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In order to produce specific complex structures from a large set of similar biochemical building
blocks, many biochemical systems require high sensitivity to small molecular differences. The first
and most common model used to explain this high specificity is kinetic proofreading, which has
been extended to a variety of systems from detection of DNA mismatch to cell signaling processes.
While the specification properties of kinetic proofreading models are well known and were studied
in various contexts, very little is known about their temporal behavior. In this work, we study the
dynamical properties of discrete stochastic two-branch kinetic proofreading schemes. Using the
Laplace transform of the corresponding chemical master equation, we obtain an analytical solution
for the completion time distribution. In particular we provide expressions for the specificity as well
as the mean and variance of the process completion times. We also show that, for a wide range of
parameters, a process distinguishing between two different products can be reduced to a much
simpler three-point process. Our results allow for the systematic study of the interplay between
specificity and completion times, as well as testing the validity of the kinetic proofreading model in
biological systems. © 2009 American Institute of Physics. �doi:10.1063/1.3274803�

I. INTRODUCTION

The strong bias toward the correct assembly of particular
molecular constructs, or specificity, plays a key role in
myriad biochemical processes such as DNA assembly, cell
signaling, protein folding, and others. A common model ac-
counting for the almost error-free completion of these pro-
cesses is kinetic proofreading �KPR�, which was first sug-
gested to explain the high specificity of protein synthesis.1

Similar motifs are common in various biological processes
where multiple error-prone steps generate error-free results.
For example, KPR schemes are common in modeling of
DNA synthesis, repair, and replication.2–4 Similar proofread-
ing ideas appear in other contexts such as protein
translation,1,5 molecular transport,6 receptor-initiated
signaling,7–12 RNA transcription,13 and other processes.

Various aspects of the KPR concept have already been
studied. Hopfield1 and Ninio14 demonstrated the possible in-
creases in specificity due to single-step proofreading. Later
explorations of similar proofreading models considered the
multistep proofreading process as a “black box” and studied
the accuracy achieved by such processes,15 as well as the
energy cost and optimal distribution of the proofreading ef-
fort along the proofreading chain.16 In Ref. 7 the KPR was
proposed as a model for the T-cell receptor explaining the
high discrimination between foreign antigen and self antigen
with only moderately lower affinity. In this context the speci-
ficity of a multistep process was studied again, as well as the
time delay between initial binding and output signal.

In addition to process specificity, the time required to
reach this specificity also plays an important role in bio-
chemical processes. A proofreading strategy must be efficient
as well as specific. In different contexts17–23 it was shown
that such completion or first passage times provide a wealth
of information about the underlying systems. Extending
these results to KPR, suggests that the characterization of the
completion time distribution may help researchers to distin-
guish between different kinetic models and even support or
oppose the existence of KPR in specific systems. Surpris-
ingly, the completion time distributions of KPR schemes
have not been calculated before.

In this article, we investigate the temporal behavior of
different KPR schemes. We derive the chemical master equa-
tion �CME �Ref. 24�� and its transform into the Laplace do-
main, which provides analytical expressions for the direc-
tional and nondirectional completion time distribution. In
particular, the zeroth, first, and second derivatives of the
CMEs Laplace transform provide expressions for the speci-
ficity, mean and coefficient of variation of the completion
times. In turn, these expressions provide a starting point to
examine the tradeoffs between the stationary and temporal
behaviors of different KPR schemes. Furthermore, we show
that over a wide range of kinetic parameters the complex
proofreading process reduces to a three-state process with
simple distributions of the transition time between the three
states. We also provide a diagram mapping the parameters
space into classes of different behavior of the completion
time distribution.

This paper is organized as follows. In Sec. II, we intro-
duce the model and provide its CME, as well as the analyti-a�Electronic mail: golanbel@gmail.com.
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cal solution of the CME in the Laplace domain. In Sec. III
we show the different behaviors of the completion time dis-
tributions and divide the parameters space into regimes cor-
responding to different typical distributions. We also show
the coefficient of variation versus the parameters of the prob-
lem and discuss its meaning. In Sec. IV, we summarize our
results and their relevance to many of the problems previ-
ously studied in the context of KPR.

