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Abstract. Inspired by problems in biochemical kinetics, we study statistical
properties of an overdamped Langevin process whose friction coefficient
depends on the state of a similar, unobserved process. Integrating out the latter,
we derive the long-time behavior of the mean square displacement. Anomalous
diffusion is found. Since the diffusion exponent cannot be predicted using a
simple scaling argument, anomalous scaling appears as well. We also find that
the coupling can lead to ergodic or non-ergodic behavior of the studied process.
We compare our theoretical predictions with numerical simulations and find an
excellent agreement. The findings caution against treating biochemical systems
coupled with unobserved dynamical degrees of freedom by means of standard,
diffusive Langevin descriptions.
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1. Introduction

Single-molecule kinetics has come within reach of biophysical experiments [1]–[3], and
theoretical and computational tools for analysis of such processes have experienced
a corresponding growth [4]–[8]. It is clear that the combinatorially large number of
microscopic steps involved in even the simplest of biochemical events makes their rigorous
stochastic treatment difficult. For example, gene expression, often modeled as a single-step
mRNA creation, in fact, includes transcription-factor-DNA binding, polymerase recruitment,
transcriptional bubble formation and multiple elongation steps, each of which is a complex
process on its own.

Therefore, any theoretical analysis of stochastic biochemical processes necessarily involves
coarse-graining: identifying a small subset of dynamical variables that are modeled explicitly,
while agglomerating the rest into an effective behavior. Such coarse-grained dynamics is often
modeled using the master equation or the Langevin approaches, which require Markoviness or
white-noise random forcing. Both of these assumptions are, generally, flawed, and quantitative
corrections have been worked out in certain cases [9, 10]. Less explored is the possibility
that internal degrees of freedom can introduce qualitative differences, such as long-range
temporal correlations among state transitions and non-diffusive behavior of the observed
quantities.

A well-studied example shows that this is possible for a random walk on a discrete
lattice. In [11], Weiss and Havlin analyzed a two-dimensional diffusion model, known as the
comb model. There dynamics along the y-coordinate is unlimited, while motion along x is
allowed only when y = 0. This results in 〈x〉 = 0 and 〈x2

〉 ∝
√

t , that is, in a subdiffusive
motion of x . This model is hardly realistic in a biochemical context due to the discontinuous
dependence of the diffusion coefficient on y. However, it is plausible that diffusive dynamics
of a real biological or chemical variable in the state space or in the physical space depends on
unobserved, decimated variables in some other nontrivial way. For example, in a chemotaxing
E. coli, the number of unobserved signaling proteins CheY-P is coupled to the distribution
of times a bacterial motor rotates counterclockwise, and the bacterium swims straight. For a
fixed concentration of CheY-P, obtained by modifying the chemotaxis network, the distribution
is essentially exponential [12], resulting in a regular diffusive motion of the bacterium. But
in a wild-type bacterium, as the number of CheY-P fluctuates (diffuses in the number space
even for a constant external signal), the distribution becomes a power law, and bacteria exhibit
superdiffusive real-space motion. While not true in this particular system, the distribution of
clockwise rotation times could have been strongly coupled to CheY-P as well. This would
have resulted in a power-law distribution of times that the bacterium spends reorienting itself
without moving forward, and hence in its subdiffusive motion. In both cases, neglecting the
CheY-P fluctuations and describing bacterial motion as a normal diffusion is qualitatively
wrong.

In this paper, we abstract out the detailed biology and explore these types of phenomena
from the point of view of statistical physics. We derive the properties of a diffusion process,
for which the diffusion coefficient depends on the state of another, unobserved, variable. We
show that, quite generally, such dependence leads to anomalous diffusion of the observed
process, suggesting that traditional stochastic approaches may fail, and that more thought should
be given to modeling stochastic phenomena in complex interacting systems, in particular in
biophysics.
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2. The model

Our model is described by two variables x and y, which may represent, in particular,
concentrations of two interacting chemical species. The x is considered as the observed quantity,
while y is assumed hidden (i.e. unobserved). Particles of both species can be created and
destroyed, which results in an overdamped diffusive motion of the system in the concentration
space (we disregard the directional drift for simplicity, but it can be reintroduced easily). We
assume that the diffusion of x is y-dependent. That is,

dy

dt
=

1

γy
η(t), (1)

dx

dt
=

C (y)

