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Abstract. Two problems incorporating a set of horizontal linear potentials crossed by a sloped
linear potential are solved analytically and compared with numerical results: (a) the case where
boundary conditions are specified at the ends of a finite interval and (b) the case where the sloped
linear potential is replaced by a piecewise-linear sloped potential and the boundary conditions
are specified at infinity. In the approximation of small gaps between the horizontal potentials, an
approach similar to the one used for the degenerate problem (Yurovsky V A and Ben-Reuven A
1998J. Phys. B: At. Mol. Opt. Phys.311) is applicable for both problems. The resulting scattering
matrix has a form different from the semiclassical result obtained by taking the product of Landau–
Zener amplitudes. Counterintuitive transitions involving a pair of successive crossings, in which
the second crossing precedes the first one along the direction of motion, are allowed in both models
considered here.

1. Introduction

Transitions in multistate curve crossing may be represented intuitively as a sequence of two-
state crossings and avoided crossings. In the absence of turning points near the crossings, one
would expect that the crossings should occur in the causal ordering of the crossing points along
the direction of motion (see the broken arrow in figure 1). It is, however, known from quantum
close-coupling calculations that certaincounterintuitivetransitions may also be allowed [1–3],
in which the causal arrangement may be broken, letting the second crossing point precede the
first one with respect to the direction of motion (see the full arrow in figure 1). Such transitions
are forbidden generally in analytical semiclassical theories of multistate curve crossing.

The concept of counterintuitive transitions [1–3] has recently received some attention
in the theory of cold-atom collisions, in particular regarding the problem of incomplete
optical shielding (or suppression) of loss-inducing collisions (see [2–4] and references therein).
Optical shielding of a colliding pair of cold atoms is attained by subjecting an atom to a laser
field with the laser frequency shifted to the blue of an asymptotic atomic resonance frequency.
The laser field couples the ground molecular state to a repulsive excited molecular state (which
correlates asymptotically to the state in which one of the atoms is excited). According to
the ordinary (single-crossing) Landau–Zener (LZ) theory [5], the radiative coupling forms
a repulsive barrier which diverts and reflects the atoms approaching each other in their
ground states. This theory predicts an exponential decrease of the penetration (transmission)
probability as the laser power is increased. Experiments indicate, however, that this shielding
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Figure 1. A schematic illustration of the model of a sloped piecewise-linear potential crossing a
set of (n = m = 2 here) quasi-degenerate groups of horizontal potentials (d1 = 2, d2 = 3 here).
Negative numbers denote transmission channels for waves entering from the right. The truncated
linear model involves only the finite interval between−R′ andR′′. Broken and full arrows show
intuitive and counterintuitive transitions, respectively.

efficiency saturates at a certain ‘hangup’ value, at which the transmission probability stays
finite.

In some situations the optical shielding effect can be explained by a semiclassical multiple-
crossing model, associated with a pair of transitions of the intuitive kind involving partial-wave
channels [4]. However, in other situations, in which the former transitions are impeded by
various constraints (e.g. centrifugal barriers), it is possible, as demonstrated by close-coupling
calculations [2], to attribute the incomplete shielding effect to transitions of the counterintuitive
type.

In semiclassical approaches, transition amplitudes in multistate systems are usually
constructed from products of single-crossing (or non-crossing) LZ amplitudes [6, 7]. As
already stated, counterintuitive transitions are forbidden in such approaches. Even in
exactly soluble models, such as the Demkov–Osherov model [8], in which the semiclassical
theory provides exact transition amplitudes, counterintuitive transitions are forbidden. This
conclusion holds for non-degenerate channel potentials. In a recent publication [1], the
Demkov–Osherov model has been extended to the case in which some of the horizontal
channel potentials are degenerate. A major observation of that work is that an abrupt change
occurs in the transition amplitudes as the gap between two such parallel potentials narrows
to zero, making all transitions possible. Also, in this limit, the transition amplitudes are no
longer representable as products of single-crossing LZ amplitudes. The range over which the
transition occurs seems to diverge on approaching degeneracy.

