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Dynamics of short-pulse splitting in dispersive nonlinear media

Marek Trippenbach and Y. B. Band
Departments of Chemistry and Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

~Received 9 January 1997; revised manuscript received 17 June 1997!

We develop a method to precisely propagate short optical pulses through dispersive media with a cubic
self-focusing nonlinear polarization. We show that above the critical cw self-focusing power, onset of pulse
splitting into pulselets separated in time occurs, and for a certain regime of parameters acyclic seriesof pulse
splitting ~into pulselets separated in time! and pulse recombination occurs for diffraction length smaller than
dispersion length. At higher power,another threshold for noncyclic temporal and spatial pulse splitting is
manifest. The physics of these phenomena are described and delineated.@S1050-2947~97!07211-9#

PACS number~s!: 42.65.Re, 42.25.Fx, 42.65.Sf
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I. INTRODUCTION

Nonlinear dispersive systems are omnipresent in nat
One such system that has been of great interest and im
tance since the advent of intense short-pulse light source
that of temporally short optical pulses propagating in isot
pic dispersive nonlinear media. This system has a plethor
technological and scientific applications. Many recent stud
@1–7# have shown that pulse splitting occurs inx (3) media
for pulses with powers beyond the threshold for se
focusing~SF!. Here we show that the phenomena associa
with pulse splitting of intense short optical pulses are c
siderably more complicated and elaborate than previou
imagined. Specifically, we find that in the normal dispers
regime, above the threshold for SF, there are two sepa
mechanisms for pulse splitting, the second mechanism
curring only for pulse intensities above a high intens
threshold. The lower threshold is for temporal pulse splitt
~for diffraction length smaller than dispersion length!,
wherein the pulse splits apart in time. For a certain regime
parameters~to be specified below!, a cyclic series of pulse
splitting and pulse recombination into pulselets separate
time occurs. Thus pulses carry out a series of~a! splitting
into two pulselets separated in time, and~b! recombination
into a central peak; this dance of splitting and recombin
cyclicly recurs. In the Fourier~frequency and wave-vector!
domain, an annular ring forms around the central peak, t
the ring splits apart into separate peaks. For pulse intens
above the higher threshold, temporal and spatial pulse s
ting occurs~but the cyclic process does not occur!. This is a
new mechanism for pulse splitting corresponding to splitt
of pulses in both time and transverse space dimension
occurs for intensities above the higher threshold, with m
tiple pulse breakup transpiring as the pulse propagates.
demonstrate these phenomena using an exact nume
method to propagate short pulses in a nonlinear disper
medium, with dispersion and diffraction treated to all ord
as is necessary for a quantitative description, but the p
nomena occur even when a second-order expansion o
nonlinear Schro¨dinger equation is used. We also present
sults for the anomalous dispersion regime and the reg
where the group velocity dispersion vanishes. Pulse split
occurs in these regimes, but the details of the splitting p
nomena are different than in the normal dispersion regi
561050-2947/97/56~5!/4242~12!/$10.00
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We also investigate the effects of self-steepening on th
phenomena.

Section II describes the propagation equations used
carry out the pulse dynamics, Sec. III contains the numer
results, and Sec. IV contains a summary and conclusion.
Appendix contains details regarding the derivation of t
wave equation used to propagate pulses.

II. PROPAGATION EQUATION

The propagation equation for the slowly varying envelo

of the electric field~SVE!, AW (xW ,t), can be derived by differ-
entiating it with respect to the position coordinate in t

direction of the central wave vectorKW 0, sW05KW 0 /uK0u, which
we choose to be along the space-fixedz axis @8–10#. For
linearly polarized light

]AW ~xW ,t !

]z
5

1

~2p!4E2`

1`

d3KdvAW ~KW ,v!~ i @KW 2KW 0#•sW0!

3ei ~ [KW 2KW 0] •xW2[v2v0] t !1 ignluAW u2AW , ~1!

wheregnl52px (3)v0 /@n(v0)c#. The details of the deriva-
tion are presented in the Appendix.

