45) - - - -
5 The idea of the stochastic approach is that coupling between
TLS and chromophore only manifests itself through modulation
The coupling constantgy are chosen to reflect strain field of the absorption frequency of the chromophore as modulated
coupling between TLS and the phonon betihey scale with by TLS hops. TLS dynamics and thermal properties are
g asgY2 Theij andkl suffixes ong, indicate that there are  completely unaffected by the chromophore, hence the total
additional constants that need to be includether J/w. or independence of TLS energy scale and flip rates on chromophore
Jwg depending on which specific terms the indices refer to. properties, that is, these quantities are calculated by setting the
Integration in time over these terms as specified by eq 26 servesTLS—chromophore coupling constaatto zero in our earlier

to create a delta function in frequency which makes evaluation expressions. Of course, it is crucial to keem the frequencies,

of the sum oveq trivially easy if we approximate the sum as otherwise the TLS would have no effect on the chromophore
an integral. By this approach, we calculate, for example at all. The stochastic approximation is expected to work quite
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Figure 2. Absorption line shapes and Mande{ parameter spectrum in the limit of weak coupling between the chromophore and TLS. Line
shapes are presented in arbitrary units. Left and right halves correspond to slow and fast modulations, respectively. Physical parametess used in th
calculation includd’o = 100 M s%, Qo =1 M s7%, T = 1.7 K, and quantum model parameters taken from ref 55, namely 2.8 K, a. = 3.75
x 10 nm?s7%, r = 5.72 nm,J = 3 x 10 K. For the slow modulation, we usé@l= 3.9 x 10° s~ K~3, while for the fast modulatio® = 3.9
x 108 571 K=, Within the stochastic approximation, these numbers translate to (eq47).02 x 10° st andE = 2.8 K. The upward flip rate
R = 23.5 s for the slow modulation and 2.3% 10! s* for the fast modulation. In the slow modulation, no discrepancy between quantum and

stochastic treatments is found. For the fast modulation, the line shape is the same for both quantum and stochastic treatments hile in the
parameter there is a small difference between the models. The inset focuses on this difference.

well whena is small. In that case, transition elements of the by the chromophore state due to the small valué®an the
Redfield matrix are well approximated by using rates inferred quantum model). Peak shape is Lorentzian with both line widths
from eq 47. It should be noted that the stochastic approach isgiven by the spontaneous emission rate (full width at half-
obviously deficient in one sense. There are four possible maximum isl'g). The TLS flipping is so slow in this case that
transition frequencies implied by the quantum level diagram in it contributes negligibly to the line widths.
Figure 1, and the stochastic picture only predicts two. For small ~ The right panes of Figure 2 display similar information to
o and/or larger, half the transitions rarely occur because of the left but with parameters chosen to ensure that the TLS flip
poor Franck-Condon overlap. Given our notation, the transi- rate is faster than the difference in transition frequencies,
tionsc — a andd — b are the strong ones (assuming weak For simplicity, we increased the flip rate by increasing the value
coupling). At high couplings strengths, half of the transitions of C. While this is physically questionable, it does provide the
will necessarily be missed by the stochastic picture. The follow- only direct means to increase the TLS flip rate while leaving
ing numerical examples highlight both the practicality of the all other behavior identical. In this case, the line shape consists
present fully quantum approach in calculations as well as the of only a single peak due to motional narrowing of the optical
shortcomings of the popular stochastic approximation over transition>*%6As in the slow modulation limit, we find quanti-
certain parameter regimes. tative correspondence between stochastic and qguantum models
1. Weak Coupling between Chromophore and TM&ak” for the line shape calculation. The stochastic model does deviate
coupling between the chromophore and TLS is dictated by the slightly from the quantum result in the calculation of tQe
condition A > (a/2r3) = P. Physically, this can result from  parameter. Though the deviation is slight, it is interesting to
either a small coupling constaator a large distance between note that there are cases where the stochastic model is perfect
the chromophore and TLS. As discussed above, in this casefor line shapes, yet imperfect for higher order statistics. All in
results of the quantum model and stochastic model should beall though, for weak coupling, the stochastic approximation is
quite similar (at least for the line shap®sin the left panes of  seen to perform well both at slow and fast TLS modulation
Figure 2, we present the long-time line shape and correspondingrates. We note that, in the limiting cases of slow and fast
Q parameter spectrum for the case of slow TLS modulation modulation displayed here, the observed spectra can also be
and weak TLS-chromophore coupling. The physical constants predicted on the basis of the physical approximations introduced
chosen are detailed in the figure caption and represent realisticin ref 39.
numbers for an organic dye molecule embedded in an amor- 2. Strong Coupling between Chromophore and TE8ong”
phous host> We compare the quantum model with the asso- coupling is ensured by the conditidh~ P = (a/2r3). In this
ciated stochastic approximation. As expected, the line shapescase, the quantum model differs from its associated stochastic
for the two approaches are identical at the resolution of the approximation in both line shape and MandeDsparameter.
figure. The two peaks represent the two optical transitions with The left panes of Figure 3 display results for the strong coupling
appreciable overlapa(— ¢ andb — d). The other transitions  and slow modulation parameter regime of both the quantum
are so weak as to be invisible at this scale. The difference in and stochastic dynamic treatments. In contrast to our earlier
peak heights is due to the difference in thermal occupation prob- example, strong coupling now implies that transitions between
abilities for the two TLS states (which are basically unmodified statesd — a andc — b are important and occur with some
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Figure 3. Left panes: the line shape and Mandé&)parameter spectrum for slow TLS modulation with strong coupling between the chromophore