The Demkov–Osherov model is rather unusual, requiring a set of flat (horizontal) parallel
potentials crossing a single linear sloped potential. All potentials are assumed to retain these
properties to infinity, disregarding standard boundary conditions used in scattering theory. This
peculiar property, combined with the observations on the passage to degeneracy, have led us
to inquire whether a modification of the potentials at the far wings, away from the crossing
region, may lead to a correction of the Demkov–Osherov results, making the counterintuitive
transitions allowable when the potential gap between the flat channels becomes sufficiently
small.
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We have found that this is indeed the case in the two modified models we have solved. In
one model (described in section 2 below), the domain of the model is truncated, confining it to
a finite range, with boundary conditions defined at its edges. In the other model (described in
section 3), the single-sloped potential is replaced by a piecewise-linear potential (see figure 1),
constructed of three connected segments (one finite central segment at the crossing region,
and two semi-infinite segments in the wings). We show here, with the help of an analytical
perturbation theory, that both models allow for counterintuitive transitions. The probability of
these transitions diminishes as the gap between the adjacent horizontal potentials is increased.
These results, derived from the analytical theory, are compared with numerical solutions of
the associated quantum close-coupling equations in section 4.

2. Truncated linear problem

2.1. Statement of the problem

Consider a sloped linear potential crossing a set of horizontal potentials (figure 1), bunched
into some quasi-degenerate groups. (The criteria defining quasi-degeneracy will be specified
below.) The case of exact degeneracy may be reduced to the non-degenerate problem in the
manner described in [1] and is therefore not considered here.

Let us denote as|0〉 the (internal) channel state with the sloped potentialV0, and as|jν〉
the channels with horizontal potentialsVjν , where 16 j 6 m denotes a group of quasi-
degenerate states and 16 ν 6 dj denotes a state within the group. The states are arranged
so thatVjν < Vjν ′ for ν < ν ′ andVjν < Vj ′ν ′ for j < j ′ and allν andν ′. The origin on
the external coordinate axisR is chosen as the classical turning point on the sloped potential,
so thatV0 = E0 − fR, whereE0 is the total collision energy andf is the repulsive force.
The collision energy also determines the highest open channel, withVndn < E0 (n 6 m). The
problem is considered with boundary conditions defined on a finite interval−R′ < R < R′′.

Substitution of the total wavefunction9 in the form

9 =
m∑
j=1

dj∑
ν=1

ajν(R)|jν〉 + b(R)|0〉 (2.1)

into the Schr̈odinger equation leads to the set of close-coupling equations for the coefficients
ajν(R) andb(R),

− 1

2µ

∂2ajν

∂R2
+ Vjνajν + gjνb = E0ajν (16 j 6 m)

− 1

2µ

∂2b

∂R2
− fRb +

m∑
j=1

dj∑
ν=1

gjνajν = 0.
(2.2)

(Atomic units are used here and in what follows.) Hereµ is the reduced mass, and the coupling
constantsgjν are assumed to be real andR-independent. Without loss of generality, we can
also assume that the horizontal potential channels are not coupled directly onto each other (see
[8]).

The solution presented in [1] for the non-degenerate case is applicable to the system
discussed here if all the following conditions hold:

R′, R′′ � max

(
g2
jν

f (E0 − Vjν) ,
E0 − V jν

f
,

glν ′gjν

|Vlν ′ − Vjν |f
)

(l 6= j) (2.3)

and

R′, R′′ � gjν ′gjν

|Vjν ′ − Vjν |f . (2.4)
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The scattering matrix (see (5.2) in [1]) may then be rewritten, using the present notation, as

S lin
00 = exp(−2310 + 2i3′)

S lin
jν,0 =

√
1− exp(−2λjν) exp(−3jν −310 + 2i3′)

S lin
−jν,0 = −

√
1− exp(−2λjν) exp(3jν −310 + λjν) S lin

−lν ′,−jν = 0

S lin
lν ′,jν =

√
(1− exp(−2λlν ′))(1− exp(−2λjν)) exp(−3lν ′ −3jν + 2i3′)

S lin
−lν ′,jν = −

√
(1− exp(−2λlν ′))(1− exp(−2λjν)) exp(3lν ′ −3jν + λlν ′) (Vlν ′ > Vjν)

S lin
−jν,jν = exp(−λjν)
S lin
−lν ′,jν = 0 (Vlν ′ < Vjν).

(2.5)

The remaining scattering matrix elements are obtained by time-reversal symmetry,S lin
k′ν ′,kν =

S lin
kν,k′ν ′ . Here channels±jν correspond to the system in the state|jν〉 atR→±∞, and

λjν = π
µg2

jν

pjνf
pjν =

√
2µ(E0 − Vjν)

3jν =
∑
ν ′>ν

λjν ′ +
n∑

j ′=j+1

dj ′∑
ν ′=1

λj ′ν ′ 3′ =
m∑

j=n+1

dj∑
ν=1

|λjν |.
(2.6)

The elements of the scattering matrix (2.5) have the form of a product of LZ amplitudes. The
counterintuitive transitions are forbidden here, as can be seen from the last equality of (2.5).

