
Interplay between Turing Mechanisms can Increase Pattern Diversity

Shai Kinast,1 Yuval R. Zelnik,1 Golan Bel,1,* and Ehud Meron1,2
1Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research,

Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
2Department of Physics, Ben-Gurion University, Beer Sheva, 84105, Israel

(Received 2 November 2013; revised manuscript received 18 December 2013; published 20 February 2014)

We use the context of dryland vegetation to study a general problem of complex pattern-forming
systems: multiple pattern-forming instabilities that are driven by distinct mechanisms but share the same
spectral properties. We find that the co-occurrence of two Turing instabilities when the driving mechanisms
counteract each other in some region of the parameter space results in the growth of a single mode rather
than two interacting modes. The interplay between the two mechanisms compensates for the simpler
dynamics of a single mode by inducing a wider variety of patterns, which implies higher biodiversity in
dryland ecosystems.
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The instabilities of uniform states in complex pattern-
forming systems can be driven by two or more independent
physical mechanisms. An illuminating example is vegeta-
tion pattern formation in water-limited systems (drylands).
There is increasing evidence that dryland landscapes can
self-organize to form spatial vegetation patterns even in
fairly uniform regions [1,2]. Vegetation pattern formation is
driven by positive feedbacks between local vegetation
growth and water transport towards the growing vegetation.
The depletion of water in the vicinity of the growing
vegetation inhibits the growth there and promotes nonuni-
form vegetation growth [3]. At least three mechanisms of
water transport can be distinguished: overland water flow
induced by higher infiltration rates in denser vegetation
patches (“infiltration feedback”), water conduction by
laterally extended root zones that further extend as the
plants grow (“root-augmentation feedback”), and fast soil-
water diffusion relative to biomass expansion, in conjunc-
tion with strong water uptake by confined root zones
(“uptake-diffusion feedback”).
The instabilities induced by the different feedbacks all

share the same spectral properties; that is, they all lead to
monotonically growing modes that have the same spatial
symmetry, a finite-wave-number mode in 1d (Fig. 1), or in
2d, the simultaneous growth of three modes with wave-
vector directions 2π=3 apart that yield hexagonal patterns.
However, the modes that grow at these instabilities, and,
consequently, the patterns that emerge, differ in the relative
biomass-water distributions. The infiltration feedback acts
to increase the soil-water content in patches of denser
biomass, and, therefore, leads to in-phase biomass-water
patterns [4]. By contrast, the root-augmentation feedback
and the uptake-diffusion feedback act to deplete the soil-
water content in denser biomass patches because of the
higher water uptake, and, therefore, lead to antiphase
biomass-water patterns [5].

Although the three feedbacks represent independent
mechanisms of vegetation pattern formation, they are
related to one another in the sense that varying the strength
of one feedback may affect the strength of a different
feedback. As a consequence, codimension-two points can
be identified where two instabilities induced by distinct
mechanisms coincide. The interplay between two co-
occurring instabilities has been studied extensively for
cases where the growing modes differ in their spectral
properties (as dictated by the eigenvalues of the linear
problem), i.e., either in their growth form, monotonic or
oscillatory, or in their spatial symmetry, or in both. Such co-
occurring instabilities are known as “codimension-two
bifurcations” (see comment [6]). An illustrative example
is the Hopf-Turing bifurcation in which a spatially periodic
mode grows monotonically in time along with a uniform
mode that grows in an oscillatory manner [7,8]. Another
example is the growth of two surface-wave modes that have
different spatial symmetries [9,10].
The interplay between two pattern-forming instabilities

that share the same spectral properties, however, has not
been studied. The reason may be the fairly simple pattern-
forming systems that have been considered in model
studies, which do not capture more than one mechanism
for any instability, or to the focus on a single field, rather
than on the relations between two independent fields, in
empirical studies.
In this Letter, we use dryland vegetation as a case model

