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We derive the moment generating function for photon emissions from a single molecule driven by laser

excitation. The frequencies of the fluoresced photons are explicitly considered. Calculations are

performed for the case of a two-level dye molecule, showing that measured photon statistics will display

a strong and nonintuitive dependence on detector bandwidth. Moreover, it is demonstrated that the

antibunching phenomenon, associated with negative values of Mandel’s Q parameter, results from

correlations between photons with well separated frequencies.
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Single-molecule spectroscopy (SMS) [1] provides a de-
tailed glimpse into our natural world. Typically, SMS
experiments rely upon broadband detection of fluoresced
photons to monitor molecular dynamics; however, in stud-
ies of resonance energy transfer [2] and semiconductor
quantum dots [3] considerably more information can be
obtained by resolving photon emission into two color
channels. Recently [4], multichannel detection schemes
have been introduced to extend the capabilities of SMS
still further.

The information obtained by SMS is useful only if it can
be readily interpreted. SMS has received considerable
theoretical attention [5], but most of this work ignores
any consideration of photon color. A notable exception is
the treatment of resonance energy transfer, which has been
considered in detail [6]. A related treatment of ‘‘frequency
resolved’’ photon counting, including quantum evolution
of the molecule, has also been proposed by us [7].
However, these studies rely upon a direct correspondence
between individual spectral transitions and experimental
detection channels. This picture may be adequate for well-
resolved transitions and certain experimental conditions,
but falls short of providing a complete theoretical descrip-
tion of emission spectroscopy at the single-molecule level.

Within the field of quantum optics, time correlations
between spectrally resolved photons have been studied
both experimentally [8] and theoretically [9] for the case
of resonance fluorescence from two-level atoms. These
studies also rely upon a direct correspondence between
individual spectral transitions (in the dressed-atom picture
[10]) and the frequency of the emitted photons to enable
elementary interpretation of experiment and simplified
theoretical analysis. This Letter introduces a general for-
malism to describe single-molecule photon emission that
does not presume simplifying characteristics of the mo-
lecular system or detection apparatus. Our results may be
directly applied to model systems and lay the groundwork
for development of controlled approximation schemes in
the study of more complex condensed-phase systems.

In previous work, we [11] and others [6,12] have intro-
duced the generating function formalism for calculation of
single-molecule photon counting statistics without spectral
resolution. Such broadband photon statistics may be calcu-
lated by monitoring the number of times that spontaneous
emission occurs as the molecule evolves. Within the
Markovian limit for molecular dynamics, spontaneous
emission is a simple rate process and these emission events
may be treated purely classically, even though the under-
lying dynamics may involve facets of quantum evolution.
Calculation of photon counting moments proceeds via
introduction of the generating function for spontaneous

emission events Gðs; tÞ � hsnðtÞi where nðtÞ is the number
of emissions in the interval ½0; t� and the factorial moments
of this quantity follow immediately by differentiating G
with regard to the auxiliary variable s and evaluating at s ¼
1. The equations of motion forGðs; tÞ (and by extension the
factorial moments) involve only minimal complications
beyond the usual quantum master equation approach
used to solve for density matrix dynamics [11].
In contrast to the above, if the frequency of emitted

photons is measured, it becomes impossible to proceed
via simple classical arguments. Decay of an electronic
excitation into a particular field mode or narrow subset of
modes cannot be monitored by simply counting instanta-
neous spontaneous emission ‘‘events’’; such a process is
fundamentally non-Markovian. However, the definition of
the generating function may be generalized to allow for
calculation of factorial moments with frequency resolution
by explicitly introducing a quantum mechanical descrip-
tion of the radiation field. We take

Gð ~s; tÞ �
�
exp

�X
k"

lnðsk"Þayk"ðtÞak"ðtÞ
��

¼
�
N exp

�X
k"

ðsk" � 1Þayk"ðtÞak"ðtÞ
��

: (1)