The situation changes once condition (2.4) is removed; i.e. if the quasi-degenerate states
are close enough, given a certain truncation range. We show here that, under appropriate
conditions, one can treat this case by starting from the approach described in [1] for the
degenerate problem.

The orthogonal transformation

|jκ〉′ =
dj∑
ν=1

A(j)κν |jν〉 a′jκ (R) =
dj∑
ν=1

A(j)κν ajν(R) (2.7)

performed by the matrix

A
(j)

0ν = gjν/gj gj =
( dj∑
ν=1

g2
jν

)1/2

(2.8)

described in [1, 9], leaves only one (κ = 0) of the new basis states in thej th group coupled
to the sloped potential channel. Unlike the strictly degenerate case considered in [1], in the
quasi-degenerate case this transformation leads to the non-diagonal potential matrix

V
(j)

κ ′κ =
dj∑
ν=1

A
(j)

κ ′νVjνA
(j)
κν . (2.9)

The transformed close-coupling coefficientsa′jκ (R) obey the following equations:

− 1

2µ

∂2a′jκ
∂R2

+
dj−1∑
κ ′=0

V
(j)

κκ ′ a
′
jκ ′ = E0a

′
jκ (κ 6= 0) (2.10)

− 1

2µ

∂2a′j0

∂R2
+
dj−1∑
κ=0

V
(j)

0κ a
′
jκ + gjb = E0a

′
j0 (2.11)

− 1

2µ

∂2b

∂R2
− fRb +

m∑
j=1

gja
′
j0 = 0. (2.12)
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Thus, the non-interacting channels (κ 6= 0) will be coupled with other channels in this quasi-
degenerate group by the non-diagonal elements of the matrix (2.9). In the case of strict
degeneracy,Vjν is ν independent and the matrix (2.9) is then diagonal, as required in [1].

2.2. Perturbation theory

Let us solve equations (2.10)–(2.12) under conditions in which the non-diagonal elements of
the potential matrix (2.9) may be considered as a small perturbation. The orthogonality of the
matrixA(j)κν allows us to evaluate the magnitude of these elements in terms of the characteristic
width of the quasi-degenerate group,1Vj , defined as

dj−1∑
κ,κ ′=0

(
V
(j)

κκ ′ − V (j)00 δκκ ′
)2 = dj∑

ν=1

(
Vjν − V (j)00

)2 = dj1V 2
j . (2.13)

Thus, a small1Vj means a weak perturbation.
The unperturbed equations are similar to those used in the degenerate case (see [1]). The

unperturbed equations (2.10) are uncoupled. Therefore, the curve-crossing problem has the
following unit-flux normalized plane-wave solutions:

ϕ±jκ = (µ/p′jκ )1/2 exp(∓ip′jκR)|jκ〉′ κ 6= 0 (2.14)

where the signs± denote the location of the source of the incoming wave(±∞), and

p′jκ =
√

2µ
(
E0 − V (j)κκ

)
. (2.15)

The unperturbed equations (2.11) and (2.12) describe the non-degenerate linear curve-crossing
problem considered in [1]. Thus the remaining solutions of the unperturbed problem may
be expressed in terms of the fundamental solutionsaj (R) andb(R), introduced in [1]. The
solution, containing a unit-flux incoming wave in the state|0〉, and an outgoing wave containing
all other coupled states, has the form

ϕ0 = e−30

[
b(R)|0〉 +

m∑
j=1

aj (R)|j0〉′
]

(2.16)

whereaj (R) andb(R) are defined by equations (4.1)–(4.3) in [1], withpj = p′j0 ands±l = 1
for all l. Here

3j =
n∑

j ′=j+1

λj ′ λj = π
µg2

j

p′j0f
. (2.17)

The solution containing unit-flux incoming waves in the states|jκ〉′ may be constructed using
other choices fors±l†. So, the solutions representing waves incoming from the negativeR

direction have the form

ϕ−j0 = (2 sinhλj )
−1/2 exp(−λj/2 +3j − 2i3′)

{
[b(R, s+j = −1)− b(R)]|0〉

+
m∑
l=1

[al(R, s+j = −1)− al(R)]|l0〉′
}
. (2.18)

The remaining solutions, representing waves incoming from the positiveR direction, have the
form

ϕ+j0 = (2 sinhλj )
−1/2 exp(λj/2−3j)

{
[b(R, s−j = −1)− e−2λj b(R)]|0〉

+
m∑
l=1

[al(R, s−j = −1)− e−2λj al(R)]|l0〉′
}
. (2.19)

† Values ofs±l different from 1 will be marked below as additional arguments ofaj andb.
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The evaluation of the perturbation matrix elements connecting the unperturbed wavefunctions
(2.16)–(2.19) and (2.14) includes an integration overR of the products of the exponential
function from (2.14) withaj (R). (One does not have to evaluate similar integrals withb(R),
since the states|0〉 and |jκ〉′, with κ 6= 0, are not coupled.) Using the contour-integral
representation (3.2) in [1], the integral may be transformed into the following form:

R′′∫
−R′

dR exp(±ip′jκR) aj (R) = −i
∫
C

dp ãj (p)
exp(i(p ± p′jκ )R′′)− exp(−i(p ± p′jκ )R′)

p ± p′jκ
.