and TLS. Due to the strong couplind,— a andc — b transitions are significant within a fully quantum framework and result in two additional

peaks relative to weak coupling results. The stochastic approach completely misses these additional spectral lines and fares poorly in reproducing
the magnitude of peaks in ti§@ spectrum. The plots correspond to the following quantum model paraméigrs40 M s, Qo =0.1M s, T=

1.7 K,A=0.006 K,J=0.008 K,C=3.9x 1 K3s!, o =3.75x 10" nm? s}, andr = 5.72 nm. Corresponding stochastic parameters are

as follows: v = 501 M s%, E = 0.01 K, andR: = 42307 s. The right panes display that it is possible to reduce the fully quantum mechanical
treatment to the stochastic results by turning off half of the allowed transitions and calculating Redfield elements in a manner consistent with the
stochastic approach (see text). In other words, it is relatively simple to trace the failures of stochastic modeling.

finite probability within the fully quantum treatment. Since peak andI'sc = I'ng = I'g) and all Redfield elements were calculated
widths are smaller than interpeak spacing, peaks correspondingassuming thatvg = we = E. While these two changes do not
to all four possible transitions are clearly visible in the quantum fully reduce the quantum calculation to the stochastic treatment
mechanical modeling. The relative height of the two central from a mathematical standpoint, the physical basis is clear. The
peaks in the line shape are (as in the previous example) relatedalterations explicitly remove the nondiagonal transitions that
to TLS thermal occupation probabilities. Singe< KT for the the stochastic model necessarily misses, and it evaluates the
chosen parameters, both central peaks have effectively the sam@&LS jump rates in the same approximation inherent to the
height. The intensity of the outer two peaks is predicted based stochastic approach. There are more subtle effects within the
on the probability to excite an “off diagonal” transitioa{> d Redfield treatment (as in the evolution of coherences) so that
or b — ¢) relative to diagonal transitions. Mathematically, this our ad hoc alterations do not fully limit to a stochastic model,
probability is dictated by the square of the Rabi frequency for however these effects clearly do not contribute to the line shape
the transition in question. Equivalently (see egs 21 and 22), theand Q spectrum calculations. The primary problem with a
ratio of the left two peaks or the right two peaks is predicted to stochastic model in predicting photon counting observables is
be I'yT'4a (1.94 for the case shown), which agrees with the in the loss of “off-diagonal” nuclear transitions and incorrect
numerical results. It is obvious that the stochastic approximation estimation of relaxation rates.
predicts a very different line shape a@parameter since it In Figure 4, we show two cases of reasonably fast modulation
does not account for the transitiods— a andc — b. While speed and strong coupling; the difference between the left and
one could argue that the stochastic model does do a good jobright panes is quantitative (see the figure axes@rand is
in predicting that portion of the absorption line shape which it intended to display the fact that one can tune@hparameter