II. THE MODEL

Here we consider the general model of KPR, which can
be represented by the Markov chain in Fig. 1. The initiation

state is represented by the star in the center of the chain, and
is denoted by �i , j�= �0,0�. Depending upon the system, the
state �i , j�= �0,0� may have different meanings. In protein
assembly as modeled in Ref. 1, this state may correspond to
an empty A-site of the mRNA-ribosome complex or other
substeps in more realistic models, or in cell signaling the
initiation state may correspond to a receptor with no bound
ligand.7 The state just to the right of the star, labeled by
�i , j�= �1,0� corresponds to a single step in the correct direc-
tion, i.e., the intended tRNA binds to the A-site or the proper
ligand binds to the receptor. Conversely, a step to the left is
in the wrong direction �wrong tRNA or wrong ligand�. In
general there may be many wrong directions or additional
sub-chains branching from the central initiation point, but for
simplicity we consider only the case where there is only one
right and one wrong decision. The Markov system can tran-
sition one step forward from the initiation point with rate k1

toward correct completion or with rate k2 toward incorrect
completion. The process may also move one step back away
from completion with rate r1 or r2, or back to the origin with
rate �1 or �2. The two branches of the chain have L1 or L2

nodes correspondingly, the last of which, �L1 ,0� or �0,L2� is
an absorbing point �representing the formation of the correct/
incorrect product�. The CME describing the dynamics of the
occupation probabilities is

dp0,j�t�
dt

= �k2p0,L2−1�t� for j = L2

− �k2 + �2 + r2�p0,L2−1�t� + k2p0,L2−2�t� for j = L2 − 1

− �k2 + �2 + r2�p0,j�t� + k2p0,j−1�t� + r2p0,j+1�t� for 0 � j � L2 − 1,
� �1a�

dpi,0�t�
dt

= �k1pL1−1,0�t� for i = L1

− �k1 + �1 + r1�pL1−1,0�t� + k1pL1−2,0�t� for i = L1 − 1

− �k1 + �1 + r1�pi,0�t� + k1pi−1,0�t� + r1pi+1,0�t� for 0 � i � L1 − 1,
� �1b�

and for the initiation point �i , j�= �0,0�

dp0,0�t�
dt

= − �k1 + k2�p0,0�t� + r1p1,0�t� + r2p0,1�t� + �1 �
i=1

L1−1

pi,0�t� + �2 �
j=1

L2−1

p0,j�t� . �1c�

For any given specific case, this CME may be solved
using various methods, such as various projection
approaches,25–29 using stochastic field theory approaches30,31

or simulated using stochastic simulations.32–34 Similarly,
completions times for a given process could be calculated
directly from the CME using projection approaches35 or ana-
lyzed using transition path and transition interface
sampling.36–40 However, in this work we take an analytical
approach in an effort to attain explicit expressions for the
temporal behavior of the process in terms of the kinetic pa-
rameters. Later in Sec. III, these expressions will be used to

study the dependence of the specificity and completion time
distributions on the system’s parameters as the number of
intermediate steps, and forward/backward/proofreading rates.

In order to derive explicit expressions for the temporal
KPR behavior, we utilize a Laplace transform approach that
is similar to approaches previously used to study first pas-
sage time distributions for a ladder process41 and a single-
branch KPR process.42 More specifically, we first simplify
the set of differential equation describing the dynamics
of the occupation probabilities, by applying the Laplace
transform

r1 r1 r1 r1

r2r2r2r2

γ2

γ1

k1 k1 k1 k1 k1k2k2k2k2k2

Wrong Path (k2, γ2, r2) Correct Path (k1, γ1, r1)

FIG. 1. Schematic description of the two-branch general KPR scheme for
error correction. The process begins at the point denoted with a star. From
there, it can move one step to the right or left with rates k1 or k2, respec-
tively. On the right half of the chain, the process can proceed one step
forward with rate k1, one step backward with rate r1, or all the way to the
origin with rate �1. On the left half of the chain, these rates are replaced with
k2, r2 and �2. The leftmost and rightmost sites are absorbing sites: once the
process reaches these points, the process is completed. If the process finishes
at the rightmost site, it is said to have completed correctly, if it finishes at the
leftmost site, the process has completed incorrectly.
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Pi,j�s� � 	
0