(2.20)

If conditions (2.3) are satisfied, the asymptotic expansion of the integral may be evaluated in
the manner used in [1] for the evaluation ofaj (R). (The integration contour should enclose all
the poles±p′jκ for eachj simultaneously.) As a result, the matrix elements are expressible as

〈ϕ±jκ |V (j)|ϕ0〉 = Sj0ξ
±
jκ (R

′′)− S−j0ξ
∓∗
jκ (−R′)

〈ϕ±jκ |V (j)|ϕj ′0〉 = δjj ′ξ∓∗jκ (R′′) + Sjj ′ξ
±
jκ (R

′′)− S−jj ′ξ∓∗jκ (−R′)
〈ϕ±jκ |V (j)|ϕ−j ′0〉 = −δjj ′ξ±jκ (−R′) + Sj−j ′ξ±jκ (R

′′).

(2.21)

Here

ξ+
jκ (R) = −i(µ/p′jκ )

1/2V
(j)

κ0

αj (R)

p′j0 + p′jκ
exp(ip′jκR)

ξ−jκ (R) = i(µ/p′jκ )
1/2V

(j)

κ0

[
1

p′j0 + p′jκ
+

πR

λj + iπ

]
αj (R) exp(−ip′jκR)

(2.22)

in which αj (R) are a set of waves of unit-flux normalization appearing in the asymptotic
solution, as defined by (4.9) of [1]. The amplitudesSkk′ are the elements of the scattering
matrix for the non-degenerate case defined by (5.2) of [1]. They are also obtained from (2.5)
by settingdj = 1 for all j and omitting the subscriptν, i.e.

Skk′ = S lin
k1,k′1 (k, k′ 6= 0) Sk0 = S lin

k1,0 S0k = S lin
0,k1. (2.23)

The perturbation matrix elements between the states (2.14) have the form

〈ϕσ ′jκ ′ |V (j)|ϕσjκ〉 = iµ(p′jκp
′
jκ ′)
−1/2V

(j)

κ ′κ

×exp(−i(σp′jκ − σ ′p′jκ ′)R′′)− exp(i(σp′jκ − σ ′p′jκ ′)R′)
σp′jκ − σ ′p′jκ ′

(σ, σ ′ = ±).

(2.24)

The transitions between the unperturbed states are negligible if the matrix elements (2.21) and
(2.24) are small compared to a unit. SinceSkk′ 6 1, the matrix elements (2.21) are small if the
functions (2.22) are small. This imposes the following restrictions onR′ andR′′:

R′, R′′ � 1

1V j

√
E0 − V jν

µ
+

g2
j

f1V j
(j 6 m) (2.25)

which is the opposite of the condition of applicability (2.4) of the solution for the non-
degenerate case. The full conditions of negligibility of the perturbation effect may be written
as a restriction on the characteristic width of quasi-degenerate groups

1Vj � min

(
4(E0 − Vjν), pj (1 +λj/π)

µR′
,
pj (1 +λj/π)

µR′′

)
(2.26)
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recalling that

pj (1 +λj/π)

µR′
= 1

R′

√
E0 − V jν

µ
+

g2
j

|V0(−R′)− E0|
pj (1 +λj/π)

µR′′
= 1

R′′

√
E0 − V jν

µ
+

g2
j

|V0(R′′)− E0| .
(2.27)

Thus, if these conditions are obeyed, the transitions in a truncated quasi-degenerate system
may be described by using the scattering matrix for the degenerate system; i.e. (5.6) and (5.7)
in [1],

Sk′ν ′,kν = g|k′|ν ′g|k|ν
g|k′|g|k|

Sk′k +

(
δνν ′ − g|k|ν

′g|k|ν
g2
|k|

)
δ−kk′ (2.28)

Skν,0 = g|k|ν
g|k|

Sk0 S0,kν = g|k|ν
g|k|

S0k (2.29)

where Sk′k are defined by (2.23) or (5.2) of [1]. The scattering matrix (2.28) cannot
be represented in the semiclassical form as a product of LZ amplitudes, and allows for
counterintuitive transitions (k′ = −k < 0, ν ′ < ν).

