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Engineering entanglement: The fast-approach phase gate

Dan Vager, Bilha Segev,* and Y. B. Band
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
(Received 6 September 2004; published 18 August 2005)

Optimal-control techniques and a fast-approach scheme are used to implement a collisional controlled-phase
gate in a model of cold atoms in an optical lattice, significantly reducing the gate time as compared to adiabatic
evolution while maintaining high fidelity. Objective functionals are given for which optimal paths are obtained
for evolution that yields a controlled-phase gate up to single-atom Rabi shifts. Furthermore, the fast-approach
procedure is used to design a path to significantly increase the fidelity of nonadiabatic transport in a recent
experiment. In addition, the entanglement power of phase gates is quantified.
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I. INTRODUCTION

Quantum information processing with cold atoms in opti-
cal lattices [1-7] and in microtraps [4,5,8,9] relies on the
ability to entangle nearest-neighbor atoms in an efficient
controlled way. The effective trapping potential in optical
lattices can have the form of a double well where the dis-
tance between minima, the well separation height, the fre-
quency of each well, etc., can each be manipulated by con-
trolling the lasers, using different combinations of laser
frequencies and bias fields [10]. Ideally, each atom is initially
in one of the optical wells, and single qubits are registered
into each atom’s state. The atom’s internal states (e.g., hy-
perfine levels) [3,4] or motional states in the trap [6,8] can be
used as a computational basis, |n), where n=0,1. A two-
qubit gate is implemented by bringing the atoms together and
letting their wave functions overlap [3-8,11]. During this
overlap, a phase that depends on the two-qubits state,
|m,ny=|m)®|n), is accumulated because of the atom-atom
(molecular) interaction. Two-qubit phase gates based on
this scheme were suggested [3-5], analyzed [5-8], and
demonstrated [11].

To achieve efficient computation and to be faster than
decoherence processes, it is desirable to generate gates that
operate as quickly as possible [12,13]. Cirac and Zoller [13]
discuss the slow two-qubit collisional gate as one among two
serious obstacles (the other is decoherence) to quantum com-
puting with atoms in optical potentials. In designing a fast
collisional gate, one is faced with the problem of leakage
outside the computational subspace due to rapid switching of
the control parameters. A theoretical question with immedi-
ate practical impact on the feasibility of quantum computa-
tion emerges: How fast can such a gate be? Previous theo-
retical work used adiabatic evolution to ensure the fidelity of
the gate. In a recent experimental implementation [11], the
time scale for motion, 40 us, was chosen “to avoid any
vibrational excitations.”

Designing a fast two-qubit collisional gate is the purpose
of this paper. We propose a fast-approach phase gate and use
optimal control to implement it. We first define the two-qubit
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¢ phase gate and explain its importance. Next we review the
adiabatic realization of such gates in time-dependent optical
potentials. We then suggest the fast-approach scheme
wherein adiabaticity is not required. Optimal control is ap-
plied and the nature of the resulting dynamical path is ana-
lyzed. Section II describes two-qubit phase gates, Sec. III
sets out a simple model of a two-qubit phase gate, and Sec.
IV presents the optimal control scheme for optimizing the
gate, thereby implementing a fast controlled phase gate. In
Sec. V we present numerical results of the optimization, Sec.
VI applies the fast-approach technique to improve the gate
experimentally demonstrated by [11], and Sec. VII concludes
the paper. Appendix A shows that the phase ¢ of a two-qubit
phase gate uniquely determines the entanglement power of
the gate, and Appendix B describes how to implement a non-
degenerate double well potential in an optical lattice.

II. TWO-QUBIT GATE

The two-qubit ¢ phase gate is designed to entangle two
interacting atoms (qubits) to a desired degree:

P(¢)|m.n) = exp(i6,,)|m,n),

6o + 611 — 61 — 619 = ¢(mod 2). (1)
This family of gates includes the controlled-phase gate:

CP(¢)|m,n) = exp(imng)|m.n). 2)

Any P(¢) gate can be combined with unitary single-qubit
Rabi shifts, exp(ia,,) exp(iB,), to create the CP(¢) gate,
where  6,,,+a,,+B,=mnd(mod 27), while byy+6,,— 0
— 6, is invariant under these shifts [6]. The phase ¢ has an
intrinsic physical feature in that it parametrizes uniquely the
entanglement power of the gate (see Appendix A), and thus
is intimately connected with the coupling strength of the two
atoms during evolution. The controlled-phase gate with
phase ¢=m can further combine with single-qubit operators
to form the controlled-NOT gate, CN|m,n)=|m,n & m), where
@ denotes addition modulo 2. Each of these two-qubit gates
can be combined with a set of generators for single-qubit
gates to form a universal set for quantum computation [15].
In practice, a physical system may evolve more naturally to a
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gate in P(77) other than CN or CP(7). Therefore, in design-
ing a gate, it is better to aim less restrictively for any one of
the equivalent P(¢) gates.