Due to the dispersion relation, the variablesKW and v
are not independent and the four dimensional integrals
the first term on the right hand side of Eq.~1! can be re-
duced to three dimensions. For numerical applicatio
we eliminate the integral overKz , using the dispersion
relation to expressKz in terms of Kx , Ky , and v: Kz

5Av2n(v)2/c22Kx
22Ky

2. A partial differential equation
~PDE! for the SVE can be obtained by using this expressi
expandingKz appearing in Eq.~1! in powers ofKx , Ky , and
(v2v0) and replacing these variables withi ]/]x, i ]/]y,
and2 i ]/]t, respectively@8#. In what follows we consider a
linearly polarized incident field in an isotropic medium an
therefore we focus on one component of the SVE. Keep
terms up to third order, the PDE forA is @8#
4242 © 1997 The American Physical Society
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56 4243DYNAMICS OF SHORT-PULSE SPLITTING IN . . .
FIG. 1. Pulse intensity versusx andct for various propagation distancesLz ~in mm! as indicated next to the label, for wide pulse a
lower intensity.

FIG. 2. Power spectrum versusdv/c5(v2v0)/c andKx corresponding to Fig. 1.
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]A

]z
52b1

]A

]t
2

i

2
b2

]2A

]t2
1

1

6
b3

]3A

]t3
1

i

2
gxx

3S ]2A

]x2
1

]2A

]y2 D d1
1

3
g txxS ]3A

]x2]t
1

]3A

]y2]t
D

1 ignluAu2A, ~2!

whereb1 is the inverse group velocity,b2 the group velocity
dispersion,b3 the third-order dispersion,gxx the Fresnel dif-
fraction coefficient, andg txx the coefficient of the mixed
space-time third-order terms that account for the spher
nature of the wave front surface of a pulse originating from
point source. For a cylindrically symmetric pulse of wid
w0, or for a pulse whose transversey dimension is large and
can therefore be ignored, Eq.~2! can be written in terms of
the following lengths~the smaller the length, the more im
portant the corresponding term in the PDE!: diffraction
length Ldf5gxxw0

2/25pw0
2/l0, dispersion length

Lds5t0
2/b2, third-order dispersion lengthLTOD5t0

3/b3,
third-order dispersion-diffraction length,Ldsdf5t0w0

2/g txx ,
and nonlinear lengthLnl5(gnluA0u2)21 whereA0 is the peak
amplitude of the pulse. Sincegxx5c/@n(v0)v0#, Ldf is posi-
tive in all our studies. The propagation equation can be w
ten explicitly in terms of these length scales as follows:

]A

]z
52b1

]A

]t
2 i

t0
2

Lds

]2A

]t2
1

t0
3

LTOD

]3A

]t3
1 i

w0
2

Ldf
S ]2A

]x2
1

]2A

]y2 D
1

w0
2t0

Ldsdf
S ]3A

]x2]t
1

]3A

]y2]t
D 1 i

1

uA0u2Lnl

uAu2A. ~3!
al
a

t-

When the propagation equation is written in this form, it
easy to determine the relative importance of each of
terms in the equation based upon the size of the corresp
ing length scales. Moreover, the length scale indicates
what value of propagation distanceLz the corresponding
phenomenon is expected to become significant. Furtherm
if we go to a frame moving with the pulse~by making a
transformation of the formz⇒z2t/b1) we eliminate theb1

term from the propagation equation.
The following scaling property of the propagation equ

tion is worthy of note. If we restrict the expansion to seco
order in Eq.~3!, and scalew0, t0, A0, andLz to zw0, zt0,
A0 /z, andz2Lz , respectively, then the ratios of the lengt
Lds:Ldf :Lnl :Lz remain unchanged. Therefore the secon
order pulse propagation dynamics in terms of the scaled v
ables is exactly as in the unscaled second-order dynami

The nonlinear length corresponding to critical cw se
focusing Lnl,CSF is given in the literature @2# as
Lnl,CSF51.887Ldf . Two conditions must be met for self
focusing to occur:~1! the pulse powerP must exceed the
medium’s critical power,Pcr5(0.61)2l0

2n0c/(32px (3)), and
~2! the fluence must remain smaller than the medium’s da
age threshold fluenceFdmg ~in units of, say, J/cm2) @12#. For
a pulse of initial spot sizew0

2 and initial temporal duration
t0, the power corresponding to the damage fluenceFdmg is
Pdmg5Fdmgw0

2/t0. As long asPcr,P,Pdmg, SF can pro-
ceed without damaging the medium.