is capable of reproducing (the center two peaks), even the centelby adjusting field strengths. For a simple (no coupling to a bath)
two peaks are clearly off in magnitude for ti¢ parameter. two-level chromophore, antibunching is maximized when
The stochastic model fares very poorly in this parameter regime excitation and emission rates are equaltZeahd a qualitatively
(strong coupling, slow modulation). similar effect is seen here. Although both quantum and stochastic
The failure of the stochastic model in this case was predict- models will eventually narrow into a single peak for high enough
able, and we can trace its origins back to failures to reproduce flip rates, it is interesting to see in this intermediate regime that
the full system dynamics in a realistic manner. The right panes the stochastic model has already narrowed, while the quantum
of Figure 3 are meant to display that we understand exactly picture retains a more complex structure. This structure is visible
where these failures are coming from. These panes actuallyin both the line shape an@ parameter calculations.
display two different cases (although they overlap so only a 3. Emission Spectrdn Figure 5, we display emission line
single line is visible): the stochastic calculation from the left shapes and Mandel@ parameter spectra for the same physical
panes and a modified quantum calculation where the evolution parameters selected in Figure 3 (except the Rabi frequency,
operator was altered such that all nondiagonal transitions werewhich was set to provide relatively large magnitudes ofGhe
turned off Qag = QRbc = T'ag = I'bc = 0 andQac = Qpg = Qo parameter in the antibunching regimes). As discussed previously,
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Figure 4. Line shape and Mandel® parameter for intermediate TLS modulation rate, with “strong” coupling between the chromophore and TLS.
The quantum model parameters are the same as those in Figure 3 except for the coupling constant which is nodifiad®te 102 K3 s,
corresponding to upward flip raf& = 4.23 x 10 s™! in the stochastic model. In the left panes, the Rabi frequency coefficigps is 1P s72,

while in the right pane§2, = I'o = 40 M s 1. Comparison of the left and right panes shows that antibunching increases as excitation and emission

rates become comparable.
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Figure 5. Emission line shapes and Mandel's param&édor slow modulation limit with “strong” coupling between the chromophore and TLS.
The excitation laser frequencies are marked in the figure usinghe excitation frequencies, from left to right, aseg + wcp, Weg + Wca, Weg Weg

+ Wb, Weg + Wda, aNdweg + 0.6wga (SEE Figure 1). The spontaneous emission rate and the Rabi frequedty=a#0 M st andQo =4 M s74,
respectively. The quantum model parameters are as folldws: 1.7 K, A = 0.006 K,J = 0.008 K,o. = 3.75 x 10" nm3s C=3.9x 10°
K=3s™1, andr = 5.72 nm.

our simulation methodology does not allow for true calculation measurement with an instrument unable to resolve frequency
of emission spectra. The frequency dependence we obtain isdifferences less than the radiative line width.