The basic idea of realizing phase gates with a two-particle
system in an external potential is as follows. The external
potential initially localizes the particles far enough apart so
that they may be considered independent. The external po-
tential then changes in time so that wave function overlap
gives rise to correlations due to particle-particle interaction.
The external potential is finally restored to its initial shape,
so that the two particles no longer interact, but are now in a
new correlated state.

III. THE MODEL

As in Refs. [5,6,8,11,13] we focus on a two-qubit
collisional gate wherein nearest-neighbor interaction is
manipulated by a time-dependent potential. A simple model
for this process is a time-dependent Hamiltonian with a
double well potential, whose minima are separated by a tem-
porally varying distance I(z):

2 2
H= P1 + P2 + Vl[xl - l(t)/Z] + Vz[xz + l(l‘)/Z]
2m  2m
+ 2mhwya,8(x; — x,). (3)

In this model the ground and first-excited states of each
trapped atom form a single-qubit computational basis. We
assume distinguishable particles so that no (anti)symmetriza-
tion is required. The trapped particle interaction is modeled
as an s-wave scattering component of a van der Waals inter-
action with scattering length a, that reduces upon integration
over the transverse degrees of freedom to the above one-
dimensional (1D) interaction, and w, is the frequency char-
acterizing an harmonic approximation for the transverse de-
grees of freedom [8]. To avoid problems due to degeneracy,
the two potential wells have different individual eigenvalues.
Otherwise, when the coupling between degenerate qubits is
switched on, there will be fast oscillations between degener-
ate states regardless of how slowly the Hamiltonian changes
in time. Such a double well with different frequencies can be
obtained by two pairs of counterpropagating lasers with
wave numbers k, 2k and a bias electric field E. The lasers’
relative phase and intensities determine details of the double
well potential, while the constant field can be tuned so that
the two minima have the same depth. Varying k by changing
the angle between the incoming beams while increasing E
and tuning the overall intensity can have the effect of chang-
ing the distance between minima in time while keeping the
different trapping frequencies fixed. In Appendix B we
present additional details of an implementation of a nonde-
generate double well potential in an optical lattice.

When the two traps are at a distance [ apart, E,,,(I) and
|m,n;l) are the instantaneous eigenvalues and eigenvectors,
respectively: H|m,n;l)=E,, (I(t))|\m,n;l). Here E,, (1))
=e! +e+u,, (1(1), e} +¢> is the energy of the two atoms in
their noninteracting traps and u,,,([) is the interaction energy,
which depends on the distance /(r). The asymptotic eigen-
states at t=0 and 7, are direct-products of the individual trap
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eigenstates, |m)y=®! and |n)=®2: |m,n)=|m,n;l)=|m)
®|n). Such an initial eigenstate evolves into

Ul 7,0)m,ny= 2 chy (Dm’.n'), (4)

’
m ! n

at time 7, where U(l;1,,1,) is the unitary evolution from time
fy to t; generated by Hamiltonian (3) with a general time-
dependent distance [(f) and the sum is over a complete Hil-
bert space. A two-qubit gate is a closed path I(¢), such that
1(0)=1(7)=1, and the subspace W spanned by {|00), [01), [10),
11)} is restored at time 7= 7, with high fidelity. A nonoperat-
ing gate is one for which [(r)=1,. The distance /, must there-
fore be such that the interaction energy for states in W can be
neglected; i.e., u,,(l)) =0, for 0<n,m<1.

IV. OPTIMIZATION OF THE GATE

We wish to find a path [(¢), such that the restriction of
U(l;7,0) of Eq. (4) on the computational subspace W,
U(l; 7,0)|y is equivalent to the required gate of Eq. (1). We
do so by finding an objective functional J[I(z)], whose mini-
mum is obtained when U(l,7,0)|y is equivalent to the re-
quired phase gate. Given a functional J[], finding an opti-
mum [(f) reduces to well established optimal-control
functional analysis [14]. An iterative procedure is applied;
after solving for a given I(¢), the functional J[I] is evaluated
and a gradient search method is used to update /(¢) as a new,
better, trial function.