The above damage threshold considerations restrict
applications of scaling of the second-order expansion of
~3! as follows: Threshold power for SF does not depend
the pulse cross section. The power corresponding to the d
age threshold, however, depends on pulse duration and c
FIG. 3. Pulse intensity versusx andct for various propagation distancesLz ~in mm! for wide pulse and medium intensity.
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FIG. 4. Power spectrum versusdv/c andKx corresponding to Fig. 3.
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section. The range of intensities available for nondamag
SF decreases as the pulse width and temporal duration
crease.

III. NUMERICAL RESULTS

In all numerical results presented here, Eq.~1! was used,
but the third-order expansion, Eq.~2! or ~3!, yields results
close to the exact ones. For presentation purposes, we
they transverse width to be very large and plot the propa
tion results vsx and ct for various propagation distance
Lz @11#. In what follows we consider pulse propagatio
in silica ~SiO2). We choose the following pulse paramete
in the normal dispersion regime we take the central wa
length l05800 nm, temporal pulse durationt0566 fs,
and initial spot size ofw0512l0 and 40l0 for the small
and large spot size case, respectively. Forw0512l0~'10
mm!, Ldf5362m,Ldsdf57.73104 mm,Lds52.43105mm
!LTOD51.13107 mm. Forw0540l0 ~32 mm!, Ldf54021
mm,Lds52.43105 mm,Ldsdf58.53105 mm!LTOD51.1
3107 mm. In the anomalous dispersion regime we shall ta
a wavelength ofl051400 nm, and in the zero dispersio
regime, the central wavelength isl051270 nm.

A. Normal dispersion regime

We consider first the normal dispersion regime (l05800
nm!. We begin by presenting results for the case
w0540l0 ~32 mm! since the dynamics is less complicat
for this case of relatively large pulse width. We take a re
tively low intensity of 4.731010 W/cm2, which corresponds
to a power just above the SF threshold (P/Pcr51.5) corre-
sponding to a nonlinear length,Lnl55000mm. For this set of
g
e-

ke
-

:
-

e

f

-

parameters, the shortest length scale isLdf , with Lnl about
20% larger. We shall plot three dimensional~3D! surfaces
and contour plots ofuA(x,y,z,t)u2 versusct andx for vari-
ous propagation distances ofLz in the frame traveling with
the group velocity @and the Fourier transform
uA(KxKy ,Kz ,v)u2 versus (v2v0)/c and Kx#. Figure 1
shows the pulse propagation dynamics as a function
propagation distanceLz . Self-phase modulation~SPM! due
to the nonlinear polarization is strongest at the center of
pulse ~small t and x); this widens the spectral distribution
and group velocity dispersion~GVD! spatially separates th
different colors in the pulse. Hence, the pulse splits into t
pulselets, but diffraction effects are very strong and domin
the dynamics after the temporal pulse spitting occurs. N
that in Fig. 1 we have plotted only a small fraction of thex
and ct space region over which the computation was p
formed ~hence the actual boundary is much larger than
boundary shown in the figure!. This is true of all of the
figures~we have checked to make sure there is no reflec
off the actual boundary!. Figure 2 shows the Fourier trans
form picture of the results shown in Fig. 1. The domina
effect in Fig. 2 is the development of a bimodal distributio
of frequencies around the central frequency. The low
~higher! frequency distribution travels faster~slower! in time
and gives rise to the forward~backward! peak in Fig. 1.