for studying the behavior near a codimension-two point
where two instabilities sharing the same spectral properties
but driven by distinct mechanisms coincide. We focus on
the infiltration and uptake-diffusion feedbacks in 1d, which
both lead to finite-wave-number stationary instabilities but
result in distinct patterns, in-phase and antiphase, respec-
tively. Surprisingly, we find that the instability at this point
is a codimension-one bifurcation that leads to the growth of
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a single mode that is neither in-phase nor antiphase.
Nevertheless, the instability does contain information about
the two distinct modes—the band of stable periodic
solutions that appear beyond the instability point
describes a family of stationary periodic patterns ranging
continuously from in-phase to antiphase patterns. This
behavior is unlike codimension-two bifurcations, which
only show the distinct modes and combinations thereof
(e.g., mixed-mode patterns) and exclude the range of
patterns in between.
Although we address a specific physical context, we

believe that the main conclusions are general and relevant
to other pattern-forming systems too. The vegetation
context is particularly appealing because the mechanisms
that induce the instabilities are well understood [4,5,11,12],
and the ecological implications are significant, as they bear
on pattern diversity which is a driver of biodiversity [13].
We study a simplified dimensionless version of the

vegetation model introduced in Refs. [5,11], which still
captures the infiltration and the uptake-diffusion feedbacks,
and, therefore, nonuniform stationary instabilities to in-
phase and antiphase patterns. The model consists of three
fields: the areal density of the above-ground vegetation
biomass bðx; tÞ, the areal density of soil water wðx; tÞ, and
the areal density of the overland or surface water hðx; tÞ,
which for a flat terrain satisfy the equations

bt ¼ gbbð1 − b=κÞ − bþ∇2b; (1a)

wt ¼ Ih − νwð1 − rb=κÞ − gwwþ δw∇2w; (1b)

ht ¼ p − Ihþ δh∇2ðh2Þ; (1c)

where gb ¼ νwð1þ ηbÞ2, gw ¼ νbð1þ ηbÞ2 are the rates
of biomass growth and water uptake, respectively, and

I ¼ α
bþ qð1 − ϕÞ

bþ q
(2)

is the infiltration rate. The infiltration feedback is captured
by the biomass-dependent infiltration rate I and the
transport term, δh∇2ðh2Þ ¼ −∇ · J, J ¼ −2δhh∇h, in the
equation for h, which describes overland flow along
surface-water gradients induced by the high infiltration
rates in vegetation patches. The strength of the infiltration
feedback is controlled by the infiltration contrast parameter
ϕ ∈ ½0; 1� and the water transport coefficient δh. The
uptake-diffusion feedback is captured by the biomass-
dependent water-uptake term −gww, which accounts for
soil-water depletion in patches of growing vegetation, and
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FIG. 1 (color online). Nonuniform stationary instabilities of uniform vegetation driven by the uptake-diffusion feedback (ϕ ¼ 0)
(a),(b),(c) and by the infiltration feedback (η ¼ 0) (d),(e),(f). Panels (a) and (d) show the growth rates σðkÞ of periodic perturbations with
wave numbers k below (dotted line), at (solid line), and beyond (dashed line) the instabilities. Panels (b) and (e) show the antiphase and
in-phase patterns the instabilities lead to, and panels (c) and (f) show the instability thresholds in the planes spanned by the parameters
that control the instabilities. The three lines in panel (f) correspond to different values of δw as indicated in the figure; although η ¼ 0, the
instability threshold depends on the soil-water diffusivity. In panel (c), there is only one curve because for ϕ ¼ 0 the instability threshold
is independent of the water transport coefficient, δh. Parameters for panels (a),(b): ϕ ¼ 0, η ¼ 0.9, and δw ¼ 70. Parameters for panels
(d),(e): η ¼ 0, δw ¼ 0, ϕ ¼ 0.9, and δh ¼ 400.
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the diffusion term δw∇2w, which accounts for soil-water
diffusion towards these patches. The strength of this feed-
back is controlled by the parameter η, a measure for the
root-to-shoot ratio, and by the soil-water diffusivity δw.
Other model parameters include the precipitation rate p, the
evaporation rate of soil water ν, reduction of evaporation by
shading r, and “biomass diffusion” constant δb, which
represents clonal growth or short-range seed dispersal. We
refer the reader to the Supplemental Material [14] for the
derivation of the simplified model, Eq. (1), and for the
relations between the dimensionless quantities appearing in
the model and their dimensional counterparts. More details
about the original model can be found in Refs. [5,15].
Equation (1) have a nonzero stationary uniform solution