3. Piecewise-linear problem

3.1. Transitions in the external regions

In the previous section it was shown that transitions in the quasi-degenerate system confined
to a finite vicinity of the crossing points, defined by the conditions (2.25), may be described
by the scattering matrix for the degenerate system, (2.28) and (2.29). However, transitions
between the quasi-degenerate states do not stop at the edges of this vicinity. Transitions in
the external regions beyond this vicinity ultimately lead to the scattering matrix for the non-
degenerate system (2.5). Let us introduce orthogonal matricesB(k)κν describing the transitions
in the external regions (R > R′′ for k > 0 andR < −R′ for k < 0) between the asymptotic
states||k|ν〉 at infinity and the states||k|κ〉′ at the edges of the internal region. These matrices
are diagonal with respect to transitions between states of different quasi-degenerate groups
since these are fully accomplished within the internal region when the conditions (2.3) are
obeyed. Thus, the scattering matrix (2.5) for the quasi-degenerate system in the infinite range
can be expressed approximately in the form

S lin
k′ν ′,kν ≈ B(k

′)
0ν ′ B

(k)
0ν Sk′k +

∑
κ 6=0

B
(k′)
κν ′ B

(k)
κν δ−kk′ (k, k′ 6= 0) (3.1)

S lin
kν,0 = S lin

0,kν ≈ B(k)0ν Sk0. (3.2)

Here use was made of properties (5.3)–(5.5) of [1] concerning the scattering matrix for the
degenerate states in the transformed basis.

In the limit of strict degeneracy, where the matrix elements (2.21) and (2.24) vanish, and
transitions between the states of the transformed basis cease to exist,B(k)κν = A(|k|)κν , and (3.1)
and (3.2) are reduced to (2.28) and (2.29), respectively, defining the scattering matrix in the
degenerate case.
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The substitution of (2.5) forS lin
kν,0 and (2.23) forSk0 allows us to obtain the following exact

expressions forB(k)0ν :

B
(j)

0ν =
[

1− exp(−2λjν)

1− exp(−2λj )

]1/2

exp(3j −3jν)

B
(−j)
0ν =

[
1− exp(−2λjν)

1− exp(−2λj )

]1/2

exp(3jν −3j + λjν − λj ).
(3.3)

These expressions also obey (3.1) exactly fork 6= k′ when it is independent ofB(k)κν with κ 6= 0.
Hereafter, we shall consider only the case in which each quasi-degenerate group consists

of two states (dj = 2, ν = 1, 2 andκ = 0, 1). In this case the remaining elements ofB(k)κν are
defined by the orthogonality of this matrix, resulting in

B
(±j)
1ν = (−1)ν−1σ±B

(±j)
03−ν (3.4)

whereσ± may be chosen as either +1 or−1.
The matrixB(k)κν obtained in this manner obeys the equations (3.1) only approximately.

By choosingσ+ = σ−, the residuals become smaller than

λj − λj1− λj2

λj
≈ 1Vj

2
(
E0 − V (j)00

) (3.5)

and may be neglected whenever the first criterion in (2.26) is obeyed.
One may expect the inaccuracy of the representation (3.2) and (3.1) to be of the same order

as the matrix elements (2.21) and (2.24). However, the inaccuracy is independent ofR′ and
R′′. This means that the corresponding errors in the transition amplitudes in the central and
external regions cancel each other out in this case of a linear sloped potential. Therefore, the
elementsB(k)κν provide an estimate of the transition amplitudes in the external regions, to the
same accuracy as that provided by the scattering matrix of the degenerate case for the transition
amplitudes in the central region. The amount of inaccuracy may be estimated by the matrix
elements (2.21) and (2.24).

The orthogonality conditions are sufficient to determine the matrixB
(±j)
κν for dj = 2 only,

since only in a two-dimensional space a given vector (the rowB
(±j)
0ν ) has only one unit vector

orthogonal to it (up to a signσ±). The relative signs ofB(+j)1ν andB(−j)1ν are chosen so as to
produce minimal residuals on substitution to (3.1), the absolute signs being insignificant. In the
case of adj -dimensional space withdj > 2 there aredj−1 mutually orthogonal vectors which
are orthogonal to the given vector (the rowB(±j)0ν ). The matrixB(±j)κν may also be considered
as consisting ofdj mutually orthogonal column vector with fixed componentsB(±j)0ν . These
vectors are defined up to a rotation (about theκ = 0 unit vector), characterized bydj − 2
arbitrary angles, and (3.1) may then define only a relative rotation ofB

(+j)
κν andB(−j)κν .