Figures 3 and 4 are for a slightly higher intensi
(7.031010 W/cm2, corresponding to a power such th
P/Pcr52.2) but are otherwise similar to Figs. 1 and 2. No
the formation of an annular ring in momentum space, wh
was barely perceptible for the lower intensity, is clearly se
This ring structure evolves into a four peaked distributi
having peaks at higher and lower frequency and two peak
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FIG. 5. Pulse intensity versusx andct for various propagation distancesLz ~in mm! for narrow pulse width.
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the central frequency with high and low momenta.
position-time space, these momentum satellites are res
sible for the wide shoulders att50.

We now present results for the smaller initial widt
w0512l0. We keep the pulse duration unchanged, he
diffraction effects are enhanced over dispersion sinceLdf /Lds
is decreased. With the damage related restrictions mentio
above in mind, we choose a sufficiently low intensity
avoid damage; we takeI 5231012 W/cm2. The progression
in the pulse propagation dynamics with increasingLz is as
follows whenLnl'Ldf,Lds: ~a! The nonlinearity causes S
of the pulse@see reduced transverse dimension in Fig. 5~a!#.
The focusing is strongest near the peak of the pulse aro
t50. In v-Kx space, the power spectrum develops an an
lar ring around the central peak.~b! SF is strongest neart50
and pulls the pulse into smallx most strongly neart50. At
medium range values ofx, a hole develops neart50 @see
contour lines on the 3D plot of Fig. 5~a!#. ~c! SPM due to the
nonlinearity is strongest at the center of the pulse~small t
andx); this widens the spectral distribution. Inv-Kx space,
the intensity of the annular ring increases at largev and
decreases at largeKx thereby deforming the ring, and even
n-

e

ed

nd
u-

tually turning it into a two-bulged structure centered
v06V whereV grows with increasingz due to GVD@see
Fig. 4~d!#; this spectral widening of the pulse occurs desp
Lds!Lz , since SPM introduces significant additional ban
width. ~d! Temporal pulse splitting occurs as SF continues
pull the pulse into smallx, the hole at mediumx and smallt
is pulled into smallx, and GVD disperses the intensity awa
from t50 @see Figs. 5~b! and 5~c!#. ~e! Thegxxt term causes
asymmetry between the leading and trailing pulselets@1#
with the trailing peak being more intense@Figs. 5~b!–5~d!#;
in the normal dispersion regime the leading~trailing! pulse-
lets are redshifted~blueshifted!. ~f! As the hole at smallt and
x becomes pronounced, the intensity in this region falls a
the SF cannot prevent the dispersion from pushing the in
sity which had been self-focused at smallx outward in x
@Figs. 5~c! and 5~d!#. Pulse widens inx at smallt but remains
adjoined~as we shall see this is not a case at higher inte
ties, above the spatial pulse splitting threshold!. ~g! Intensity
at smallx and smallt is filled in and a central high intensity
peak is formed at the expense of the leading and trai
pulselets@Figs. 5~d! and 5~e!#. The processes seen in Fig
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FIG. 6. Pulse intensity versusx andct for various propagation distancesLz ~in mm! for wide pulse and high intensity.
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5~a!–5~e! begin over again@see Fig. 5~f!, which is similar to
Fig. 5~b!# and the process cyclicly recurs a few times.

The next example illustrates the dynamics of spatial pu
splitting. We have chosen an initial pulse of spot s
w0540l0, but a higher intensity of 1.131011 W/cm2. SF
initially leads to temporal pulse splitting, but this is followe
e

by formation of two additional satellite peaks centered
t50 and nonzerox, as shown in Fig. 6. If the pulse intensit
is high enough, satellite peaks may undergo futher temp
splitting, before dispersion and diffraction smear out t
structure. This splitting of the side peaks leads to the mu
peak structure observed in the autocorrelation measurem
FIG. 7. Power spectrum versusdv/c andKx corresponding to Fig. 6.
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FIG. 8. Pulse intensity versusx andct for various propagation distancesLz ~in mm! in the anomalous dispersion regime.
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@4#. In Fourier space, the intial peak transforms into
‘‘Mexican hat’’ structure having an annular ring and the
transforming into a structure containing two peaks at fin
dv, two sideband peaks symmetric aroundKx50, and a
central peak centered atKx50, dv50, as shown in Fig. 7.