�

pi,j�t�e−stdt , �2�

where we are using lowercase variables to represent quantities in the time domain and uppercase variables to represent the
corresponding quantities in the Laplace domain. Upon application of the Laplace transform, the probabilities are now de-
scribed by the following algebraic master equation:

P0,j�s� =�
k2

s
P0,L2−1�s� for j = L2

k2

s + k2 + �2 + r2
P0,L2−2�s� for j = L2 − 1

1

s + k2 + �2 + r2
�k2P0,j−1�s� + r2P0,j+1�s�� for 0 � j � L2 − 1,

� �3a�

Pi,0�s� =�
k1

s
PL1−1,0�s� for i = L1

k1

s + k1 + �1 + r1
PL1−2,0�s� for i = L1 − 1

1

s + k1 + �1 + r1
�k1Pi−1,0�s� + r1Pi+1,0�s�� for 0 � i � L1 − 1,

� �3b�

and

P0,0�s� =
1

s + k1 + k2

1 + r1P1,0�s� + r2P0,1�s� + �1 �

i=1

L1−1

Pi,0�s� + �2 �
j=1

L2−1

P0,j�s�� . �3c�

For the above equation we have already imposed the
initial condition pi,j�t=0�=�i,0� j,0, where � is the Kronecker
delta. In other words, p0,0�0�=1 and pi,j�0�=0 for all �i , j�
� �0,0�. The general solution of these equations is explicitly
written as

Pi,j�s� = �A�1
i + B�2

i for j = 0,i � 0

A�2
j + B�2

j + C��1
j − �2

j � for i = 0, j � 0.



�4�

Here, the space independent parameters �1,2�s� and �1,2�s�
are obtained from the solution of the quadratic equations

k1

s + k1 + �1 + r1
+

r1

s + k1 + �1 + r1
�2 − � = 0,

�5�
k2

s + k2 + �2 + r2
+

r2

s + k2 + �2 + r2
�2 − � = 0,

which come from the expressions for Pi,j�s� at the interior
points of the two branches. The boundary conditions are sat-
isfied by proper choice of the coefficients A�s�, B�s�, and
C�s�. The boundary condition at �i , j�= �0,0� �see Eq. �3c�� is
expressed as

�s + k1 + k2��A + B� − �2�A + B − C� �
j=1

L2−1

�2
j

= 1 + r1�A�1 + B�2� + r2��A + B − C��2 + C�1�

+ �1 �
i=1

L1−1

�A�1
i + B�2

i � + �2C �
j=1

L2−1

�1
j . �6�

The boundary condition at �i , j�= �L1−1 ,0� is written as �see
Eq. �3b��

A�1
L1−1 + B�2

L1−1 =
k1

s + k1 + �1 + r1
�A�1

L1−2 + B�2
L1−2� , �7�

and the boundary condition at �0,L2−1� is �see Eq. �3a��

�A + B − C��2
L2−1 =

k2��A + B − C��2
L2−2 + C�1

L2−2�
s + k2 + �2 + r2

− C�1
L2−1.

�8�

Using the definitions of �1,2 �see Eq. �5��, we can rewrite
Eq. �7� as

B = − A
�1

L1

�2
L1

. �9�

Similarly using the definitions of �1,2, we rewrite Eq. �8� as

235103-3 Specificity and completion time distributions J. Chem. Phys. 131, 235103 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



C = A
�2

L2��2
L1 − �1

L1�
�2

L1��2
L2 − �1

L2�
. �10�

Finally, using Eqs. �9� and �10�, one can simplify Eq. �6�

1

A
= 
1 −

�1
L1

�2
L1
���2 + k1 + k2 + s + �1

− �2

1 − �2
L2

1 − �2
�1

L2 +
1 − �1

L2

1 − �1
�2

L2

�2
L2 − �1

L2
− r2

�2�1
L2 + �1�2

L2

�2
L2 − �1

L2
�

− r1�1
1 −
�1

L1−1

�2
L1−1� − �1
1 − �1

L1

1 − �1
−

�1
L1

�2
L1

1 − �2
L1

1 − �2
� .

�11�

Note that in deriving Eqs. �9�–�11�, we assumed that the
parameters k1 ,k2 ,r1 ,r2 ,�1 ,�2 are all different from zero.