γx
ξ(t). (2)

Here γx and γy are the effective friction coefficients (assumed to be homogeneous)
corresponding to x, y; η(t) and ξ(t) are independent, zero-mean white noise forces such that

〈η(t)η(t ′)〉 = 2Dyγ
2
y δ
(
t − t ′

)
, (3)

〈ξ(t)ξ
(
t ′
)
〉 = 2Dxγ

2
x δ
(
t − t ′

)
. (4)

The idea of multiplicative noise was explored before. In [13], the authors considered the case of
a Langevin process (not overdamped), in which a function of the velocity serves as a ‘filter’ for
the white noise. In [14], the multiplicative noise enters as a random friction coefficient; however,
the distribution of the random friction is independent of time. Similarly in [15], the noise enters
as a random mass with distribution which is again independent of time. Our model is different
from the above mentioned models since the distribution of the random coupling parameter C(y)

is time dependent; moreover it depends in an arbitrary way (through the function C(y)) on
another variable, which diffuses and hence has long-range temporal correlations. Further, the
coupling considered in our model does not introduce a directional bias since it is multiplied by
a white noise ξ , which takes both positive and negative values.

The PDF of y is that of a normal diffusion

p (y, t |y0, 0) =
1√

4π Dyt
e−(y−y0)

2/4Dy t , (5)

where the initial condition is y(t = 0) = y0.
The dynamics of the mean square displacement (MSD) 〈x(t)2

〉, where 〈· · ·〉 stands for the
average over the white noises η and ξ , can be derived. Formally integrating equation (2) and
substituting it in the expression for the derivative of x2 yields,

dx(t)2

dt
=

2C (y)

γ 2
x

ξ(t)
∫ t

0
C
(
y
(
t ′
))

ξ
(
t ′
)

dt ′. (6)

Averaging over the noise ξ(t) yields the dynamics of the MSD of x conditional on y(t),

d〈x(t)2
|y(t)〉

dt
= 2DxC(y(t))2. (7)
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To get the marginal expectation 〈x(t)2
〉, we now average the conditional expectation over y,

which is distributed as in equation (5):

d〈x(t)2〉

dt
=

2Dx√
4π Dyt

∫
∞

−∞

e−(y−y0)
2/4Dy tC(y(t))2 dy. (8)

The function C(y) may take different forms for different systems. The simplest case is
when the dynamics of x is independent of y and C(y) = C = const. Substituting this into
equation (8) yields the expected trivial result 〈x2〉 = 2DxC2t .

Another scenario is that x can evolve in time only for a given range of y values (|y| < y1),
which resembles the discrete comb model of Weiss and Havlin [11]. Notice, however, that the
comb model is based on geometric constraints, i.e. the teeth, while in our case the coupling
between the two process is not due to the topology, but rather due to the physical nature
of the processes. The similarity arises due the fact that in both models the first passage
time distribution in the infinitely long y-axis, dominate the dynamics. Indeed, substituting
C(y(t)) = C2(y1 − y(t))2(y1 + y(t)), where C is a dimensionless constant, and 2(y) is the
Heaviside Theta function, into equation (8), we see that, for t � y2

1/(12Dy), 〈x(t)2〉 ∼
√

t in
agreement with [11]. If C(y) falls off exponentially as y → ∞, the same subdiffusion exponent
is recovered.

A more interesting case is when, at large y, C(y) falls off, but not too sharply. We consider
a power-law form, namely

C(y(t)) =
1

1 + |Ay|α
, (9)

where A is a constant with the units of inverse length, and α is a dimensionless parameter. This
form corresponds to repressive, cooperative Hill kinetics, which describes many biochemical
processes [16]. Typical diffusive trajectories with this C(y), A = 1, and α = 0, 0.625 are shown
in figure 1.

Assuming that the behavior of C(y) for large y (i.e. C(y) ∼ |y|
−α) dominates the t → ∞

dynamics of 〈x(t)2〉, a simple scaling argument suggests that 〈x(t)2〉 ∼ t1−α. However, this is
clearly wrong for large α, suggesting that 〈x(t)2〉 must pick up an anomalous scaling due to
the y → 0 properties of C(y). In what follows, we derive the long-time behavior of 〈x(t)2〉 in a
more rigorous way.