In the case of adiabatic evolution, optimal control can be
used to enhance the fidelity of the gate, but it is not essential.
In adiabatic evolution, as long as no energy crossings are
involved, an eigenstate evolves to the same eigenstate, and
Eq. (4) reduces to U(l;T, 0)|m,n)=e‘(i/ﬁ)ng"l"(l(’))d’|m,n).
Equation (1) is trivially satisfied and U((; 7,0)|, is equiva-
lent to a P(¢) phase gate with ¢=[(Q(I(¢))dr, where (1) is
the acquired controlled phase per unit time at distance /
given by

) = =+ L)+ ) =t (D = D). (5

Note that (/) is not monotonic and can have a maximal
value Qy at Iy (e.g., see Fig. 1).

In designing a faster gate, optimal control becomes essen-
tial. Restoring the computational subspace after rapid switch-
ing of the control parameters is not a trivial task. After much
iterative work, using carefully chosen new objectives and
numerical methods as detailed below, we suggest the follow-
ing fast-approach scheme: (a) Change I(t) as quickly as pos-
sible  from 1, to ly, under the constraint that
(mn; Ly|U(L;t(Ly) ,0)|m'n’ ; [y) o S"m;"’, i.e., temporal eigen-
states are restored. (b) Let the atoms interact for a time
~¢/ . (¢) Change I(t) as quickly as possible from Ly back
to ly, such that the overall evolution is diagonal in the com-
putational basis. This is similar to previous suggestions for
the phase gate with two differences: the approach is not to
the smallest possible distance but to the optimized distance
for acquiring an entanglement-effective phase, and the ap-
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FIG. 1. (Color online) The acquired controlled phase per unit
time (), as a function of distance /. The maximal value is at M,
where //A=1.25; a time of 128/ w; is required to obtain a controlled
phase of value .

proach and separation are not required to take place adiabati-
cally. The fundamental bound for the time required to oper-
ate the gate is reduced to ¢/Qy plus the time required to
evolve /() from [, to ly; and back. As shown below, the time
required for the approach and descent is reduced in this way
by an order of magnitude, while high fidelity is maintained.
Before presenting the optimal-control results, we comment
on the choice of objective and the parametrization of 1(r).
The choice of an objective out of the family of all equiva-
lent functionals is crucial. One can use the objective Jg[/]
=—|TryU(l, 7,0)G")| whose minimal value is obtained when
U(l;7,0)|y=G [16]. However, to use this we would have to
single out a specific gate G € P(¢), whereas a physical sys-
tem may evolve more naturally to another. Instead, we define
a new objective J,[1], which is minimal for any P(¢) gate:

Jg[1] = |cooCorCiocts — explid)], (6)

where ¢,,,=c and ¢, is defined in Eq. (4). Similar ob-

jectives are given by J4/F and J /D, where

1
F=(1/4) > |~

o (7)
m,n,k,1=0
and
1
D=(1/4) 2 |e,ml. (8)

m,n=0

are fidelity measures. F' quantifies the unitarity of the evolu-
tion reduced to the subspace W. This measure estimates how
close the evolution is to any two-qubit gate, and 1—-F quan-
tifies leakage outside the computational basis. The closer the
second fidelity measure D is to unity, the closer the eigen-
states within W evolve to themselves at time 7. A stationary
path for J, is necessarily a stationary maximal path for F,D,
but not vice versa.
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To solve the dynamics with Hamiltonian (3), we expand a
general solution {(f) in the basis of eigenstates W,,, of the
nonperturbed Hamiltonian Hy, (a,=0):

HOEDIY () . exp(— é(e}n + ei>r>, 9)

l [
\I,mn(xls-x%l) = (I)ylyl(-xl - 5>(I)i<x2 + 5) . (10)

The Schrodinger equation reduces to
ihf=Uf + iMf, (11)
short for X=

where for an operator X, X is
Xexp(—iHyt/h)X exp(iHyt/ ), and

Ui =7 f dx®,,(x )05 (x )Py ()P} (x,),  (12)

Mkl = <\Ifmn|p2_pl|qjkl>s (13)

mn

with p;= —iﬁ&xi, y=2mhwua,, and x, =x+1/2. We solved the

system of differential equations using a stiff solver, propa-

gating four vectors of the subspace W. The dimension of the

matrices was increased until the solution converged. The ba-

sis we chose is natural for adiabatic evolution, so that larger

matrices were required for the nonadiabatic simulations.
The trial functions for /(z) were parametrized by:

0(q,;6,), forO=<tr=<r
= lp, for [1<t<t2 (14)
0(qy;60,) forty<t<r,

where 0,=1/t, and 6,=(7—1)/(7—t,). This describes a closed
path {i{(t):0<t<}. For t; <t<<t,, I=1, is fixed; we refer to
this as the plateau. The approach and departure from the
plateau are characterized by Q(q;x)Elo+(lo—lp)x2(2x—3)
+x2(x—1)2q(x), where g;(x) are arbitrary polynomials. With

this choice, both [ and [ are continuous. The coefficients of
41, q» along with ¢, t,, 1, (and sometimes 7) are adjusted by
the optimal-control scheme. This parametrization is suitable
for both the adiabatic gate and the fast-approach gate.

V. NUMERICAL RESULTS

In our numerical example the individual potential wells
i=1,2 are harmonic with frequencies w;. The interaction
strength is then characterized by e=2vVmafiw,/\, where
AN=\4+\] and \;=\fi/mw, is the harmonic oscillator
length for well i. (We only consider /> \ to avoid nonper-
turbative effects.) Energy was taken in units of fiw;, length in
units of N, and time in units of 1/w;. The interaction strength
was taken to be €=0.05hw,, corresponding to w,=~ 10w,
a,~0.005\, and N,=1.2\;. All these numbers were chosen
in the range of recent experiments in optical lattices. (For
example, for ’Rb, a,=0.005\ corresponds to w=24 Hz.)
Figure 1 shows Q(I), the controlled phase acquired per unit
time defined in Eq. (5), where in leading order perturbation
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FIG. 2. (Color online) The optimal path /() obtained after opti-
mization for an adiabatic (dashed curve) and fast-approach (solid

curve) gate (/ also plotted for fast-approach).

theory u,,,(I)=U’. Q(I) is nonmonotonic with local extrema
at M, and M,. Most of the entanglement phase is accumu-
lated in our scheme during the plateau. Thus, despite the
phase lost on the way because of the change in sign, we
expect the best plateau to be at M,, where the controlled
phase acquired per unit time is maximal.

We first applied the optimization procedure to an adia-
batic gate. Good fidelity is expected in an adiabatic evolu-
tion. However, propagating adiabatically, one has an error of

the order of /. Using the optimization scheme, the gate was
improved and the error reduced. For the initial / trial function
we took [,=ly=1.25\, 7=300/w,, t;=7-1,=100/ w,, and ¢
=0. This choice was constrained by the requirement that the
evolution be adiabatic; i.e., that |[M|<1. We expect some
phase to be acquired outside the plateau, so we took the
plateau time to be smaller than 77/|Qy| = 128/ w,. The maxi-

mal value of |i| is =0.07\/w,, consistent with adiabaticity.
The optimized parameters are [7'=1.32\=1.06ly, 7"
=100.47w;, and 15"'=200.94w,. The optimized / is shown in
Fig. 2. We ended the optimization with J=0.000 03, F
=0.999 99, and D=0.999 99. Parameter variations of the or-
der of 10% affect D and F to about one part in 10°, while the
acquired phase (here ¢=3.1416) is very sensitive to any
change in [; in particular, 8¢/ ¢=(St,— )/ (t,—1,), since
d=Q(1,)(t,~1,). The coefficients of the evolved computa-
tional basis are shown in Fig. 3.

The fast-approach gate is considered next. We expect the
optimal path for this scheme to be obtained when at the end
of each fast step (approach or departure) all eigenstates in W
are restored to themselves while the required phase differ-
ence is obtained at the plateau. To select a trial function we
therefore choose (1,—1,)=128/w,, lyy=1.25\, t;=11/ w,, and

7=150/w,. This gives nonadiabatic evolution, max(|i|)
~(.64\/w;. The optimized [ is the solid curve of Fig. 2. The
optimized parameters are [”'=136\, 1"'=9.38w,, 1"
=140.49w,, and 77"'=150.22w,. Optimizatlon iterations were
stopped when J=0.006, D=0.997, F=0.999, and ¢=3.14.
The accuracy for F and D is maintained as long as param-
eters for [ are =1% from the optimized values. With such
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FIG. 3. (Color online) Absolute values of the coefficients fnﬁn(t)
[Eq.(9)] for the optimal adiabatic gate. The upper indexes represent
the four initial condition f7 (0) =8 Ojy, 0=<i,j<1. To a good ap-
proximation, eigenstates are self-evolved at all times, as expected in

adiabatic evolution.

