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Inelastic collisions of ultracold atoms or molecules are analyzed using very general arguments. In free space,
the deactivation rate can be enhanced or suppressed together with the scattering length of the corresponding
elastic collision via a Feshbach resonance, and by interference of deactivation of the closed and open channels.
In reduced dimensional geometries, the deactivation rate decreases with decreasing collision energy and does
not increase with resonant elastic scattering length. This has broad implications; e.g., stabilization of molecules
in a strongly confining two-dimensional optical lattice, since collisional decay of excited states due to inelastic
collisions is suppressed. The relation of our results to the Lieb-Liniger model for bosonic atoms is addressed.
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Feshbach resonances �1,2� have been used to control
atomic interactions in trapped ultracold quantum gases by
tuning a magnetic field near a diatomic molecule Feshbach
resonance to convert atoms into weakly bound molecules.
For fermionic atoms the molecules formed were remarkably
long lived �3�, whereas for bosonic atoms in a BEC �4�,
collisional decay of the highly excited vibrational molecular
state occurs �5� and only a small fraction of molecules is
observed in this case.

Here we show, using very general scattering theory argu-
ments, that inelastic ultracold collisions in reduced dimen-
sion can be strongly suppressed. A similar effect has been
predicted �6� within the exactly solvable Lieb-Liniger �LL�
many-body model for indistinguishable bosons in one-
dimension �1D� �7�, however, other processes, such as reflec-
tion and dissociation in atom-dimer collisions and three-atom
association become allowed when the integrability of the LL
model is lifted �8�. The present results demonstrate that sup-
pression of inelastic collisions is not a special effect of the
integrable LL model, and occurs in all kinds of quasi-1D
scattering processes, e.g., in collisions of atoms and mol-
ecules in atomic waveguides. Quasi-1D scattering occurs in a
gas in the presence of a waveguide potential that tightly con-
fines a 3D gas in two directions so the radial confinement
energy �� �in units where �=1� is much larger than the
collision energy �9�, as in 2D optical lattices �10�, elongated
atomic traps �11�, and atomic integrated optics devices �12�.
This suppression has broad implications, e.g., it can be used
to stabilize molecules produced from bosonic atoms in tight
atomic waveguides, since inelastic energy-transfer collision
rates at low collision energy are significantly reduced relative
to 3D rates. Suppression of inelastic scattering can also occur
in collisions of other excited collision partners �e.g., in
hyperfine excited atom collisions�.

The theoretical framework for calculating atom-diatom
scattering or even more complicated collision processes can
be drawn along the lines of the Arthurs and Dalgarno model
�13�. The scattering state ��� can be expressed in terms of a
sum over basis functions

��� = �
j

� j�r��� j� , �1�

where r is the atom-diatom relative coordinate, � j�r� is the
relative wave function, and �� j� includes internal and center-
of-mass degrees of freedom for channel j. The center-of-
mass motion can be separated from the relative motion for
free space and harmonic trap potentials considered below.
We shall not require details of the collision partners since our
arguments are very general �e.g., they apply to arbitrary
molecule-molecule collisions�.

Low-energy inelastic exoergic collisions in the presence
of a Feshbach resonance can often be treated as multichannel
scattering with zero-range interactions described by bound-
ary conditions for s-wave radial wave functions � j�r�
= r

4� �� j�r�d�r. This method has been validated for multi-
channel scattering in free space �see Ref. �14�, and references
therein� and for harmonic waveguides �15�. In our case of
low energy inelastic scattering resulting in deactivation of
the excited state of a molecule, the boundary conditions take
the form

	d� j�r�
dr

	
r=0

= �
k=o,c,
d�

Ujk�k�0� , �2�

for the input channel �o, the closed channel �c, and the de-
activation products having a set of output channels 
d� �see
Fig. 1�. This method is applicable to collisions of any type of
particles when s-wave scattering is allowed. Note that colli-
sions of broad Feshbach molecules �16� cannot be treated
using the zero-range approach of Eq. �2�, however, in con-
sidering atom-molecule or molecule-molecule collisions, the
resonance does not coincide with the resonance in atom-
atom collisions, and the molecules can be treated as zero-
range objects. For example resonances in collisions of Cs2
molecules have been observed at 12.72 and 13.15 G �17�, far
off the atom-atom resonance at 19.84 G.
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When the coupling of the input channel to the other chan-
nels vanishes, Eq. �2� reduces to the Bethe-Peierls boundary
condition �14�, and U00=−1/abg, where abg is the nonreso-
nant background elastic scattering length. Outside the
interaction region, �o�r� satisfies the Schrödinger equation

−
1

2m
�2�o�r� + Vconf�r��o�r� = E�o�r� , �3�

where Vconf is the confining harmonic waveguide trapping
potential, E is the collision energy, and m is the reduced
mass of the colliding particles. Moreover, the radial wave
functions �c and �d satisfy the Schrödinger equations

−
1

2m

d2�c,d

dr2 ± Dc,d�c,d�r� = E�c,d�r� , �4�

where Dc is the asymptotic value of the closed channel po-
tential, Dd is the deactivation energy for channel d �see Fig.
1�, and we assumed that Vconf	Dc,d. Equations �4� can be
solved to obtain