In order to study the temporal behavior of the KPR
model, we compute �i� the probability that the system will
reach the correct terminus point and �ii� the distribution of
time until the system reaches one of the two possible termi-
nus points. Both of these quantities are found by examining
the un-normalized probability density functions �PDFs� for
the first passage time to the absorbing sites �L1 ,0� or �0,L2�,
which are given by

f1�t� = k1pL1−1,0�t� ,

�12�
f2�t� = k2p0,L2−1�t� .

According to Eqs. �12� and �4�, the Laplace transform of the
first passage time PDF is given by

F1�s� = k1�A�1
L1−1 + B�2

L1−1� ,

�13�
F2�s� = k2�C�1

L2−1 + �A + B − C��2
L2−1� .

These expressions now contain a wealth of information
about the moments of the escape time distributions. For ex-
ample, the probability of reaching the correct absorbing site,
�i , j�= �L1 ,0�, is found by evaluating F1�s� at s=0. Further-
more, the mth moment of the arbitrary completion time is

TT
�m� = 	

0

�

tm�f1�t� + f2�t��dt

= �− 1�m�
dmF1�s�
dsm +

dmF2�s�
dsm ��

s=0
, �14�

and the mth normalized moment of the escape time to the
correct site �i , j�= �L1 ,0� is

T1
�m� =

�− 1�m

F1�0�
�
dmF1�s�

dsm ��
s=0

. �15�

III. RESULTS AND DISCUSSION

The un-normalized Laplace transforms of the two
branches, F1�s� and F2�s� provide a complete description of

the completion process and in particular, we analyze two
important quantities: �1� the probability that the process
completes via one branch or the other and �2� the distribution
of time needed for this completion. In the latter case, we
concentrate our attention on the mean and variance of the
completion times. For the general two-branch process, it is
relatively simple to generate symbolic expressions for the
completion probabilities and the moments of the completion
times. Where these expressions are simple enough to be in-
formative, we provide their explicit forms for which we use
the following notation:

l1,2 = �1,2�s=0; b1,2 = �1,2�s=0; and A0 = A�s=0. �16�

Where the expressions are not sufficiently compact, particu-
larly for the higher moments of the completion time distri-
butions, we use numerical examples to illustrate their depen-
dence on parameters. For these numerical examples, we fix
the length of each branch to involve L1=L2=16 steps. To
explore the effect of different time scales in each branch, we
consider the case when the forward rates of both branches
are equal �k1=k2� and the case where the forward rate of the
correct branch is six times that of the wrong branch �k1

=6k2�. In the following subsections we consider the specific-
ity of these processes �Sec. III A�, examine the completion
time means �Sec. III B� and variances �Sec. III C�, and finally
show how these processes frequently simplify down to a cor-
responding three-point process �Sec. III D�.

A. “Correct” and “wrong” completion probabilities

In a KPR process, the biochemical process must some-
how give preference to completing in the correct way, i.e.,
adding the correct amino acid to the growing protein chain or
initiating intracellular signaling when the correct ligand is
bound to the receptor, but not when the incorrect ligand is
bound. In our simplified model, this preference corresponds
to reaching one absorbing site rather than the other. Here we
analyze how changes in the relevant parameters affect this
preference. Following the derivations in Sec. II, we can write
the correct completion probability as

PC = F1�0� = k1l1
L1−1�1 − l1/l2�A0, �17�

and the wrong completion probability as PW=1− PC.
For example, one can use these expressions to derive

expressions for the directional completion probabilities for
the directed KPR �dKPR� scheme ��1,2�0 and r1,2=0�,
which are

PC-dKPR =
�k1/k2��1 + 	2�L2−1

�1 + 	1�L1−1 + �k1/k2��1 + 	2�L2−1 , �18�

and PW-dKPR=1− PC-dKPR, where we have used the notation
	1,2=�1,2 /k1,2.