Here, the averaging operation has its usual meaning
h� � �i � Trf. . .�ð0Þg involving the initial density matrix
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and a full trace over both the fluorophore and radiation field
degrees of freedom. Creation and annihilation operators for
photons with wave vector k and polarization " have been

introduced to express snðtÞ from the broadband definition as

exp½lnðsÞPk"Nk"ðtÞ� with Nk"ðtÞ¼ayk"ðtÞak"ðtÞ represent-
ing the Heisenberg picture number operator for each mode.
The generalization from s to ~s has been made to facilitate
extraction of spectral information. The second equality,
involving the normal ordering operator N , follows from
standard operator identities [13]. Taylor expanding both
expressions around sk" ¼ 1 reveals that the multivariate
factorial moments of the number operators Nk" are obtain-
able by the traditional differentiation rule at sk" ¼ 1 and
that these moments are most conveniently expressed as a
normally ordered product of creation and annihilation op-
erators for each mode appearing in a given moment. For
example, we find

@nþmGð ~s; tÞ
@snk"@s

m
k0"0

��������~s¼1
¼ hNðnÞ

k"ðtÞNðmÞ
k0"0 ðtÞi

¼ h½ðayk"Þnðayk0"0 Þmðak0"0 Þmðak"Þn�ðtÞi;
(2)

with the expected generalization applying to moments
involving more than two modes. The above introduces

the notation NðmÞ � NðN � 1Þ . . . ðN �mþ 1Þ.
To make further progress, we specify the form of the

Hamiltonian governing the time evolution of the operators
discussed above [10]:

HðtÞ ¼ Hs þHR þHI �
�
Dþð�0 �ELÞ e

�i!Lt

2
þ H:c:

�
:

(3)

Hs is the Hamiltonian for the system (atom or molecule) of
interest, which will always be modeled with two electronic
states (ground and excited) coupled to nuclear degrees of

freedom. HR ¼ P
k"@!ka

y
k"ak" is the Hamiltonian for the

quantum radiation field (!k ¼ ck with c the speed of
light). The last term in parentheses reflects a semiclassical
coupling between the applied laser field (assumed mono-
chromatic with frequency !L and amplitude EL) and the
system within the dipole approximation [D � �0ðDþ þ
D�Þ is the dipole moment operator for the system consist-
ing of terms that raise (þ) and lower (�) the electronic
state of the system] and rotating wave approximation
(RWA) [10]. HI describes the interaction between the
system and the modes of the quantized electromagnetic
field, also within the RWA and dipole approximation

HI ¼ �
X
k"

½�ið" ��0ÞDþak" þ H:c:�: (4)

In the above � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!0=2�V

p
, where !0 is the transition

frequency between excited and ground electronic states
[14], � is the permittivity, and V is the volume of the cubic
box used to quantize the field (V ! 1 below and does not
appear in any final results).

The Heisenberg equations of motion for the creation and
annihilation operators evolving with dynamics dictated by
Eq. (3) may be formally integrated to yield [10]

ak"ðtÞ ¼ e�i!kt

�
ak"ð0Þ þ �

@

Z t

0
ð" ��0Þ ~D�ð�Þei!kL�d�

�
;

(5)

and the conjugate expression for ayk"ðtÞ. For later conve-
nience, we have introduced the slowly varying rotating-
frame operators ~D�ðtÞ � D�ðtÞe�i!Lt and have set !kL ¼
!k �!L. From this, it is readily seen that ak"ðtÞ com-

mutes with _ak"ðtÞ and similarly for ayk"ðtÞ and _ayk"ðtÞ. This
fact, along with the assumption that the initial time total
(system and radiation field) density matrix is a direct
product between the system and the vacuum state for the
field [i.e., �ð0Þ ¼ �sð0Þ � j0ih0j], allows us to reformulate
Eq. (1) as

Gðt; ~sÞ ¼
�
TN exp

�
�2

@
2

X
k"

ðsk" � 1Þ
Z t

0

Z t

0
ð" ��0Þ2 ~DþðuÞ

� ~D�ðvÞe�i!kLðu�vÞdudv
��

: (6)

The operator TN acts on all operators to the right of it by
first arranging all ‘‘þ’’ operators to the left of all ‘‘�’’
operators and subsequently placing all ‘‘�’’ operators in
standard time order (latest times at the left) and all ‘‘þ’’
operators in reversed time order (latest times at the right).
The advantage of Eq. (6) over either expression in Eq. (1) is
that the generating function is now defined solely in terms
of the evolution of the system, which allows us to pursue
actual calculations as detailed below.
Equation (1) provides a theoretical route toward arbi-

trary photon counting moments. For simplicity and to
make connection with possible experiments, we specialize
to the case that photon detection is insensitive to propaga-
tion direction and polarization of the emitted photons and
also assume that the detectors have finite resolution, regis-
tering the arrival of all photons within a window of width�
around a central frequency!. We define a number operator
for photons within this window