�c�r� = �c�0�exp�− �2m�Dc − E�r� , �5�

�d�r� = �d�0�exp�ipdr� , �6�

where pd=�2m�E+Dd�. The closed channel has an attractive
potential �Ucc
0� and a single bound state with energy
EFesh=Dc−Ucc

2 / �2m�.
Substitution of Eqs. �5� and �6� into Eq. �2� leads to the

following boundary condition:

	d�o�r�
dr

	
r=0

= −
1

aeff
�o�0� . �7�

Here the length aeff has an imaginary part due to coupling to
the deactivation channels. The deactivation energies typically
substantially exceed all interaction energies. Therefore only
the contributions of zero and first orders in �Ujk� / pd need be
retained, and aeff can be expressed as

aeff = abg
E� − i�c

E� + 
� − i�
, �8�

with widths

� = �

d�

1

pd

 �Udc�2
�

abg�Uoc�2
+ 2
� Re�UodUdc

Uoc
� − abg�Udo�2E�� ,

�c =

�

abg�Uoc�2
�

d�

1

pd
�Ucd�2.

Here, �=abg�Ucc��Uoc�2 / �
m� is the resonance strength, 
 is
the difference of the magnetic moments in the closed and
open channels, and

E� =
�Ucc�

m
��Ucc

2 + 2m�EFesh − E� − �Ucc�� �9�

is an effective detuning. For a tightly bound closed-channel
state, or when the detuning of the collision energy from
the Feshbach energy is small, �EFesh−E�	Ucc

2 /m, then
E��EFesh−E. In this case, neglecting deactivation, one can
approximate aeff by the real effective energy-dependent
length �19�

aeff�E� � abg
1 +

�

E − 
�B − B0�� , �10�

where B−B0��+EFesh/
 is the detuning of the external
magnetic field B from its resonant value B0.

The deactivation cross section can be expressed as

� = 4��
d

�d
* 1

im

d

dr
�d =

4�S

m
��o�0��2, �11�

where �o corresponds to the input channel wave function
normalized to unit incident flux density, and the factor

S = �

d�

1

pd
	Udo −

Udc
�

abgUoc�E� − i�c�
	2

�12�

accounts for interference of deactivation of the closed and
open channel states.

First, we consider collisions in free space �Vconf=0�. The
proper solution of Eq. �3� has the form

�o�r� =�m

p0

exp�ip0 · r� −

1

aeff
−1 + ip0

1

r
exp�ip0r�� ,

�13�

where the collision momentum is p0=�2mE. For low-energy
collisions such that abgp0	1, we find

�o�0� = − �m/p0�1/2aeff. �14�

The deactivation cross section �free=4�S�aeff�2 / p0 diverges
at low collision energies, while the deactivation rate
coefficient

Kfree =
p0

m
�free �

4�S

m
�aeff�2 �15�

has a finite limit proportional to �aeff�2. Deactivation can be
suppressed near E�=0, where aeff is close to zero, and
enhanced near resonance of aeff at E�=−
�, such that

FIG. 1. �Color online� Schematic description of channel
potentials for free space scattering.
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4�

m
�

d�

1

pd
	Udc

Uoc
	2

� Kfree �
4�S

m

 abg
�

��E� = − 
���2

.

�16�

Under certain conditions it can also be suppressed due to
interference in the factor S.

Consider now collisions in a harmonic waveguide poten-
tial Vconf=m��

2 r�
2 /2, where �� and r� are the transverse

frequency and coordinate, respectively. This problem has
been analyzed in Refs. �9,15� for a single-channel Huang
pseudopotential, which is equivalent to the Bethe-Peierls
boundary condition. �See also Ref. �18� for finite-range po-
tentials.� The case of a multichannel �-function interaction
has been considered in Ref. �19� using a renormalization
procedure. Equations 17 and 19 in Ref. �19� express the
proper solution of Eq. �3� in terms of the transverse Hamil-
tonian eigenfunctions �n0� with zero angular momentum
projection on the waveguide axis z,

�o�r� = a���m

p0

exp�ip0z��00�

−
1

2
ma�Tconf�p0��

n=0

�
exp�ipn�z���n0�
�n − �p0a�/2�2� . �17�

Here a�= �m���−1/2 is the transverse harmonic oscillator
length, pn=�2m�E− �2n+1���� is the longitudinal channel
momentum,

Tconf�p0� =
2

ma�


 a�

aeff
+ ��1

2
,− �a�p0

2
�2��−1

�18�

is the transition matrix, and ��� ,�� is the Hurwitz zeta
function �15�. The wave function �17� is normalized so
the average incident flux density per waveguide area �a�

2

is unity. The sum in Eq. �17� diverges as r→0. The divergent
part can be evaluated as a� /r �15�. This leads to
�o�0�=− 1

2ma�
2 �m / p0Tconf�p0�, and to the deactivation rate

coefficient Kconf=�ma�
4 �Tconf�2S.