resolved solely on the basis of individual state-to-state transitions ~ The multiple panels in both rows of Figure 5 reflect different
we assign all photons emitted for a given transition the resonancelaser exciting frequencies. Four different resonant excitations
frequency of that transition. Hence, the “line shapes” in Fig- corresponding to all possible transitions and two off resonant
ure 5 are not broadened by the radiative lifetime of the chromo- frequencies are considered. Clearly, there is a strong dependence
phore or by any other source and line shifts are not captured.in the emission spectra on the exciting frequency. This is
Physically, the spectra we obtain would match an experimental expected since TLS dynamics are slow enough in this problem
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that the TLS does typically not have a chance to relax to
equilibrium while the chromophore is excited. Resonant excita-
tion to statec, regardless of which ground state ¢r b) the Figure 7. Line shape and Mandel® parameter spectrum as a function
transition starts from, results in the same emission line shape?f eXICi“”Q g’?‘setr f"%?]UG”CY ftor a chromophore Witth a Zaémgnifc vibra-
(left two panes of the top row of Figure 5). The relative peak z:\cr):l? iog 2611(‘)38'5—1 :nzpt?]ré igﬁoﬁﬁ e;‘::ﬁ'ot?] raii‘& S’laPIh rgﬂuency
he'ght_s simply reflect Condon overlaps in the spontaneous cal poaramzoeters specific to the cr?ror%ophor% a?e) detailed in tr}lle text.
emission process from stateback toa or b. These overlaps

do not care how state was excited and generate identical V. Chromophore With Nuclear Vibrations Coupled To
emission spectra regardless of which resonant transition isA Harmonic Bath

excited. Similar arguments explain the right three panes of the
top row of Figure 5. All three excitation frequencies result in
the occupation of statd, and the emission line shapes are
insensitive to details of the excitation beyond this faeten
when the excitation is off resonance with eitlzer- d or b —

A. Model Description. As a more complex example of multi-
level quantum dynamics, we consider the case of a chromophore
with a harmonic vibrational degree of freedom. Coupled to this
vibrational coordinate is a bath modeled by an ensemble of har-
" e . monic oscillators. Such models are standard in the treatment of
d transitions. When an off resonant excitation is considered that ,jecular spectroscofy/but have seen little prior use in the
has equal probability to excite to eitheror d, the emission  reatment of photon statistics. Within the Ber@ppenheimer
line shapes reflect a symmetric combination of the previously approximation, the Hamiltonians of the chromophore in its

discussed cases (third pane of the top row of the figure). electronic ground|gl] and excited)el] states are taken to be
In contrast to the line shapel,parameter spectra are highly

sensitive to excitation frequency (bottom row of Figure 5). The H = 1 Aw [p2 + XZ] (48)

basis for this effect is quite simple. When photons are counted g 270

at the same frequency of the exciting laser, we expect to see 1

photon bunching. For example, looking at the leftmost peak in H,= hweg+ Ehwo[Pz +(X— Xo)z]

the leftmost pane of the bottom row, we exdite> ¢ transitions

and monitorc — b emissions. Photons are repeatedly ejected \herex andP are related to the nuclear position coordinate
as this cycle repeats until spontaneous emission inducesa  and momentunp by

a transition (or the TLS flips), at which point the system is off

resonance and has to wait for a TLS flip to return the system to mw,

the excitable statd. The interspersion of bright and dark X= TX

intervals leads to bunching phenomena and a posi@e

parameter. In contrast, when excitation does not correspond to p— 1 0 (49)
the monitored transition (second peak from left in the leftmost \/ma)_oh

pane), a three-state cycle repeatedly occors(c—a—b ...

or a similar vgriant) as photons are detecyed. There is N0 JumpiNgThe vibrational coordinate thus has frequengyandhweg is
between periods of “bright” or “dark” since the pathway for  he excitation energy for the- transition.xo is the shift in
repeated photon emission necessarily involves both TLS andgqilibrium position of the nuclear coordinate between excited
radiative/excitation dynamics. The chosen time scales in this 5nq ground states (see Figure 6). The interaction with the thermal

example ensure that no single rate is limiting over all others in path is assumed to be linear in botrand bath coordinates,
this cycling process and antibunching results (if a single time hat is

scale were completely dominant, we would exp€ct= 0).