3.2. Total scattering matrix

As was shown in the previous subsection, the scattering matrix for the quasi-degenerate linear
problem may be represented approximately as a product of the scattering matrix for a degenerate
problem, describing transitions in a finite vicinity of the crossing points, and the matricesB(k)κν ,
describing transitions in the external wings. This fact allows us to consider a piecewise-linear
problem (see figure 1), in which the sloped potential consists of three segments of varying
slopes (−f ′ at R < −R′, −f at−R′ < R < R′′, and−f ′′ at R > R′′). If R′, R′′, and
1Vj obey the conditions (2.26), we can associate the transitions atR < −R′ with the matrix
B
(−j)
κν (f ′), at−R′ < R < R′′ with Skk′(f ) and atR > R′′ with B(j)κν (f ′′). Thef arguments
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refer to the forces with which these matrices should be evaluated. The total scattering matrix
can then be written as

S
pl

k′ν ′,kν ≈ B(k
′)

0ν ′ B
(k)
0ν Sk′k(f ) +

∑
κ 6=0

B
(k′)
κν ′ B

(k)
κν δ−kk′ (k, k′ 6= 0)

S
pl

kν,0 ≈ B(k)0ν Sk0(f ) S
pl

0,kν ≈ B(k)0ν S0k(f )

(3.6)

whereB(k)κν is taken asB(k)κν (f
′′) if k > 0 and asB(k)κν (f

′) if k < 0. The same signσ± has been
chosen forB(−j)κν (f ′) andB(+j)κν (f ′′) in order to maintain continuity atf ′ = f andf ′′ = f .
(The angles describing the arbitrary rotations about the direction of the interacting state if
dj > 2, being continuous parameters, may not be determined completely in this manner.) The
elements of the scattering matrix (3.6) cannot be represented as a product of LZ amplitudes.

It is interesting to consider in more detail the elementsS
pl

−jν ′,jν (j > 0) describing
transmission within the same quasi-degenerate group. Substituting (3.3) and (3.4), as well
as (2.23), into (3.6) one obtains

S
pl

−jν ′,jν = [1− exp(−2λ′j )]
−1/2[1− exp(−2λ′′j )]

−1/2

×[√(1− exp(−2λ′jν ′))(1− exp(−2λ′′jν)) exp(−λj − λ′j1δν ′2 − λ′′j2δν1)

+(−1)ν−ν
′
√
(1− exp(−2λ′j3−ν ′))(1− exp(−2λ′′j3−ν))

× exp(−λ′j1δν ′1− λ′′j2δν2)
]

(3.7)

whereλ′jν and λ′′jν are defined by (2.6) withf replaced byf ′ or f ′′, respectively. The
counterintuitive transitions then correspond to the matrix elements

S
pl

−j1,j2 = [1− exp(−2λ′j )]
−1/2[1− exp(−2λ′′j )]

−1/2

×[√(1− exp(−2λ′j1))(1− exp(−2λ′′j2)) exp(−λj )

−
√
(1− exp(−2λ′j2))(1− exp(−2λ′′j1)) exp(−λ′j1− λ′′j2)

]
. (3.8)

In the limit f ′ = f ′′ = f these amplitudes become smaller than (3.5), which serves as a
measure of the inaccuracy of this approximation.

Of special interest is the case in which the potentialV0 in one of the external wings is
horizontal (f ′ = 0 orf ′′ = 0). In this case the present approach is formally inapplicable, since
the finite gap betweenV0 and the other potentials does not allow one to neglect the interaction
even at infinity and to set the asymptotic boundary conditions with the incoming flux in one
channel only. This case may be treated by assuming that the interaction constantsgjν are
gradually turned off towards infinity. This assumption is in agreement with real physical
situations. For example, the laser beam inducing the coupling of atomic states has a finite
width, which is very large in terms of atomic dimensions.

An adiabatically slow turning on of the interaction makes the system stay in the same
adiabatic state. These states are obtained by diagonalization of the potential matrix including
the interactions. If the width of the quasi-degenerate group satisfies condition (2.26) with
pj = 0, and the potentialV0 is well separated from other potentials (conditions (2.3) being
sufficient for this case), the adiabatic states are nothing else but the states|jκ〉′ introduced in
(2.7). In the case ofdj = 2, the adiabatic energy of the interacting channel state|j0〉′ andV0

lie on opposite sides of the adiabatic energy of the non-interacting channel state|j1〉′. Since
the adiabatic potentials do not cross each other, the state|j0〉′ corresponds adiabatically to
|j2〉 asR→∞ and to|j1〉 asR→−∞. This fact is also known in the theory of ‘dark states’
(see [10] and references therein). A more detailed analysis yields