Figure 2�a� shows the probability of completing in the
first direction as a function of the KPR ratios 	1,2 in the case
of equal forward rates �k1=k2=1�. From the figure, it is ap-
parent that a large amount of specificity is achievable for the
properly chosen combination of 	1 and 	2. For example, the
system will complete in the correct direction more than
99.99% of the time for any �	1 ,	2� combination in the lower
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right corner. Similarly, one can compute the directional prob-
abilities in the case of the absorption mode �AM� �Ref. 19�
process �see Fig. 2�b��, where �1,2=0, but the backward rates
r1,2 are allowed to vary. In this case, the contour lines for the
completion probabilities are less trivial than for the dKPR
case. In particular, the contour lines exhibit a bottleneck near
the values of 
1,2�r1,2 /k1,2=1, where the specificity can
change dramatically despite relatively small changes in the
parameter values.

The objective of KPR is to provide large amplification in
directional specificity despite small changes in the param-
eters 	 or 
. To compare how well the dKPR and AM pro-
cesses achieve this objective, we have drawn red dashed
lines in each plot corresponding to 	1=0.8	2 or 
1=0.8
2,
i.e., there is a 20% difference in the relative proofreading or
backward ratios, respectively, between the two branches.
Since k1=k2, this is equivalent to exploring a 20% difference
in the actual rates � and r. As the backward and proofreading
rates increase, the specificity also increases for both process,
as can be seen by how the dashed lines cross the contour
levels. The first observation to note is that both the dKPR
and the AM process can attain 90% specificity with 20%
difference in rates �see stars in Figs. 2�a� and 2�b�� and val-
ues of the parameters which are within the range of the plots.

Figures 3�a� and 3�b� show the completion probabilities
for a case where the forward rates are different from one
branch to the next. While many qualitative trends of this case
are similar to the previous case with equal forward rates, the

analysis becomes a little more complicated. First, the differ-
ent forward rates already provide a certain amount of correc-
tion �k1 / �k1+k2�=6 /7� before any additional effects of
proofreading or backward rates. In turn, the proofreading and
backward rates can amplify this specificity much higher than
in the previous case. With different forward rates, one can
consider small relative changes in the ratios �	 or 
, red
dashed lines� or in the absolute rates �� or r, blue dashed
lines�. With 20% change in the ratios �	1=0.8	2 or

1=0.8
2�, either process can attain a 90% specificity �white
stars� but only the AM process is capable of providing 99%
specificity �purple star� within the parameter range shown in
the figure. When the actual rates � or r are slightly varied
from one branch to the other another �blue dashed lines�,
99.9% �black cross�, greater specificity is achievable with
either model. Indeed, a high level of specificity is achievable
in either process even when these rates are identical, so long
as the forward rates are different �not shown�.

B. Average completion times

In addition to forming the correct product, a biochemical
process must also complete this construction in a timely
manner. For example, the AM and dKPR schemes may make
the same amplification of specificity, but one may be able to
do so faster than the other. While a detailed analysis of this
tradeoff between specificity and efficiency is left for future
work, we begin to explore this aspect of the system by ex-
amining the mean completion time. Although the expressions
for the mean completion times are trivial to generate, they
are cumbersome to write in the general case. Therefore, in
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FIG. 2. Proofreading with equal forward rates, k1=k2=1. Contour plots of
��a� and �b�� the probability of correct completion and ��c� and �d�� the
corresponding mean decision time for two different decision processes.
��a� and �c��. For the dKPR process with varying KPR rates 	1=�1 /k1 and
	2=�2 /k2 and zero backward rates, r1,2=0. ��b� and �d�� For the AM process
with varying backward rates 
1=r1 /k1 and 
2=r2 /k2 and zero proofreading
rates, �1,2=0. For both plots, the lengths of the branches are L1=L2=16, and
the contour lines denote the probabilities of correct completion �upper pan-
els� or mean completion time in units of 1 /k2 �lower panels�. The red dashed
line corresponds to a 20% difference in the proofreading or backward ratios,
	1=0.8	2 or 
1=0.8
2, respectively.
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FIG. 3. Proofreading with different forward rates. Same as for Fig. 2, except
for different forward rates: k1=6 and k2=1. The red dashed line corresponds
to a 20% difference in the proofreading or backward ratios, 	1=0.8	2 or

1=0.8
2, respectively. The blue dashed line corresponds to a 20% differ-
ence in the proofreading or backward rates, �1=0.8�2 or r1=0.8r2, respec-
tively. The stars correspond to ratios 	1=0.8	2 or 
1=0.8
2 and 90%
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�1=0.8�2 or r1=0.8r2 and 99.9% specificity.
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the interest of brevity, we provide explicit expressions only for the case of dKPR, for which the mean correct completion time
is given by