Similar arguments can be applied to the remaining panes of V= cxz X, (50)

the Q parameter spectrum. This example makes a clear case ]

for measurement of higher order photon counting moments. ) o ) )

Different aspects of system dynamics are captured in the whereC is a constant spemfymg_the |nteract|qn st_rength between
measurement of th® parameter beyond what is seen in simple  SyStém and bath. The harmonic bath Hamiltonian is

line shape statistics. Furthermore, examination of the emission 1

statistics provides a more detailed measure than possible solely Hg = z —hwj(sz + sz), (51)

on the basis of absorption statistics. T 2
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Figure 8. Similar to Figure 7, but witlRy = 10°s™%, Ty = 10¥ s7%, andQo = 1( s % This system is in the linear response regime. The inset shows
the variation ofQ in the vicinity of w. = weg

The above definitions dfly, He, V, andHg provide all necessary ~ where

information to proceed directly with the calculation bfand

related quantities as detailed in section Il. We make a few brief t = 1 J‘"" ded” ¥ _()V. (0)] (55)

comments related to the calculation of Redfield elements below pmna. - op2 J e pm7 g

to clarify our notation. More detailed presentations can be found

elsewherg?7.48,58 tomngiS NONzero only if both of the pairp,m) and ,q) involve
The linear interaction between bath and system is only capablestates in the same electronic manifold. The integration can be

of effecting transitions between adjacent vibrational states in carried out and yields

the same electronic manifold, that {8/ 7— |n + 10or |[nC0—

In — 10 This is seen, by introducing the usual creation and t,. .= R, [«/;1 Opm-1t «/Bép me) [ﬁ Ogna T

annihilation operatorsa(= (X + iP)/(2)¥2, a’ = (X — iP)/(2)1?) ' ' '

to write the interaction matrix elements between excited-state 5(601 + qu) + e‘ﬁhwia(wj — qu)

levels in the form x/_ o) 56
d Ognral JZ A (56)

1 . T
Vne,n’e = 5 C[\/”—e 5ne,n'e—1 + \/;eéne,n’eﬁ-l] Z (aj + a]-) (52) Unlike the TLS model, in this case, every allowalslg, is
! exactly the same and is equaldg. This is due to the equality
of spacing between levels in the harmonic oscillator model and
the form ofV which only allows for adjacent transitions. Thus,
the density of bath states is not important in calculating the
Redfield matrix elements in this case and only a single constant
a]-(t) _ efiwjtaj(o) Ry enters into the Redfield description as a measure of coupling
between system and bath. For example, elements of the form
Rnnn+in+1 @re given in our notation by

and similarly for the ground state. The creation and annihilation
operators only allow for adjacent transitions as indicated by the
above delta functions. The bath properties

Ty — dojt T
aj (t) € 8] (0) Rnn:n+1n+l = 2R0(n + 1)(1 - e—ﬁhwo)—l (57)

@].a]_’f@ =1- e—ﬂhwj')—l Since this element reflects the rate of transition from harmonic
oscillator statén + 1o |nfit is clear thatRy, is closely related
to the relaxation rate of our vibrational coordinate.
@,Ta,-@= e o1 — e Phony 2 (53) B. Numerical Results. In the following calculations, we

choose physical parameters specifying the chromophore to be

are used to evaluate all correlation functions associated withwo = 3.77 x 108 s7%, xg = 0.11 A;m = 10° me (me is the

the Redfield matrix calculation. In this model, the interaction electron mass), ant= 10 K. (The energy difference between

matrix V is explicitly real leading to a slightly simplified calcu-  neighboring levels of the harmonic oscillatow, corresponds

lation for the Redfield matrix to a temperature of 287.75 K.) While these numbers are
suggestive of a heavy diatomic molecule (likg in a low-

Rinnpg™ tomng ™ tgnmp = Omp z targ — Ong z torp  (54) temperature matrix, we have not made a serious attempt to