Equation (8) with C(y) as in equation (9), and considering the long-time limit
(y0/

√
4Dyt � 1) gives

d〈x(t)2〉

dt
=

4Dx
√

π


∫ 1/A

√
4Dy t

0

e−y2[
1 +

(√
4Dyt Ay

)α]2 dy +
∫

∞

1/A
√

4Dy t

e−y2[
1 +

(√
4Dyt Ay

)α]2 dy

.

(10)

In the first integral, we approximate the integrand as a constant for t → ∞, and, in the second
integral, we neglect 1 compared with (

√
4Dyt |Ay|)α, thus obtaining

d〈x2〉

dt
≈

2DX

A
√

π Dyt
+

2Dx t−α(
4A2 Dy

)−α √
π

0

(
1

2
− α,

1

4A2 Dyt

)
, (11)
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Figure 1. Typical trajectories for different forms of the coupling function C(y).
We set Dx = Dy = γx = γy = A = 1. In the left panel, we used the repressive
coupling of equation (9) with α = 0.625 to illustrate the suppression of diffusion
in x . The central panel shows the case of α = 0 in equation (9), namely decoupled
Langevin processes resulting in normal diffusion. The right panel shows the case
of enhanced diffusion in x due to coupling of the form of equation (16) with
β = 0.75. In each of the panels the left inset shows the observable x as a function
of time and the right inset shows x and y scaled equally. All trajectories start at
x = y = 0. The time step is set to 1 and the total duration of each trajectory
is 106.

where 0(a, b) ≡
∫

∞

b τ a−1e−τ dτ is the incomplete Gamma function. Integrating equation (11)

over t results in the long-time behavior of 〈x(t)2〉

〈x(t)2〉 ∼ D1

√
t + D2t1−α, (12)

where D1,2 are constants depending on the model parameters Dx , Dy , α and A. This implies that,
for α < 1/2, the long-time behavior is dominated by 〈x(t)2〉 ∼ t1−α, as the scaling argument
suggests. However, for α > 1/2, the scaling argument breaks and 〈x(t)2〉 ∼

√
t . Note that when

the C(y) falls faster than 1/
√

y, the diffusion exponent is exactly the same as in the case in
which the dynamics of x is limited to a finite range near y = 0.

The case of α = 1/2 is special and the integral of equation (10) can be calculated exactly,
yielding

d〈x(t)2〉

dt
= G5 4

4 5

(
1

4A2 Dyt

∣∣∣∣∣−
1
4 , 0, 1

4 ,
1
2

0, 0, 1
4 ,

1
2 ,

3
4

)
∼

ln t
√

t
, (13)

where G denotes the Meijer G function [17]. The leading order term of the MSD is then

〈x(t)2〉 ∼
√

t ln t. (14)

The coupling function C(y) depends only on the variable y, which undergoes normal
diffusion. Thus we can derive the probability distribution of C(y). In order to simplify the
notation, in what follows we use C to denote the coupling function without explicitly specifying
its dependence on y. When C is given by equation (9), its probability density is

P (C) =
2

αC
α+1
α (1 − C)α−1/α A

√
4π Dyt

e−(1−C)2/α/4Dy t A2C2/α

, (15)
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where 06 C 6 1. In the above derivation, we set y(t = 0) = 0 for simplicity. We see that the
distribution of the noise introduced by C is time dependent. Note that the temporal correlations
of C are also important for the dynamic properties of x .

So far we have considered only situations in which the motion of x was slowed at
large y, but we can also consider the opposite scenarios, when large y promotes diffusion in x ,
as in [12]

C(y(t)) = |Ay|
β, β > 0. (16)

This now resembles the Hill activation kinetics for low concentration of the substrate
molecules [16]. Typical trajectories for this form of the coupling function with β = 0.75 are
shown in figure 1.