variations, the accuracy for ¢ is =0.01. Varying the plateau
time linearly from 0 to 75”"~#{"', while keeping the approach
and departure shapes ﬁxed produces a linear curve for ¢(r)
with slope €2(/,)=0.0237w, with standard deviation ~1074.
With this set of plateau times, the fidelity measures demon-
strate oscillatory behavior about their optimized values with
deviations of about 1073. The coefficients of the evolved
computational basis are shown in Fig. 4. Initial temporal
eigenstates were recovered at the plateau. The approach and
departure times are reduced by a factor of 10, leakage out-
side the computational basis is restricted to less than 0.1%,
while excellent agreement with an ideal P(7r) gate is main-
tained.

7j=01

v
A

Dwrs 50 100

150 00 50 100 150
FIG. 4. (Color online) Absolute values of the coefficients f';{;n(t),

as in Fig. 3, for the fast-approach gate. Eigenstates in W are restored
at the end of each fast step.
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VI. A FURTHER APPLICATION OF THE FAST-
APPROACH PROCEDURE

The fast-approach scheme suggested by our analysis is
essentially model independent. For example, let us briefly
consider the implementation of such a fast-approach scheme
for high-fidelity transport in the experimental system of Refs.
[11] where the computational basis was taken to be the hy-
perfine states of %Rb atoms trapped in an optical lattice in
the Mott insulating regime. The effective potentials experi-
enced by the atoms depended on their internal hyperfine
states and the laser polarization. The gate was not imple-
mented adiabatically. For approach distances of half a lattice
spacing and approach times 7 longer than ~27/ @, where w
is the harmonic frequency at the minimum of the optical
lattice, the degree of infidelity obtained was ~5%. In a pre-
liminary study, we applied optimal control to the approach
step of this gate. The spatial wave packet of the atoms ¢(x
—R(r),1) can be evolved upon moving the trap minima via a
path [(7) such that (R—[)+w?*(R—1)=—I, and the probability
to escape the ground state at time ¢ is given by P(r)=1
—Kpx=1(1),0)| px—R () ,0)2=1 =™ DN where R(r) is
the center of the wave packet and y(r) = R(¢) - () with initial
condition y(0)=0 [17]. Taking \y*(7)+y*(7) as the objec-
tive, we were able to find a smooth path /(r) that reduces the
approach time by 65%, with y>(7) <1072 so that losses were
reduced from several percent to P(7)=~2y(7)2/4\>~10"12.
More work is planned to minimize the run time and to imple-
ment the complete gate, including the time interval of inter-
action, yet clearly our scheme is able to significantly increase
fidelity while somewhat reducing the required time for the
approach.

VII. CONCLUSION

In summary, using optimal control, we improved the adia-
batic phase gate, designed a fast-approach phase gate, and
demonstrated a fast-approach scheme for a simple model and
a recent experiment. More sophisticated models with addi-
tional degrees of freedom could further exploit optimal-
control techniques.

A few last remarks are in order. The 1D model considered
here is obtained in reality from a physical three-dimensional
(3D) trap assuming that the ground state of the transverse
degrees of freedom is maintained through the process. A 3D
model, where the moving potential remains 1D, yet trans-
verse excitations are allowed, could be better for designing a
fast gate. In addition, for any scheme to be practical, it is
essential that the accuracy of the gate depend weakly on
small changes in /. Here we saw that different fidelity mea-
sures are quite robust, while the phase is very sensitive to
changes in /. As a result, the gates can be easily adjusted to
give a P(¢) gate with any ¢ by changing the time duration of
the plateau. In practice, feedback learning techniques may be
used to assure stability and to adjust the phase. Finally, for a
complete scheme of computation, one also needs single-
qubit gates. This is another point at which degeneracy causes
problems, as the computational basis of the two oscillators
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needs to be unentangled. While these points deserve further
study, they were disregarded here, as our main focus was that
one could use optimal-control techniques and a fast-approach
scheme for the implementation of the controlled-phase gate
in models of cold atoms in an optical lattice, significantly
reducing the gates time while maintaining high fidelity.
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APPENDIX A: ENTANGLEMENT POWER OF THE CP(¢)
GATE