For weak confinement, a�p0�1, approximation �49� in
Ref. �19� leads again to Eq. �13� for the wave function and to
Eq. �15� for the deactivation rate. For strong confinement,
i.e., when a�p0	1, approximation �41� in Ref. �19� leads to

Tconf�p0� � − i
p0

m
�1 +

i

2
Ca�p0 − i

a�
2 p0

2aeff
�−1

, �19�

where C�1.4603. At low collision energies, or at large
aeff, where p0	 �aeff� /a�

2 , the wave function at the origin,
�o�0�� i

2a�
2 �mp0, is much less than the corresponding value

of �o�0� in free space �14�. Thus confinement prevents the
particles from occupying the same position. A similar effect
is responsible for fermionization of 1D bosons with strong
interactions �9�. Under these conditions the deactivation rate,
Kconf�a�

4 p0
2 / �4�aeff�2�Kfree, can be substantially suppressed

by confinement.
This conclusion is graphically demonstrated in Fig. 2

under conditions when aeff is expressed by Eq. �10�. It
shows resonances in the deactivation rate at E�=−
� for

collision energies comparable to �� and in free space, as
well as deactivation suppression near E�=0. At low collision
energies, when

p0 	 �abg�/a�
2 , �20�

deactivation under confinement does not have resonances
and can be strongly suppressed even compared to the non-
resonant process in free space. Suppression appears also at
E= �2k+1���, where excitations of transverse waveguide
modes become open, leading to jumps in the elastic scatter-
ing amplitude �19,20�.

The above results are obtained for a system composed of
two arbitrary particles interacting via s-wave scattering. A
suppression of inelastic collision has been predicted in Ref.
�6� for a many-body system of 1D indistinguishable bosons
using the LL model �7�. However, as we shall see below, the
suppression is mostly a two-body interaction effect even in
this model.

Consider first the two-body scattering process with par-
ticle momenta p1 and p2. The two-body correlation function
with the particles at the same position

g2
�2��p1,p2� = ��p1p2

�2� �0,0��2 =
2

L2

�p1 − p2�2

�p1 − p2�2 + 4m2Ua
2

�21�

is the probability to find two particles at the same place. Here
�p1p2

�2� �z2 ,z1� is the LL wave function �7� with unit norm in
interval �0,L� �L→��, and Ua�2abg�ma�

2 �1−Cabg/a���−1

is the interaction strength �9�. Equation �21� already de-
scribes qualitatively the behavior of g2 when the ratio of the

FIG. 2. �Color online� Scaled deactivation rate coefficient
Km

4�Sa�
2 as a function of scaled magnetic field detuning

b=
�B−B0� / �2���− 1
2 and collision energy �=E / �2���− 1

2 , calcu-
lated for abg=0.1a� and 
�=2��. In the confined geometry, the
solid and dashed curves correspond to �=10−3 and �=0.5, respec-
tively, whereas the free space results are given by the dot-dashed
and dotted curves, respectively. The inset shows the deactivation
rate versus � in confined geometry for b=0 �solid curve� and
b=100 �dashed curve�.
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interaction to collision energies is large, as obtained in Ref.
�6�, g2��p1− p2�2 /Ua

2.
In the N-body case, the two-body correlation function g2

�N�

can be estimated as a sum of g2
�2� over all pairs of the collid-

ing particles with the quasimomenta pj and pj�,

g2
�N� � �

j
j�

g2
�2��pj,pj�� �

L2

2
� dp1dp2f�p1�f�p2�g2

�2��p1,p2� ,

�22�

where the values of the quasimomenta pj are determined by
boundary conditions and the summation is replaced by inte-
gration with the quasimomentum distribution functions f�p�
�7�. The system properties are determined by the dimension-
less parameter �=2mUa /�, where �=N /L is the linear par-
ticle density. Approximate analytical expressions for f�p� in
the ground state have been obtained in Ref. �7� for two
regimes. In the mean-field one, where �	1, substitution
of f�p���−1�−1/2�1− p2 / �4�2�� into Eq. �22� leads to
g2

�N���2, in full agreement with the results of Ref. �6�. In
the Tonks-Girardeau regime, ��1, where f�p��1/ �2��
for �p�
�� and f�p�=0 otherwise, Eq. �22� leads to
g2

�N��2�2�2 / �3�2�. This value is half the exact value
determined in Ref. �6�. The difference is due to the highly-

correlated behavior of the Tonks-Girardeau gas, while Eq.
�22� includes only an average with independent quasimo-
mentum distributions of the two particles. However, this ex-
pression describes the correct behavior of g2

�N� as �→�,
leading to suppression of all kinds of collision phenomena
under tight confinement when mUa /��1 �this condition has
the same meaning as Eq. �20��.

In summary, inelastic collision rates in free space are pro-
portional to �aeff�2, show resonances and dips and are capped
by Eq. �16�. Interference can suppress the inelastic rate. In
quasi-1D scattering at low collision energies �see Eq. �20��,
inelastic collisions do not have resonances and are sup-
pressed. This effect appears in collisions of any type of at-
oms or molecules interacting via s waves, and is not an effect
of the integrability of the 1D Bose gas LL model, unlike
suppression of other processes in 1D �see Ref. �8��.
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