B. Anomalous dispersion regime

We now present results of our calculations in the anom
lous dispersion regimel051400 nm. The temporal puls
duration is again taken to bet0566 fs, and the initial spot
size is 40l0 and intensity 6.031010 W/cm2. The length
scales of this case areLdf5703 mm,Ldsdf58.63104

mm,uLdsu56.93105 mm ~but negative!. Note that in the
anomalous dispersion regime whereb2,0, a symmetry ex-
ists with respect to thet and the position coordinatesx andy,
in the sense that the signs of the corresponding coeffici
in the propagation equation are identical in the anomal
dispersion regime. Figure 8 shows the pulse propagation
namics as a function of propagation distanceLz . We again
see the self-focusing of the pulse and eventually the p
splits in time. The central peak in time is extremely sho
e

-

ts
s
y-

e
.

This extremely short temporal duration peak ultimately sp
apart in the transverse spatial dimension. Figure 9 shows
power spectrum. Amazingly, no splitting is evident in m
mentum space. What is present is a very wide pedesta
frequency which develops nearKx50. If Ldf.uLdsu, the role
of x andt would be largely reversed from that shown in Fi
8 ~but not completely since the effects of theg txx term are
not completely negligible!; the pulse would ‘‘self-focus in
time.’’ Hence, in the anomalous regime above the se
focusing threshold, transverse spatial pulse splitting occ
first ~rather than temporal pulse splitting! for diffraction
length larger than the dispersion length~very wide pulses!.

C. Zero dispersion regime

Figure 10 shows the pulse propagation dynamics fo
pulse with the same parameters as in Figs. 8 and 9 but in
sity 4.431010 W/cm2 and central wavelength ofl051270
nm, whereb250 ~henceLds50). The pulse self-focuses an
then splits into two pulselets but the leading pulse is mu
more intense than the trailing pulse. The self-focusing of
leading pulselet is more pronounced than that of the trail
pulselet. The Fourier transform picture in Fig. 11 shows
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FIG. 9. Power spectrum versusdv/c andKx corresponding to Fig. 8.
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initial formation of an annular ring which breaks up in
pulselets in the normal and anomalous dispersion regim
The pulselets on either side of the central frequency trave
different speeds, thereby accounting for the breakup of
central peak in position space. These pulselets are nons
metric in their intensity, the lower frequency having mo
power.

D. Self-steepening

In order to determine whether the nonlinear effects
self-steepening are important, we added a term to the r
hand side of Eq.~2! of the form gnlv0

21](uAu2A)/]t ~see
Appendix and@13#!. For all of the cases studied here, exce
one, no noticeable effects of self-steepening were obse
over the propagation distances used. The exception is
case of anomalous dispersion, where the central~in time!
pulselet became extremely short. The time derivative in
self-steepening nonlinear polarization term therefore
comes large, even for the initial pulse duration of 66 fs us
in our simulation. A careful study of this effect will be pre
sented elsewhere.
s.
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e
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IV. SUMMARY AND CONCLUSION