B(+j)κν = 1− δκ,ν−1 B(−j)κν = (−1)κδκ,ν−1 (3.9)
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Figure 2. Transmission probability|S−1ν′,1ν |2 for a truncated linear problem of two horizontal
potentials in one quasi-degenerate group. The pairs of numbers assigned to the plots represent
νν′. The coupling constants are proportional to the square root of the laser intensity. The curves
are obtained using analytical expressions for the quasi-degenerate (QD) and non-degenerate (ND)
cases. The points present results of the numerical close-coupling calculations. The values of
the gaps between the horizontal potentialsV12 − V11 are (a) 6.7× 10−12, (b) 6.7× 10−11 and
(c) 5× 10−10.
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which coincide with the limiting values of (3.3) and (3.4) asf ′ → 0 or f ′′ → 0. Thus, the
results of the present theory are applicable to this case as well.

4. Comparison with numerical results

In order to test the approximations used in the present theory, the scattering matrix was
evaluated by using the analytical theory provided here, and also calculated numerically, by
using the invariant embedding method [11] to solve the associated close-coupling equations,
for a specific model. This model involves only two horizontal potentials (d1 = 2) forming
one quasi-degenerate group (n = m = 1). The parameters of the model were chosen so
as to simulate an optical collision of metastable Xe atoms (see [4]). Hereµ = 66 AMU
(1 AMU = 1.6605× 10−27 kg), collision energyE = 10−9 au (1 au= 4.3597× 10−18 J)
andf = 2.17× 10−10 au/a0 (a0 = 0.052 9177 nm). The coupling constants, which are
dependent on the laser intensityI , were taken asg11 = 9.6× 10−9 [I (W cm2)]1/2 au and
g12 = 5.6 × 10−9 [I (W cm2)]1/2 au. The first criterion in (2.3) requires a large value of
R′ = R′′ = 6 × 103 a0. This value, dictated by the small value of the kinetic energy, is
larger than the range one would normally associate with the shielding process simulated by
this model.

The results for the truncated linear problem are presented in figure 2, using three different
values of the potential gap. The calculations show that for the small gapV12 − V11 =
6.7 × 10−12 au (figure 2(a)), expressions (2.28) and (2.29) for the scattering matrix in
the degenerate case are in good agreement with the numerical results. For the large gap
V12− V11 = 5× 10−10 au (figure 2(c)) the agreement is better with the expressions (2.5) for
the scattering matrix in the non-degenerate case. The numerical results for the intermediate
gapV12− V11 = 6.7× 10−11 au (figure 2(b)) lie between the predictions of the two models.
The latter case corresponds to the actual gap between the energies at the crossing points in
which the s and d partial-wave potentials of the lower (metastable) state of Xe cross the p
partial-wave potential of the excited state. At high intensities, however, the numerical results
tend to the predictions of the quasi-degenerate model (as discussed in section 5 below).

Figure 3. Transmission probabilities|S−1ν′,1ν |2 for a piecewise-linear model with horizontal
wings, showing results of the analytical expressions, in comparison with results of the numerical
calculations (represented by points). The pairs of numbers assigned to the plots representνν′. The
value of the gap between the horizontal potentials isV12− V11 = 6.7× 10−13.
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The numerical calculations for the piecewise-linear model are somewhat more tedious,
as the gap sizes used here require a very wide integration range, reaching near-macroscopic
dimensions. We have conducted calculations for the case in which the two wings are flat
(f ′ = f ′′ = 0), keeping all other parameters the same as in the truncated model discussed
above. Figure 3 shows two transition elements (the intuitive one above and the counterintuitive
one below), demonstrating excellent agreement between the calculations and the analytical
results using (3.6) and (3.9).

5. Discussion

We have solved analytically and numerically model problems that are modifications of the
Demkov–Osherov model of a sloped linear potential curve crossing a set of horizontal ones.
Two types of modifications were considered: (a) truncation, in which the boundary conditions
are determined at the ends of a finite interval and (b) modification of the sloped potential into
a piecewise-linear form. The modified problems can be treated by using the quasi-degeneracy
approximation, which is valid when the criteria (2.3) and (2.26) are obeyed. This approximation
means that the results of the degenerate model discussed in [1] should be used. This model
allows for counterintuitive transitions. The opposite happens when criteria (2.4) are met.
In this case, in which the transition range lies within the range of the finite segment of the
sloped potential, the results of the non-degenerate (i.e. the original Demkov–Osherov) model
apply, in which case counterintuitive transitions are forbidden. It follows from the present
analysis that counterintuitive transitions are generally quite common in situations involving
a sloped potential crossing several horizontal ones. In the unmodified problem (dealt with
by the Demkov–Osherov model), contributions coming from different parts of the transition
region cancel each other out, and lead to the disappearance of the counterintuitive transitions.
Such a compensation no longer takes place when the conditions of quasi-degeneracy (2.26)
are obeyed.