TC-dKPR = −

 k1

k2
��1 + 	1��1 − �1 + 	2�L2� + 	2��1 − L1��1 + 	2� + 
 k1

k2
�L2�1 + 	1��

k1	2�1 + 	1���1 + 	1�L1�1 + 	2� + 
 k1

k2
��1 + 	1��1 + 	2�L2�

−

 k1

k2
��1 + 	2�L2�1 + 	1�2 + 	1���1 − �1 + 	1�L1�

k1	1�1 + 	1�L1+1��1 + 	1�L1�1 + 	2� + 
 k1

k2
��1 + 	1��1 + 	2�L2� . �19�

The mean wrong completion time TW-dKPR is given by inter-
changing the subscripts 1 and 2 in the expression for TC-dKPR,
and the average arbitrary completion time is the weighted
sum of these two directional completion times

TdKPR = PC-dKPRTC-dKPR + PW-dKPRTW-dKPR. �20�

Figures 2�c� and 2�d� show contour plots for the average
completion times of the dKPR and AM processes with equal
forward rates, k1=k2. These plots show that as the backward
or proofreading rates increase, the amount of time required to
complete the process increases exponentially. While we saw
in Figs. 2�a� and 2�b� that both processes were able to pro-
vide 90% specificity �for 20% difference in the backward/
proofreading rates�, the AM process can provide it with a
much smaller mean completion time. Similarly, Figs. 3�c�
and 3�d� show contour plots of the mean completion times of
the dKPR and AM processes with k1=1 and k2=6. We can
see again that for a 20% difference in the backward/
proofreading rates �blue dashed lines� or their ratios to the
corresponding forward rates �the red dashed lines�, the AM

process can provide the requested specificity for much
smaller average completion times.

To better understand the behavior of the mean comple-
tion time, we illustrate in Fig. 4 the effects that changes in
the parameters 	1,2 have on these mean completion times for
the process in which the forward rate on the correct branch is
six times the rate on the wrong branch, k1=6k2. At first
glance at Fig. 4�a� or Fig. 3�c�, it appears that the behavior of
the mean arbitrary completion time is somewhat trivial–as
one increases the proofreading rates in both branches, the
mean waiting time also increases. However, by zooming in
along certain strips of this plot, one finds additional depen-
dencies of the mean waiting times on the parameters. Sup-
pose that one fixes 	1 to some nonzero value and then
changes 	2 �see top edge of Fig. 4�b��. When 	2 is zero, the
second branch is biased forward, and the process will
quickly complete soon after it enters into that branch. Con-
versely, when 	2 is very large, the process will spend very
little time in the second branch, and the process reduces
down to the single-branch process as if that second branch
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were not there. However, when 	2 is in some middle range,
the process will spend significant amounts of time in each of
the two branches, thereby increasing the total time until
completion. Similar observations can be made for the AM
process �not shown�, as should be expected from the non-
trivial shape of the contours of Fig. 3�d�.

C. Variance in completion times

In addition to specificity and the average completion
time, a completion process can further be characterized by
the shape of its completion time distribution. For some pa-
rameters this distribution will have a small variance, and the
decision is made in some seemingly deterministic amount of
time. For other parameters, the distribution may be much
broader �the same behavior was found for single-branch pro-
cesses, see Ref. 42�. The relative broadness of this shape can
be described by the squared coefficient of variation
�CV2=�2 /�2, where �2 is the variance and � is the mean� of
the completion time distribution. The second moments, and
therefore the variances, can be derived according to the gen-
eral relation of Eqs. �14� and �15�, but the resulting expres-
sions are too long to provide much valuable insight even in
the case of dKPR. Instead, we rely on parametric studies to
explore how parameters affect the completion time distribu-
tion shapes.