Nð!;�Þ ¼
Xð!��=2Þ	!k	ð!þ�=2Þ

k"

Nk": (7)

Combining the above definition with Eqs. (2) and (6) and
proceeding to the continuum limit (V ! 1) leads to the
conclusion that

hNðmÞ
ð!;�ÞðtÞi ¼

�
TN

�
�0

2�

Z !þ�=2

!��=2
d!1

Z t

0

Z t

0

~DþðuÞ ~D�ðvÞ

� e�i!1Lðu�vÞdudv
�
m
�
; (8)

where �0 � !3
0j�0j2=3��@c3. Equation (8) applied to the

case m ¼ 1 counts, on average, the number of photons
within a given frequency window emitted in time t by
the externally excited molecule. The time derivative of
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this quantity evaluated in the t ! 1 limit reproduces the
usual expression [10,15] for the spectrum of fluoresced
radiation. Also, in the limit that � ! 1, Eq. (8) reduces
to Mandel’s expression [16] for the factorial moments of
photon emission as detected in broadband measurements
(i.e., no frequency resolution).

The TN operator in Eq. (8) ensures that all correlation

functions appearing in hNðmÞ
ð!;�ÞðtÞi are of the form

h ~Dþðu1Þ ~Dþðu2Þ . . . ~DþðumÞ ~D�ðvmÞ ~D�ðvm�1Þ . . . ~D�ðv1Þi
(9)

with um 
 um�1 
 . . . u1 and vm 
 vm�1 
 . . .v1. Cor-
relation functions with such time ordering may be calcu-
lated within in the Markov limit for system dynamics via
an extension of the quantum regression theorem [17]. It
follows that the explicit calculation of moments in Eq. (8)
is straightforward in principle, involving only diagonaliza-
tion of the rotating-frame evolution operator for system
dynamics and elementary integrals over time and fre-
quency. The procedure will be specified in detail
elsewhere.

For concreteness, we present predictions for the low
temperature spectroscopy of a single two-level dye mole-
cule. We take Hs ¼ ð@!0=2Þðjeihej � jgihgjÞ and Dþ ¼
jeihgj (D� ¼ jgihej) with e and g designating excited and
ground states. Traditionally, the spontaneous emission rate
�0 and the Rabi frequency � ¼ EL ��0=@ [10] are speci-
fied in lieu of �0 and EL and we follow this convention
here. We take �0=2� ¼ 40 MHz in all that follows to
model the organic dye terrylene in a hexadecane
Shpol’skii matrix at 1.7 K, a prototypical two-level SMS
system [18]. The following calculations assume � values
ranging from 0.2 to 200 MHz. Resolution down to 2 MHz
is possible using a Fabry-Perot interferometer [19].
Theoretically, it should be possible to measure the reported
quantities; however, such measurements have not previ-
ously been reported. (Emission line shapes measured via
ensemble experiments [19] are in agreement with our
results and previous theories [10,15].)

A traditional measure of broadband photon statistics is
Mandel’sQ parameter [16], which is defined as the ratio of
the second factorial cumulant of Nð!;1ÞðtÞ � NðtÞ to the

first factorial cumulant (i.e., the average) of NðtÞ. QðtÞ �
½hN2ðtÞi � hNðtÞi2 � hNðtÞi�=hNðtÞi. We introduce a gener-
alization of this quantity appropriate to photon counting
within a finite size frequency window

Q�ð!; tÞ ¼ hNð2Þ
ð!;�ÞðtÞi � hNð!;�ÞðtÞi2

hNð!;�ÞðtÞi ; (10)

and Q1ð!; tÞ ¼ QðtÞ. Figure 1 plots both the emission
line shape (with finite resolution) Ið!�!0Þ �
limt!1 d

dt hNð!;�ÞðtÞi and Q�ð!;1Þ for resonant excitation
conditions (!L ¼ !0) and � ¼ �0=400� ¼ 0:2 MHz.
Two different values of the Rabi frequency are considered:

� ¼ �0=
ffiffiffi
2

p
and � ¼ 5�0=

ffiffiffi
2

p
. The effect of frequency

binning is barely discernible in the line shape when � is
chosen so small. Our results are essentially identical to the
classical emission spectrum of Mollow [15], excepting the
delta function ‘‘coherent’’ [10,15] contribution at! ¼ !L,
which adopts a finite height after frequency binning. Plots
for Q�ð!;1Þ have not been reported previously, and at
first sight our results appear surprising. The values selected
for � in the chosen examples both yield sizable negative
values for the traditional broadband Q parameter (�3=4

and �0:11 for � ¼ �0=
ffiffiffi
2

p
and � ¼ 5�0=

ffiffiffi
2

p
, respec-

tively); however Q�ð!;1Þ is seen to be positive over the
entire frequency axis. The implication is that the anti-
bunching phenomenon associated with Q< 0 is due to
correlations between photons of different frequencies. To
make this point more explicitly, we plot Q�ð!;1Þ for
different choices of � in Fig. 2. Q�ð!;1Þ is seen to
become negative over portions of the frequency axis as �
approaches the width of the peaks in the spectrum. Related
behavior has been predicted for the intensity correlation
function (g2) of photons originating from a single well-
resolved sideband in the Mollow triplet [8–10]. Inter-
estingly, narrow band bunching has previously been attrib-
uted to properties of the detector [9], but we find the same
effect in our observables that focus solely on photon
emission.
Equation (8) is easily generalized to calculate correla-

tions between photons at different frequencies. We define a
normalized photon covariance function as

C�ð!i;!j;tÞ¼
hNð!i;�ÞðtÞNð!j;�ÞðtÞi�hNð!i;�ÞðtÞihNð!j;�ÞðtÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hNð!i;�ÞðtÞihNð!j;�ÞðtÞi
q

��!i;!j
: (11)

The limit t ! 1 of this correlation function is plotted in
Fig. 3, where !iðjÞ have been chosen to follow !i ¼ !0 þ
r� and r is any integer. When !i¼!j,

C�ð!i;!i;tÞ¼Q�ð!i;tÞ. Otherwise, C�ð!i;!j; tÞ
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FIG. 1 (color online). Predicted normalized line shape (top
panels) and Q�ð!�!0; t ¼ 1Þ (bottom panels) for a two-level
dye with �0=2� ¼ 40 MHz and two different Rabi frequencies
� as indicated. � ¼ 0:2 MHz. Insets truncate the y axis to fully
display the line shape outside the vicinity of the high coherent
peak at ! ¼ !0.
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simply represents the covariance in photon number, nor-
malized so as to give a finite result in the long time limit.
Figure 3 demonstrates that although Q�¼�0=40�ð!i;1Þ 

0, the total Q parameter is dominated by negative contri-
butions from photons that are well separated in frequency;
broadband measurement of Q contains important contri-
butions from correlations spanning the entire spectrally ac-
tive region of the transition. The positive intersideband
peaks in Fig. 3 reflect the correlated emission of photons
from opposite sidebands. This is in qualitative agreement
with the intersideband bunching expected for a two-level
system excited far from resonance [8]. The phenomenon is
attributable to the necessary paring of photons from the
two sidebands in order to maintain total energy conserva-
tion as photons of energy @!L are absorbed by the mole-
cule.

Our treatment of photon emission statistics is general
and relies on no approximations beyond the RWA and
Markov assumption for system dynamics. It is valid for
arbitrary field strengths and does not assume particular

physical regimes for the molecular system. Moreover, the
present approach provides photon correlations between all
possible frequency pairs, which enables calculation for any
possible detector bandwidth and a quantitative demonstra-
tion of how seemingly inconsistent broadband versus nar-
row band statistics can arise from the same physical
phenomena. This framework should prove valuable in the
interpretation of future SMS experiments and in under-
standing the molecular dynamics that such measurements
probe. Several multistate dye models are discussed in
Ref. [7] and will be treated in a future study.
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FIG. 3 (color online). Contour plot of the normalized factorial
covariance function [see Eq. (11)]. We consider the � ¼ 5�=
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case of Figs. 1 and 2 and have set � ¼ 2 MHz.

−200 0 200−200 0 200

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Q

∆(
ω

−ω
0,

   
 )

Ω=Γ0/√2 Ω=5Γ0/√2

∆=200 MHz
∆=20 MHz
∆=0.2 MHz

8

Frequency (MHz) Frequency (MHz)

FIG. 2 (color online). Q�ð!; t ¼ 1Þ for different values of �
and the same cases as in Fig. 1. The bar graph format is used to
emphasize the size and location of the frequency bins, but is
absent at the finest discretization for clarity.
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