T T connect these calculations with physical systems. Rather, we
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Figure 9. Similar to Figure 7, but witlp = Qo = 10° s andRy, = 0.1w, (solid line) andRy = 0.05w, (dashed line). Note that in this case the
width of the peak at 0 is much smaller than the width of the other peaks, since it does not dep@nBeek widths are given by the nonradiative
lifetime of the various states for all other transitions.
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Figure 10. Emission line shape and emissiQrspectrum for parameters reflecting the linear response regime. Three different excitation frequencies

are considered as noted in the legend. The chosen physical parameters parallel those of Figure 8. Since the system behaves in accord with linear
response, the emission line shapes are the same for all excitation frequencies and also in agreement (mirror image) with the integrated absorption
spectrum.

have choserxy to provide Condon overlaps that are close to of the presented figures. We note that the sizé& dbr these
vertical, while still ensuring finite probability for transitions up  calculations is 400« 400. Using the methods of section IIC
to 0—6. We have also set the temperature somewhat arbitrarily requires only diagonalization of this matrix, which is a simple
while we will freely adjustR, in the following examples to meet  task for modern computers.

our needs in displaying various phenomena. The Redfield 1. Weak Coupling between System and Bags(rall) Case.
approach we employ is necessarily limited to a finite number The case of weak coupling corresponds to slow vibrational
of states due to numerical considerations. We cannot solve therelaxation. In Figure 7, we show the line shape andJtparam-
equations folN = . In the numerics presented here, we used eter for a case in which the relaxation rate is slower than all
10 levels in each of the electronic states= 0 ton = 9). It other rates in the problem including the spontaneous emission
was verified that altering the number of vibrational states to rate, Rabi frequency, and oscillator frequency. This leads to
include more levels did not change any results at the resolution nonthermal distributions of vibrational levels within both elec-
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Figure 11. Emission line shape ar@ spectrum for parameters outside the linear response liRit= T'o = Qo = 10° s%. The exciting fields are
the same as those in Figure 10. In this case, the linear response approximation is not valid anymore and both the line Grepetaadiiffer
with excitation frequency. The absorption line shape was calculated with the same parameters and is included for comparison purposes.

tronic manifolds at steady state since the system is unable toand the Rabi frequency. In this case, the relative amount of
fully relax between subsequent photon emission/absorption power absorbed by each possible transition is expected to agree
events. Interestingly, the variation of these steady states withwith linear response predictions since the vibrational state of
excitation frequency and the variation of Condon overlaps the chromophore should almost always be in the relared (
between the various transitions leadsQoparameter values  0) state without significant perturbation by the relatively weak
spanning a range of positive and negative values depending oncoupling to the field. Linear response theory predicts that the
the excitation frequency. It should be noted that, although the strength of each transition is due to the Condon overlap between
spectra appear to have only been evaluated at the variousn = 0 in the ground state (remembheF < Awo in this model)
allowed resonance frequencies, this is not the case. It is simplyand the various excited states. The displayed line shapes appear
the case that the radiative line widths are much narrower thanto contradict this prediction, most clearly due to the very tall
discernible at the resolution of the figure. zero phonon peak ai. = wegrelative to the other peaks. How-
Figure 8 shows the line shape aQdarameter for a case in  ever, the height of this line is due to the fact that this transition
which the relaxation is slow relative to the harmonic oscillation is not broadened by nonradiative processes as are the remaining
frequencywy but is faster than the spontaneous emission rate transitions. The line width of the-80 line is approximately
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equal tol'oc whereas the other widths are dominated by non- in the case of strong coupling to the environment). In the case
radiative decay on the order & and are 100 times wider.  of harmonic vibrations, use of a stochastic model is even more
The relevant quantities to compare with linear response resultssuspect since all quantization of the vibrational coordinate will
are the intensities of each transition integrated over the local be lost. Although one could envision more elaborate kinetic
vicinity of the transition. In Figure 10, we display such integrated schemes in an attempt to model these systems, it seems more
absorption peaks alongside emission lines (discussed below)straightforward to simply treat the dynamics correctly, quantum
These integrated lines show perfect agreement with linear mechanically, from the outset. The methods presented here
response results with relative intensities directly proportional provide a prescription to do this.
to the square of nuclear overlap. We acknowledge that there is an unfortunate amount of
One interesting point to note about tReparameter in these  machinery behind the calculations that we have presented here,
calculations is that it undergoes rapid variation with excitation however it is important to stress that the majority of this over-
frequency in the vicinity of the 90 line. While this behavior head is associated with implementation of the Redfield formal-
does not seem amenable to simple explanation, it has beerism (calculation of the matriX in our notation). Equation 40