that represents uniform vegetation. Both the infiltration
feedback and the uptake-diffusing feedback can destabilize
the uniform vegetation solution. This has been shown using
models that capture only one of the two feedbacks [4,12]
and is also shown in Fig. 1 using the model equations (1)
that capture both feedbacks. Shown in the figure are results
of a linear stability analysis carried out once when the
infiltration feedback is switched off by setting the infiltra-
tion contrast to zero, ϕ ¼ 0 [Figs. 1(a), 1(b), and 1(c)], and
once when the uptake-diffusion feedback is switched off by
setting η ¼ 0 [Figs. 1(d), 1(e), and 1(f)]. In both cases, the
destabilization of uniform vegetation occurs through a
stationary nonuniform instability characterized by a real-
valued eigenvalue attaining a maximal value at a finite
wave number as the growth-rate curves shown in Figs. 1(a)
and 1(d) indicate, but the periodic patterns that appear are
different. When the instability is driven by the uptake-
diffusion feedback, the soil-water content in a patch of
denser biomass decreases, and the biomass and soil-water
distributions are antiphase [Fig. 1(b)]. When the instability
is driven by the infiltration feedback, the soil-water content
in a patch of denser biomass increases because of the
increased infiltration rate, and the distributions are in phase
[Fig. 1(e)]. Figures 1(c) and 1(f) show the neutral stability

curves for the uptake-diffusion and the infiltration feed-
backs, respectively.
In general, the two feedbacks act in concert and may

affect one another. We studied the interplay between the
two feedbacks by exploring the instability threshold of the
uniform state in a plane spanned by the parameters δw and ϕ
that control the uptake-diffusion and infiltration feedbacks,
respectively. Figure 2 shows the instability thresholds for
different values of η. We recall that the parameter η controls
the strength of the uptake-diffusion feedback (along with
δw) and is used here to change the relative strength of the
two feedbacks. Figure 2(a) shows the instability threshold
for a relatively low η value for which the instability is
driven by the infiltration feedback. As the monotonically
increasing threshold line indicates, the alternative uptake-
diffusion feedback counteracts the infiltration feedback by
inducing soil-water diffusion from water-rich vegetation
patches to their dryer neighborhoods and shifts the
instability threshold to higher infiltration contrasts ϕ.
Figure 2(c) shows the instability threshold for a relatively
high η value for which the instability is driven by the
uptake-diffusion feedback. In this case, the threshold line is
monotonically decreasing, indicating that the alternative
infiltration feedback promotes the instability by lowering
down its threshold. This behavior can be understood as
follows. A higher infiltration contrast results in the inter-
ception of more runoff in denser vegetation patches, which
increases vegetation growth and soil-water uptake, and,
therefore, facilitates the instability by the uptake-diffusion
feedback.
At intermediate η values, both feedbacks are equally

important, and the instability threshold line is no longer
monotonic as Fig. 2(b) shows. High values of δw lead to an
instability of the uniform vegetation state by the uptake-
diffusion feedback and to the formation of an antiphase
periodic pattern (point T2 in the diagram). Low values of δw
lead to an instability of the uniform state by the infiltration
feedback and to the formation of an in-phase periodic
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FIG. 2. Threshold lines for the nonuniform stationary instability of the uniform state at different η values representing (a) the
dominance of the infiltration feedback (small value, η ¼ 0.12), (c) the dominance of the uptake-diffusion feedback (large value,
η ¼ 0.3), and (b) comparable influence of the two feedbacks (intermediate value, η ¼ 0.16). The threshold lines separate stability and
instability domains of the uniform state as denoted. (δ�w, ϕ�) denotes a codimension-two point. Parameters: δh ¼ 104.
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pattern (point T1 in the diagram). The instability at T1

occurs despite the fact that the parameters that control it, ϕ
and δh, are held constant. This is because of the counter-
effect that the uptake-diffusion feedback has on the
infiltration feedback.
Interestingly, we find that there is a particular point