In summary, we have described the propagation of sh
optical pulses in isotropic media for intensities above
self-focusing threshold in the normal, anomalous, and z
dispersion regimes. We have shown that above the crit
cw self-focusing power, onset of pulse splitting into pulsel
separated in time occurs for diffraction length smaller th
dispersion length. For sufficiently long dispersion length
cyclic series of pulse splitting~into pulselets separated i
time! and pulse recombination occurs. At higher power, a
other threshold exists for noncyclic spatial pulse splitting
diffraction length smaller than dispersion length. Althou
pulse splitting occurs in normal, anomalous, and zero disp
sion regimes, we saw that the details of the pulse splitting
different in these regimes. In particular, in the anomalo
regime the pulse did not break apart in frequency-momen
space, only in physical space. This indicates that pulse c
is more important to pulse splitting in this regime. In the ze
dispersion regime we saw the asymmetry of the leading
trailing pulselets; their intensity and spatial and tempo
widths are substantially different. In the range of paramet
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FIG. 10. Pulse intensity versusx andct for various propagation distancesLz ~in mm! in the zero dispersion regime.
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studied here self-steepening does not affect the pulse pr
gation dynamics in all but the anomalous dispersion reg
where part of the pulse becomes extremely narrow in time
remains to investigate these phenomena in crystals w
walkoff and pulse rotation play an important role@8–10#.
a-
e
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FIG. 11. Power spectrum versusdv/c andKx corresponding to Fig. 10.
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APPENDIX

The purpose of this appendix is to describe the deriva
of the nonlinear propagation wave equation for an isotro
dispersive medium. We begin by describing the dispers
relation, and then proceed to consider the linear and non
ear optical susceptibilities.

1. Dispersion relation

We derive the nonlinear dispersion relation in an op
cally isotropic dispersive medium. We begin by wr
ing down the Ampere and Faraday equations~in Gauss-
ian units!: ¹W 3EW (xW ,t)52(1/c)(]/]t)BW (xW ,t), ¹W 3HW (xW ,t)5

(1/c)(]/]t)DW (xW ,t). Next we Fourier transform these equ
tions to obtain

KW 3EW ~KW ,v!52
v

c
BW ~KW ,v!, ~A1!

KW 3HW ~KW ,v!5
v

c
DW ~KW ,v!. ~A2!

We used the notation

EW ~xW ,t !5
1

~2p!4E2`

1`

d3KdvEW ~KW ,v!exp@ i ~KW •xW2vt !#.

~A3!

Multiplying Eq. ~A1! by KW 3 from the left, substituting forBW
using the constitutive relation

BW ~KW ,v!5m~KW ,v!HW ~KW ,v!, ~A4!

and substituting Eq.~A1! into the resulting equation, we ob
tain

KW 3KW 3EW ~KW ,v!52
mv2

c2
DW ~KW ,v!. ~A5!

We can write the constitutive equation relating the displa
ment and electric vectors as

DW ~KW ,v!5«~KW ,v!EW ~KW ,v!14pPW nl~KW ,v!. ~A6!

The linear part of the polarization is given b
PW L(KW ,v)5x (1)(KW ,v)EW (KW ,v) where x (1)(KW ,v)5

(4p)21@«(KW ,v)21#5(4p)21(n2/m21). In an isotropic
homogeneous dispersive medium, the dielectric tensor« is of
the form of a dielectric constant times the unit tensor and
nonlinear polarization has components only in the direct
of electric fieldEW , andEW'KW . Upon substituting Eq.~A5! into
Eq. ~A6! we obtain the dispersion relation

H K22
v2

c2
n2J EW ~KW ,v!5

4pv2

c2
PW nl~KW ,v!. ~A7!

In deriving Eq. ~A7! we used the identity
KW 3KW 3EW 5KW (KW •EW )2K2EW . Equation~A7! determinesKW as
a function of frequencyv, and the magnitude of the electr
field ~in an anisotropic medium, it is also a function of th
n
c
n
n-

-

-

e
n

direction propagationsW). If the nonlinear term is negligible
this equation yields the linear wave vectorKL, which is in-
dependent of the electric field amplitude,KL5n(v)v/c.
When the nonlinear term on the right hand side of Eq.~A7!
is not entirely negligible, but still small, a perturbative a
proach can be used.

The nonlinear polarization appearing in Eq.~A6! can be
approximated by the first few terms in the series expans
in powers of electric field. In glasses, crystals, and ma
other condensed phase media this series expansion conv
for incident field strengths well below the optical dama
threshold of the media. In many cases the first nonvanish
term is sufficient. For optical materials with a center of i
version symmetry, only odd powers appear in the expans
of the polarization in powers of the electric field strengthE:
Pnl5Pnl(3)1Pnl(5)1••• . Expanding the wave vector on th
left hand side of Eq. ~A7! as K5KL1dKNL(2)

1dkNL(4)1••• and substituting the expansion of the pola
ization into Eq.~A7! we find the following set of relations by
comparing terms of the same order:

2KLdKnl~2!EW ~KW ,v!5
4pv2

c2
PW nl~3!~KW ,v!, ~A8!