In what follows, we consider the same cases as above
and classify the shapes of the resulting completion time dis-
tributions. First, we consider the case of zero proofreading
rates, �1,2=0. Figure 5 shows a contour plot of the coefficient
of variation of the arbitrary completion time versus 
1=r1 /k1

and 
2=r2 /k2 and the side panels show correct �red�, wrong
�blue� and “arbitrary” �green� completion time distributions
for the parameter values k1=6k2 and ��
1 ,
2��
= ��2,1� , �1.2,1.2� , �0,0� , �0,0.88��. The side panels show
that forward biased �
�1� branches have completion time
distribution that are well represented by a gamma distribu-
tion �see red lines in Figs. 5�c� and 5�d� and blue lines in
Figs. 5�a� and 5�c��. Conversely, backward biased �
�1�

branches exhibit exponential completion time distributions
�see red lines in Figs. 5�a� and 5�b� and blue lines in Figs.
5�b� and 5�d��. In turn, the coefficient of variation and shape
of the total completion time distribution is determined by
some combination of the two branches. When both branches
are biased backward, the total CV2 is about unity, and the
distribution is well approximated by an exponential distribu-
tion �see large green area in the upper right corner of Fig. 5
and green line in Fig. 5�b��. When one branch is strongly
biased backward while the other is biased forward, the pro-
cess is much more likely to finish along the forward biased
branch. Hence, the total completion time distribution is well
approximated by a single narrow Gamma distribution, and its
CV2 is less than unity �see red areas of Fig. 5 and the green
line in Fig. 5�a��. When both branches are biased forward,
the arbitrary completion time distribution has a bimodal
shape corresponding to the simple combination of two
gamma distributions �see green line in Fig. 5�c��. Finally,
when one branch is strongly biased forward while the other
is almost unbiased, we obtain a much less trivial total
completion time distribution. In this case, the completion
time distribution can be broader than exponential �i.e.,
CV2�1� as is shown in Fig. 5�d� for the point of maximal
CV2. We now consider the case where there is proofreading
��1,2�0� but no backward reactions, r1,2=0. Figure 6 shows
a contour plot of the coefficient of variation of the arbitrary
completion time versus 	1=�1 /k1 and 	2=�2 /k2 and typical
completion time distributions for the parameter values k1

=6k2 and ��	1 ,	2��= ��0.4,0� , �0.3,0.3� , �0,0� , �0.05,0.1��.
As above in Fig. 5, we can divide the parameters space into
few regions with different shapes for the completion time
distribution. For example, the large green area �color online�
corresponds to CV2�1 and where the directional and arbi-
trary completion time distributions are well approximated by
exponential distributions �see Fig. 6�b��. Similarly, for the
small red areas where one branch is biased backward and the
other forward, the completion time along the backward bi-
ased branch is nearly exponential, while the completion time
along the forward biased branch is effectively described by a
gamma distribution �see Fig. 6�a��.
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We now turn to the more general case where there is
both proofreading and backward reactions ��1,2�0,r1,2�0�.
For this case, Fig. 7 shows a three-dimensional plot of the
coefficient of variation of the arbitrary completion time ver-
sus 
1,2 �upper line� or 	1,2 lower line. These figures empha-
size the different effects of changes in 
 or 	. While in all
cases strong backward bias on both branches �large 
1,2 or
	1,2� lead to an exponential distribution of the completion
time, backward bias has different dependence on the system
size and different ranges for 
 and 	.

D. Simplification of the two-branch decision process

In examining the distributions in Figs. 5�a�–5�d�, one
observes that the completion time distribution of each branch
is often similar to a gamma distribution �or an exponential
distribution, which is a special case of the gamma distribu-
tion�. This suggests that one should frequently be able to
replace the entire process with a simple three-state chain, as
shown in Fig. 8 with the following properties. Each direction
�1,2� is assumed to have a non-normalized Gamma distrib-
uted completion time with density

f1�t� � f̃1�t,x1,y1� = 
tx1−1y1
x1

exp�− y1t�
��x1�

,

f2�t� � f̃2�t,x2,y2� = �1 − 
�tx2−1y2
x2

exp�− y2t�
��x2�

,

where 0�
�1 denotes the probability of completion in the
first direction. Thus, the total probability density of complet-
ing along either branch at time t is approximated by

fT�t� � f̃ T�t� = f̃1�t,x1,y1� + f̃2�t,x2,y2� .