(δ�w, ϕ�) in the (δw, ϕ) plane at which the instabilities at T1

and at T2 coincide, but, contrary to what one might expect,
this is not a codimension-two bifurcation; the instability at
(δ�w, ϕ�) is a codimension-one bifurcation characterized by
the growth of a single mode. As Fig. 3 shows, the growth of
this mode results in a periodic pattern that is neither in-
phase nor antiphase. We call this pattern a “rim pattern”
because the soil-water distribution has maxima at the two
rims of each biomass hump or patch.
To better understand the interplay between the two

pattern-forming feedbacks away and in the vicinity of
the point (δ�w, ϕ�), we used a numerical continuation

method to calculate the existence boundaries of periodic
solutions with different wave numbers k, and numerical
stability analysis (in 1d) to evaluate their stability thresh-
olds. The results of this analysis for three different values of
ϕ are shown in Fig. 4 in the form of “Busse balloons,” i.e.,
as graphs of solution wavelength vs the control parameter
δw [12]. The regions with crosses (circles) background
[blue (green) shade online] denote the existence ranges of
solutions representing in-phase (antiphase) patterns, and
the dark shades denote the stability ranges of these
solutions. When ϕ < ϕ� [Fig. 4(a)], the uniform state is
stable for intermediate δw values and loses stability to
antiphase (in-phase) patterns as δw is increased (decreased)
past a threshold value. The Busse balloons associated with
the two instabilities are separate, implying the existence of
either in-phase patterns or antiphase patterns depending on
the value of δw. When ϕ ¼ ϕ� [Fig. 4(b)], the two Busse
balloons touch one another at the codimension-two point,

FIG. 3 (color online). The stationary periodic patterns that develop beyond the instabilities of the uniform state. Panels (a) and (c) show
the in-phase and antiphase patterns obtained by instabilities driven by the infiltration and uptake-diffusion feedbacks, respectively. Panel
(b) shows the rim pattern that results beyond the codimension-two point of the two instabilities.

π

δδδ

φ>φ∗φ=φ∗φ<φ∗

FIG. 4 (color online). Busse balloons of periodic solutions below (ϕ < ϕ�), at (ϕ ¼ ϕ�), and above (ϕ > ϕ�) the codimension-two
point [see Fig. 2(b) for the definition of ϕ�]. The region with crosses (circles) [blue (green) shade online] represents the existence range
of in-phase (antiphase) solutions. The darker shades denote stable solutions. The dashed line denotes the wavelength that corresponds to
the maximal growth rate as calculated by the linear stability analysis. The stability of the solutions was calculated using numerical linear
stability analysis, where a domain length of 10L was taken (where L ¼ 2π=k is the wavelength of the solution).
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and when ϕ > ϕ� [Fig. 4(c)], they overlap. As the dark
shades indicate, there exists a continuous band of stable
periodic patterns ranging from in-phase patterns at low
wavelengths to antiphase patterns at high wavelengths that
includes the rim pattern that is neither in-phase nor
antiphase (dashed line). This pattern diversity is higher
than the diversity of patterns that would have resulted from
a codimension-two bifurcation (simultaneous growth of
distinct in-phase and antiphase modes) because it includes
all intermediate patterns.
The predicted multiplicity of stable biomass-water pat-

terns ranging continuously from in-phase to antiphase
patterns bears on the biodiversity of water-limited ecosys-
tems. Water-limited landscapes often consist of woody and
herbaceous vegetation (e.g., shrubs and annuals). The
woody species generally form spatial patterns of biomass
and soil water to which the herbaceous community
responds. The continuous range of the soil-water distribu-
tions formed by the multiplicity of stable woody patterns
provides a wide variety of complementary habitats for
herbaceous species. These habitats consist of water-rich
areas and divide into three major classes: open areas
between woody patches (antiphase pattern), woody-patch
areas (in-phase patterns), and rims of woody patches (rim
patterns). Landscapes in which all pattern types appear can
accommodate high species diversity because they provide
habitats that make various compromises in terms of
exposure to light, nutrients, grazing, etc.
The merging of two independent modes into a single

mode at a codimension-two point of two Turing instabil-
ities can be found in other models too. As an example, we
mention a three-variable reaction-diffusion model for an
activator and two inhibitors that has been introduced to
describe patterns in gas-discharge systems [16]. For this
model to show the above behavior, we have to assume
inversely coupled inhibitor diffusion coefficients so that the
acceleration of one instability is accompanied by the
deceleration of the other. These examples raise an interest-
ing mathematical question: does the co-occurrence of two
or more instabilities that share the same spectral properties
(eigenvalues of the linear problem) necessarily imply a
codimension-one bifurcation that involves the growth of a
single mode? Studies of this question can shed light on the
generality of the results reported here.
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