@2KLdKnl~4!1~dKnl~2!!2#EW ~KW ,v!5
4pv2

c2
PW nl~5!~KW ,v!,

~A9!

etc. Note that in an isotropic medium, since the nonlin
polarization has the same direction as the driving elec
field, dKnL is alongKL.

2. First-order optical susceptibility: The linear term

If the amplitude of the electric field is small, we can n
glect the influence of the nonlinear polarization. In this ca
the right hand side of the dispersion relation in Eq.~A7! is
equal to zero. The slowly varying envelope of the elect
field is defined by extracting the centralK vector KW 0 and
central frequency v0 of the pulse, EW (xW ,t)5

AW (xW ,t)exp(iKW 0•xW2v0t). It can be expanded in plane waves

AW ~xW ,t !5
1

~2p!4E2`

1`

d3Kdv AW ~KW ,v!

3exp~ i @KW 2KW 0#•xW2@v2v0#t !. ~A10!

To derive the propagation equation for the slowly varyi
envelope of the electric field we take the derivative ofAW (xW ,t)
in the direction of thesW05KW 0/uK0u, which we have chosen to
be along thez axis:

]AW ~xW ,t !

]z
5

1

~2p!4E2`

1`

d3Kdv ~ i @KW 2KW 0#•sW0! AW ~KW ,v!

3exp~ i @KW 2KW 0#•xW2@v2v0#t !. ~A11!

We may now substitute@KW 2KW 0#•sW0 with Kz2K0. More-
over, due to the dispersion relation quantitiesKx , Ky , Kz ,
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andv are not independent. It is consistent with our choice
propagation axis alongz to relateKz to the rest of the Fourie
variables,Kz2K05 f (Kx ,Ky ,v). We can now treatKx ,
Ky , and v as independent variables. It follows from E
~A10! that AW (KW ,v) should be written as
AW (Kx ,Ky ,v)d„Kz2 f (Kx ,Ky ,v)…. The integral overKz in
Eq. ~A11! can be evaluated to obtain

]AW ~xW ,t !

]z
5

1

~2p!4E2`

1`

dKxdKydv ˆi @ f ~Kx ,Ky ,v!#‰

3AW ~Kx ,Ky ,v,z! exp~ i @Kxx1Kyy#2@v

2v0#t !, ~A12!

where AW (Kx ,Ky ,v,z)5AW (Kx ,Ky ,v) exp$i@f(Kx ,Ky ,v)#z%.
Consequently we obtain the following differential equati
in Fourier space forAW (Kx ,Ky ,v,z):

]AW ~Kx ,Ky ,v,z!

]z
5$ i @ f ~Kx ,Ky ,v!#%AW ~Kx ,Ky ,v,z!,

~A13!

whose solution is AW (Kx ,Ky ,v,z)5

exp$i@f(Kx ,Ky ,v)#z% AW (Kx ,Ky ,v,0). Upon taking the inverse
Fourier transform we obtain the solution for the pulse sh
at any positionz in real space.

3. Third-order optical susceptibility
and the pulse propagation equation

Here we develop only with the lowest-order~third-order!
nonlinear optical effects related toPnl(3). In the Fourier do-
main, the nonlinear polarizationPnl(3) can be expanded a
follows:

Pi
nl~KW ,v!5E

2`

1`

d3KW 1dv1d3KW 2dv2d3KW 3dv3x i , j ,k,l
~3!

3~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!

3d~KW 2KW 11KW 22KW 3!d~v2v12v21v3!
f

e

Aj~KW 1 ,v1!Ak* ~KW 2 ,v2!Al~KW 3 ,v3!. ~A14!