For coupling of this form, the dynamics of the MSD (equation (8)) yields

d〈x(t)2〉

dt
=

2Dx
√

π

(
4Dyt

)β ∫ ∞

−∞

e−

(
y−y0/

√
4Dy t

)2

|Ay|
2β dy, (17)

which, in the long-time limit, gives d〈x(t)2〉/dt ∼ tβ , and

〈x(t)2〉 ∼ tβ+1. (18)

The distribution of the coupling function C in this case is given by

P(C) =
C−β−1/βe−C2/β/4t

√
π

√
tβ

, (19)

where C > 0.
To confirm our analytical results, we performed numerical simulations for the different

cases considered above. In figure 2, we present a comparison of the diffusion exponent ν

(defined by 〈x(t)2〉 ∼ tν) versus the coupling parameter κ (for the subdiffusion scenario,
equation (9), κ = α, and for the superdiffusion scenario, equation (16), κ = −β) between the
simulations and the analytical results. The simulations were done according to equations (1)
and (2) with γx,y = 1, Dx,y = 1 and dt = 1. We averaged the results over 104 trajectories, each
of duration 107, . . . , 108 dt .

A simple linear regression to log 〈x(t)2〉 = ν log t + const was performed to estimate ν.
Since the standard parameter errors obtained for the regressions were negligible, the error bars
of ν were estimated from the variability of the fitted values as we changed the domain of t ,
for which the fits were performed. Figure 2 shows a clear agreement between our theoretical
results and the simulations. Note that, in certain cases, the convergence to the leading behavior
of 〈x(t)2〉 as t → ∞ is slow since the difference between the exponents of the leading and the
subleading terms is small. This slowness determined the lengths of the simulations.

3. Time averaged MSD (TAMSD)

There are many models of anomalous diffusion, including a time dependent friction coefficient
in the Langevin equation [18], continuous time random walk (CTRW) [19], fractional Brownian
dynamics [20], fractional Langevin dynamics [21]–[23] and Langevin dynamics with colored
noise [24], to name a few. For a new model resulting in an anomalous diffusion, it is important
to see if it can be reduced to one of these more familiar constructions. For example, the t → ∞

behavior of the original comb model is equivalent to CTRW [25] with a power-law tail of the
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Figure 2. Leading order diffusion exponent ν defined by 〈x(t)2〉 ∼ tν for
the coupled stochastic processes model with different couplings between the
diffusion of x and y, measured by the exponent κ . For the case of hindered
diffusion of x , equation (9), κ = α, while for the enhanced diffusion, equation
(16), κ = −β. Numerical simulations (points) and theoretical predictions (line)
agree for both scenarios.

distribution of the times between successive jumps along x . However, in our model, the analogy
is not as straightforward since the continuous dynamics of y induces temporal correlations
among successive motions along x .

To understand the relation of the coupled diffusion model to the others in the literature, we
note that all of them yield the same behavior for the ensemble averaged MSD in the long-time
limit. However, they still differ from each other in the short time behavior, the shape of the
distribution, and even in the long time behavior of time-averaged quantities (for example, the
CTRW exhibits ergodicity breaking [26]). In particular, the TAMSD is an important property (it
is the TAMSD that is observed in typical single-molecule diffusion experiments in biological
systems [3, 27], and the number of recorded trajectories is often insufficient to estimate
ensemble averages).

The TAMSD is defined as

δ2 (1, t) =
1

t − 1

∫ t−1

0
[x (τ + 1) − x (τ )]2 dτ, (20)

which averages the squared displacement of a particle in time 1 (the time lag) over a single-
particle trajectory of duration t . For CTRW, the TAMSD is a random quantity and even its
ensemble average still exhibits aging, that is, dependence on the measurement duration [28, 29]
t in equation (20). On the contrary, for the fractional Brownian and Langevin dynamics, the
TAMSD converges to the ensemble average MSD for long times [30].