An important property of the CP(¢) gate [and hence of
any P(¢) gate] is that the phase ¢ can be used to measure the
entanglement power of the gate. To see this, consider a gen-
eral two-qubit state [W)=3) _ia,,|m.n). The action of
CP(¢) on this state is

A= (‘100 001) _)Xz(aoo doy ),
dyp day djp ody

where o=exp(i¢). Generally, if p is the reduced density ma-
trix of a bipartite pure system, the usual entanglement mea-
sures of p are given by the purity (linear entanglement)
measure M,=-Tr p?, or the Von Neumann entropy M,=
—Tr plog, p. There are important mathematical features of
interest when one chooses a measure, such as convexity.
Here we are only interested in a measure of the degree of
entanglement. The reduced density matrix of two qubits can
be written as

(A1)

p=pP+(1-p)I-P), (A2)
where 0<p=1, P is the one-dimensional projection onto
the p eigenstate of p, and 7 is the identity in the two-level
system subspace. For such a state

M =-[p*+(1-p)], (A3)

M,=—-plog, p—(1-p)log,(1-p). (A4)

The line ordering imposed by these measures is the same line
ordering obtained from the determinant of the reduced den-
sity matrix: det(p)=p(p—1). We therefore use the change in
this determinant as a measure for the entanglement induced
by the gate:

A(V; p) = det(AAT) — det(AAT) (A5)

=2 Relaga a0, (1 - 0)] (A6)
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ootz

where r exp(iy) =agya;,a,0d0;- The maximal change is ob-
tained when r and sin(y+¢/2) are maximal; i.e., when
|a,,\|=1/2 and y=(m—¢)/2. The entangling power of the
CP(¢) gate and hence of any P(¢) gate is

(A7)

maxy(A(V, @) = i sin(9> ) (A8)

2
Maximum entanglement power is obtained for ¢=r (also for
the CN gate).

APPENDIX B: ASYMMETRIC DOUBLE WELL

Two counterpropagating laser beams at a fundamental fre-
quency and at its second harmonic, with wave numbers k and
2k, produce an effective standing wave optical potential of
the form

V(k,x) = Vo[ cos?(kx + 6) + a cos?(2kx)], (B1)

where V), is proportional to the intensity of the fundamental,
a is determined by beam intensities and detuning ratios, and
d'is determined by the relative phase between the fundamen-
tal and second harmonic. The wave number k can be tuned
by manipulating the angle between the right and left laser
beams. The effective potential thus formed is an array of
double wells, with « determining the relative heights of the
well minima. For 6>0, the wells are nonsymmetric. Let
x,(k), x5(k) denote the positions of the minima of a specific
double well, where x,;(k) <x,(k). The greater &, the larger
V(x,(k)) relative to V(x,(k)), as well as V"(x,(k)) relative to
V"(x,(k)). One can add a linear potential of the form

V(x,k) = - A(k)x (B2)

to V(k,x) so the resulting potential V4 will have equal well
minima, Vi {x,(k))=V(x;(k)). This requires

PHYSICAL REVIEW A 72, 022325 (2005)

V(x,(k)) = V(x,(k))
x5(k) = x; (k)
As a result of the additional linear potential, there is an in-
crease in the ratio of the second derivatives at the well

minima of V.. Note that the original potential V(k,x) is a
function of kx, V(k,x)=f(kx); thus

A(k) = Vg (B3)

AR LA T S
V(k',x) —f<k . x) = V(k, . x), (B4)
k' x(k") = kx;(k), (B5)
and hence
Ak") V(K xy (k")) = V(K x, (k)
€T Kok - n @] (50
Vlkox(0) = V5, (K)  AGK)
R (57
A(k)/k is independent of k and (B2) can be written as
V(k',x) =— VoCk'x, (B8)

where C is a constant that may be determined by (B3) for
any k. Thus,

Veiilk,x) = Vo[cos?(kx + &) + a cos*(2kx) — Ckx], (B9)

is a function of kx. For such a potential, variations of k scale
x. The distance [(k) between the two minima in a double well
is thus a parameter scaled by k, I(k")=(k'/k)I(k), while keep-
ing the values of potential values at minimal points unaltered
as well as the ratios of second derivatives at the minima. To
maintain the values of second derivatives at the minimum
constant as one varies k, one can modify the laser intensities
to depend on k such that
Vv

Vo — Volk) =5

= (B10)
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