observed previously in simpler models both numeriéaland is very easily applied onck is given—simply diagonalize the
analytically#? It should also be emphasized that the magnitude matrix and perform a few simple matrix multiplications as
of Q is largely due to the ratio betwedry and Qq as seen in implied by the formulas. The generating function approach,
Figure 4. Here, this ratio is large, leading to small negafve  while necessarily encumbered by the usual difficulties in simu-
values. Smaller ratios lead to larger magnitudeQdfvhen Q lating dissipative quantum systems, adds no new significant
is negative). conceptual or numerical problems. Photon counting statistics
2. Strong Coupling between the System Bathn@& small) are therefore readily available at no more expense than normally

Case.An example of fast relaxation, witRy on the order of ~ expected for calculation of density matrix dynamics. This
wo, is shown in Figure 9. In this case, the width of the peaks is remarkable fact seems to be the strongest point in support of
of the same order as the distance between the peaks and linéhe generating function methodology.
shape is clearly not a series of thin sticks as in previous Several of our calculations have presented results for emission
examples. Note that since the peakiat= wegdoes not involve spectra and the correspondiQgarameter quantities. Although
any thermal relaxation it is independent Rf. The width of such measurements are not yet within the capabilities of exper-
this peak is still specified by the spontaneous emission rate,iment, we believe that a strong case can be made for the devel-
which is orders of magnitude lower than the remaining peak opment of single molecule detectors with spectral resolution. It
widths (on the order oRy) leading to its very large height. In  is clear from our model calculations that emission spectroscopy
this plot, we have chosen identical valuesFgrandQo, which provides a different and (when combined with absorption spec-
leads to sizable negativ@ values for the 6-0 line. troscopy) more revealing signature of chromophore dynamics
3. Emission Spectroscogy. Figure 10, we show the emission than obtainable from absorption alone. This is not surprising,
line shape an@) parameter spectra for parameters appropriate but the present study is (to our knowledge) the first to dem-
to the linear response regime (identical parameters to Figureonstrate this fact explicitly. As we have repeatedly stated, the
8). It is shown that in this case the line shape is the same for all present scheme for emission spectroscopy is sensitive only to
excitation frequencies (in the figure we shew — weq = 0, molecular transitions and not directly to emission frequency.
2wo, 4wo). It is also shown that integration of the absorption Emission frequency is assumed to be on resonance with specific
spectrum over the individual transition line widths provides a transitions. While this approach works well in the limit of weak
mirror image of the emission line shape as expected in the linearcoupling to the environment, stronger coupling invariably leads
response regime. Recall that our emission line shapes aret0 level shifts, motional narrowing as associated complications.
sensitive only to individual transitions, so the emission spectra A general and practical formulation of true emission photon
are automatically of the “integrated” type and comparison counting statistics has yet to be developed.
between emission and integrated absorption is completely
natural. While emission line shapes are insensitive to excitation Acknowledgment. F.B. dedicates this paper to his graduate
frequency in this regime, th€ parameter exhibits strong advisor, Bob Silbey. Without Bob I would not know the first
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