In numerical studies, we have attempted to find parameter
sets �= �x1 ,y1 ,x2 ,y2 ,
� that best match the direction and
time distribution of the full escape process in the one norm
sense. In other words, we have found the � such that

� = arg min
�x1,y1,x2,y2,
�

�
n=1

2 	
0

�

�fn�t� − f̃ n�t,���1dt . �21�

In most cases, we find that this approximation and optimiza-
tion does an excellent job of capturing the qualitative and
quantitative behaviors of the complete process as is shown in
Figs. 8�a�–8�d�. To further explore the ability of the reduced
model to capture the behavior of the full system, we have
explored the original parameter space �
1 ,
2� in order to find
the regions where this approximation is most valid. From
Fig. 9�a�, we immediately see that the approximation is valid
in all four corners of the contour plot where both 
1 and 
2

are either relatively large or relatively small––that is where
both branches are biased in one direction or another. How-
ever, even in the regions where one or both branches are
unbiased �
1�1 or 
2�1�, we note that the fit is still quite
good. Indeed for this system, we can always find a parameter
set �x1 ,y1 ,x2 ,y2 ,
� that captures the full escape time distri-
bution within error �defined by the norm in Eq. �21�� of 0.2.
In order to illustrate this approximation success, Fig. 9�b�
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shows the actual �solid line� and approximate �dashed line�
distributions for the case where the fit is the worst �
1

=1.03, 
2=0.95�. For every other case, we were able to find
a three-state model that did an even better job of matching
the full system behavior.

As was the case for the AM process ��1,2=0�, the dKPR
process �r1,2=0� is well captured by the same three-state pro-
cess defined above. To illustrate this, the colored lines in
Figs. 6�a�–6�d� correspond to the full system completion
time distributions, and the markers correspond to the ap-
proximate three-state system.

IV. CONCLUSIONS

In this work we have begun the exploration of the tem-
poral properties of KPR schemes. To accomplish this, we
have derived analytical expressions for the Laplace trans-
form of the occupation probabilities from which we obtained
the completion time distributions. With this analysis, we
have enabled the simple derivation of expressions for the
completion time moments. Some of these expressions, such
as completion probabilities and the mean waiting times for
certain processes are simple enough to be shown explicitly,
while others are just as easily derived, but are omitted since
their form is too long and not very informative. To enable a
better understanding of the interplay of specificity and tem-
poral behaviors, we focused on the first two moments of the
completion times, as well as on the completion probabilities
�which is actually the zeroth moment�. We showed that, for
most parameter sets, each of the considered proofreading
schemes can be reduced to a three-state process with simple
distributions for the waiting times between transitions. The
simplified process captures most of the relevant features of
KPR schemes, namely, the specificity as well as the magni-
tude and shape of the completion time distributions. How-
ever, the dependence of the simplified behavior on the full
system’s kinetic parameters is different for the various proof-
reading schemes, suggesting that some important informa-
tion about the process is retained despite the simplification.

We have explicitly considered different kinetic schemes
including the traditional dKPR scheme where catastrophic
reactions force the process to restart, as well as an AM
scheme where single-step intermediate reactions can provide
the same specificity. Surprisingly, we find that in most cases
the simpler AM process outperforms the dKPR process by
providing a higher degree of specificity in a shorter amount
of time. It is also worth mentioning that the dKPR or general
KPR processes violate the detailed balance conditions and
therefore are necessarily nonequilibrium processes. The AM
process on the other hand may satisfy the detailed balance
condition and in this case is an equilibrium process. In this
sense, the AM process has the added advantage in that it
conserves energy, while the dKPR process must be continu-
ally driven with externally applied energy.

High specificity appears in many biological systems and
likely results from many different kinetic schemes––
suggesting that one needs as much information as possible to
distinguish between one such mechanism and the next.
Therefore, in addition to using the specificity and mean

completion times to compare the different processes, we
have also used analyses of the completion time distributions
to classify different kinetic schemes and parameter values
into separate regimes where these distributions take on dif-
ferent qualitative shapes. By providing this additional infor-
mation, the temporal analysis and classification tools devel-
oped here can more precisely support or oppose hypotheses
of particular KPR models for particular biochemical systems.
In the future, the next logical step is to apply these tools in
order to identify parameters and infer kinetic mechanisms
from experimental measurements of completion time distri-
butions.
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