We investigated the behavior of the TAMSD in our model with repressive coupling numer-
ically. We find that, when the scaling argument holds, namely for α 6 1/2 (see equation (9)),
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Figure 3. The TAMSD δ2 (1, t) versus 1 for α = 0.25, 0.75 (left and right
panels, respectively). All other parameters are the same as for the previous
figures. We used 20 trajectories of duration t = 105 (solid red lines) and 20
trajectories of duration t = 106 (dashed blue lines). The straight lines with slope 1
in the log-log scale reflect a linear dependence of the TAMSD on the time lag 1.
For α = 0.25, the TAMSD of different trajectories converges as the measurement
time increases (the blue lines collapse, and the red do not), namely a time
average of a single particle behaves like the ensemble average. However, for
α = 0.75, there is no such convergence, just like for CTRW (the coefficient of
proportionality between δ2 and 1 varies from trajectory to trajectory). In both
cases, the ensemble average of the TAMSD decreases as the measurement time
increases, indicating aging.

the TAMSD is not a random quantity, but it still shows aging, as we would expect for Langevin
dynamics with a time-dependent friction. On the other hand, when α > 1/2, and the diffu-
sion exponent is ν = 1/2, the TAMSD shows a similar behavior to that of the CTRW [28]. In
figure 3, we show the TAMSD versus the time lag 1 for α = 0.75 and 0.25. Each line shows
the TAMSD for a single trajectory. The solid red lines represent trajectories of duration t = 105,
and the dashed blue lines are for t = 106. All lines show a linear dependence on 1, but with
different coefficients. For α = 0.25, the TAMSD lines converge as the trajectory duration grows
(the dashed blue lines essentially overlap), while for α = 0.75, the lines remain random. This is
a clear indication of ergodicity breaking in our model for α > 0.5. Further, this analysis suggests
that the coupled Langevin processes model stands as its own class among other anomalous dif-
fusion models, exhibiting time-dependent diffusion coefficient Langevin dynamics for certain
forms of coupling, and some aspects of ergodicity-breaking CTRW for others.

4. Discussion

In this paper, we introduced a model of coupled diffusive processes, where the diffusion of the
observed variable x is coupled to the value of a hidden variable y. We showed that the dynamics
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of x exhibits anomalous diffusion for every considered form of the coupling between the
variables. Depending on the nature of the coupling, the motion of x can be sub or superdiffusive
(and even superballistic, as is the case of a frictionless particle subject to a white noise). Further,
even for an arbitrary ‘strong’ (such that the dynamics of x is limited to a small range of y values)
repressive xy coupling, the x diffusion exponent ν is limited from below by 1/2 (anomalous
scaling), so that localization of x is impossible. Even though the long-time ensemble-averaged
behavior of our model is similar to that of many others describing anomalous diffusion,
the model does not reduce to any of them, exhibiting an effective time-dependent diffusion
coefficient, aging and ergodicity breaking for different values of its parameters.

The anomalous scaling and the ergodicity breaking appear for ‘strong’ xy coupling (i.e.
large α). This is because, for α < 1/2, motion of particles away from y = 0 contributes
substantially to the ensemble-averaged MSD of x . On the contrary, for α > 1/2, only motion
near y = 0 is important, namely the first passage time in an infinite one-dimensional system (the
diffusion process in y) plays a major role in the dynamics of the observed quantity, x . It was also
verified numerically that, for α > 1/2, where the dynamics of x is dominated by motion in a
narrow range near y = 0, the propagator is non-Gaussian as expected from a CTRW-like renewal
process. A similar result holds for the superdiffusive regime, β > 0. On the other hand, when the
motion at any y is important (06 α < 1/2), the process in x has long-time correlations and the
propagator takes a Gaussian form (similar to that of a diffusion process with a time-dependent
diffusion coefficient).

While important in its own right, the coupled diffusion model raises its most important
questions in the biological domain. Unobserved dynamical quantities lead to anomalous
diffusion in E. coli chemotaxis [12], or in mRNA diffusion in cells [3]. Further, some of the best
established models of cellular regulation involve coarse-graining of dynamics. For example, in
some models of the E. coli lac operon, the lac repressor itself is an unobserved variable [31],
which is coupled to the speed of production of the lactose permease and the lactose-utilizing
enzyme and, through them, to the import and the degradation of lactose in the cell. Since any
coupling may lead to anomalous diffusion and in some cases even to ergodicity breaking, it
begs the question whether relying on the common Langevin or master equation analysis of
stochasticity of the lac repressor or other regulatory circuits, such as the λ-phage [4, 8], mar [1],
and others, is rigorously justifiable.
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