The criteria (2.26) allow for an interpretation that stems from the viewpoint of the
uncertainty principle. Let us denote by1pj = µ1Vj/pj the characteristic difference of
momenta in the quasi-degenerate group for a given total energy, and byt ′ = µR′/pj and
t ′′ = µR′′/pj the characteristic times of travelling fromR′′ to 0 and from 0 toR′, respectively.
Using this notation, the criteria (2.26) may be written in one of the following forms:

1pj max(R′, R′′)� h̄(1 +λj/π)

1Vj max(t ′, t ′′)� h̄(1 +λj/π).
(5.1)

The first form means that the momenta in the quasi-degenerate states are indistinguishable at
the given coordinate interval. The second one means that the potential energies of the quasi-
degenerate states are indistinguishable for the given travelling time. The factor(1 + λj/π)
describes a broadening of the uncertainty as the coupling increases. As one may see from
figure 2, the higher the intensity becomes, the larger the value of1Vj applicable in the quasi-
degenerate approximation.

The expansion of the applicability region in the quasi-degenerate model as the coupling
constants increase, leads to an interesting property of the transmission amplitudes, that
may be interpreted as a stabilization effect. Let us consider, for example, a case in which
gj1 = gj2 = · · · = gjdj = d−1/2

j gj . As long as thegjν are small, the criteria (2.4) are obeyed,
and the system should be considered as a non-degenerate system. The amplitude of elastic
transmission in the state|jν〉 is S−jν,jν = exp(−λjν) (see (2.5)). This amplitude decreases
exponentially as the coupling constant increases. Upon further increasinggjν , conditions (2.4)
are violated, but conditions (2.26) for the applicability of the quasi-degeneracy approximation
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are validated. The transmission amplitudeS−jν,jν = 1−[1−exp(λj )]/dj (see equation (2.28))
is close to unity ifdj is large. Moreover, the higher the coupling constants, the more states
may be bunched into the quasi-degenerate group, i.e.dj becomes larger, and the closer to unity
this transmission amplitude becomes.

6. Conclusions

We consider here two types of modifications of the exactly soluble Demkov–Osherov model
of a sloped linear potential curve crossing a set of horizontal curves.

(a) Truncation of the domain of the model with the boundary conditions specified at the
truncation points.

(b) Deformation of the sloped potential into a piecewise-linear shape.

These two modified problems are considered in the quasi-degeneracy approximation. The
main results of the present analysis are that the transition amplitudes in both modified models
are not to be represented in the semiclassical form of a product of LZ amplitudes, and that both
models allow for counterintuitive transitions, which are completely forbidden in semiclassical
theories, as well as in the original analytically soluble Demkov–Osherov model.

Acknowledgments

This work was supported in part by grants from the US–Israel Binational Science Foundation
(PSJ and YBB) and by the US Office of Naval Research (PSJ).

References

[1] Yurovsky V A and Ben-Reuven A 1998J. Phys. B: At. Mol. Opt. Phys.311
[2] Napolitano R, Weiner J and Julienne P S 1997Phys. Rev.A 551191
[3] Suominen K-A 1996J. Phys. B: At. Mol. Opt. Phys.295981
[4] Yurovsky V A and Ben-Reuven A 1997Phys. Rev.A 553772
[5] Landau L D 1932Phys. Z. Sowjetunion2 46

Zener C 1932Proc. R. Soc.A 137696
Stückelberg E C G1932Helv. Phys. Acta5 369

[6] Child M S 1991Semiclassical Mechanics with Molecular Applications(Oxford: Clarendon)
[7] Nakamura H 1987J. Chem. Phys.874031

Zhu C and Nakamura H 1997J. Chem. Phys.1062599
[8] Demkov Yu N and Osherov V I 1967Zh. Eksp. Teor. Fiz.531589 (Engl. transl. 1968Sov. Phys.–JETP26916)
[9] Kayanuma Y and Fukuchi S 1985J. Phys. B: At. Mol. Phys.184089

[10] Arimondo E 1996Progress in Opticsvol 35 ed E Wolf (Amsterdam: North-Holland) p 257
[11] Singer S I, Freed K F and Band Y B 1982J. Chem. Phys.771942

Tuvi I and Band Y B 1993J. Chem. Phys.999697
Band Y B and Tuvi I 1984J. Chem. Phys.1008869