The expression for the nonlinear polarization in Eq.~A14!
incorporates energy conservation and phase matching co
tions. To third order, only the lowest-order nonlinear wav
vector component is necessary in the expansion of Eq.~A7!,
hence the equation for the nonlinear wave vector is given

dKnlEW ~KW ,v!5
2pv

nc
PW nl~KW ,v!. ~A15!

To obtain an equation of motion for the SVE we expa
the term (i @KW 2KW 0#•sW0)5( i @$KW L2KW 0

L%1dW Knl#•sW0) around
central wave vectorK0. The part of this expression which i
enclosed in the curly brackets describes the linear respo
of the medium. The relation betweenKx

L , Ky
L , Kz

L , andv is
given by the linear dispersion relation. Note that in an is
tropic medium there is no difference between the definitio
of linear and nonlinearKx and Ky ; the nonlinearity in our
approach modifies onlyKz . Following Eq.~A11! we divide
the propagation equation into linear and nonlinear parts:

]AW

]z
5OLAW 1OnlAW . ~A16!

OLAW is the contribution associated with$KW L2KW 0
L% andOnlAW

with the nonlinear termdKW nl. The linear part of Eq.~A16!
can either be expanded to obtain a differential equation
treated in the Fourier domain if we want to avoid the slow
varying envelope approximation and the paraxial approxim
tion. To handle the nonlinear part, represented bydKW nl, we
have to combine definitions~A8! and~A14!. It is convenient
to collect all factors depending onv and KW and combine
then into a new functionc:

c~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!

5
2pv

nc
x~3!~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!.

~A17!

We introduce the abbreviated notation
c i , j ,k,l~2v0 ,2KW 0 ;v0 ,KW 0 ;2v0 ,2KW 0 ;v0 ,KW 0!5c i , j ,k,l ,

]

]v r
c i , j ,k,l~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!uv5v15v25v35v0

5c i , j ,k,l
,r ,

where the superscriptr indicates differentiation with respect tor 50, . . . ,3 ther th argument ofc i , j ,k,l .
Using definitions~A10! and~A11!, and expanding thec functions in all arguments around (v0 ,KW 0) we can perturbatively

treat the nonlinear term:

OnlAi5E
2`

1`

d3KW dvd3KW 1dv1d3KW 2dv2d3KW 3dv3Aj~KW 1 ,v1!Ak* ~KW 2 ,v2!Al~KW 3 ,v3!@c i , j ,k,l1~v2v0!c i , j ,k,l
,0

1~v12v0!c i , j ,k,l
,1 1~v22v0!c i , j ,k,l

,2 1~v32v0!c i , j ,k,l
,3 1•••#d~KW 2KW 11KW 22KW 3!d~v2v11v22v3!exp~ i @KW

2KW 0#•xW2@v2v0#t ! ~A18!
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and apply the convolution theorem to obtain the propagation equation for the SVE in closed form. Pulse propagation i
by a polarization given by a superposition of linear and third-order polarization terms:

]Ai

]z
5Oi j

L Aj1c i , j ,k,lAjAk* Al1c i , j ,k,l
,0

]~AjAk* Al !

]t
1c i , j ,k,l

,1 ]~Aj !

]t
Ak* Al1c i , j ,k,l

,2 Aj

]~Ak* !

]t
Al1c i , j ,k,l

,3 AjAk*
]~Al !

]t
.

~A19!

In this presentation we treat the case of linearly polarized pulses. Hence, only two independentx (3) elements (xxxzz5x1 and
xxzzx5x2) are present. The first nonlinear term is equal to 2c1uAu2Ai1c2A2Ai* , which for a linearly polarized pulse is
simply (2c11c2)uAu2Ai . Terms including derivatives ofc are related to the derivatives ofx3 with respect to frequency. Fo
example, the third term in Eq.~A19! is equal to

c i , j ,k,l
,0 5

]

]v
@2pv~nc!21x i , j ,k,l

~3! ~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!#5~v!21c i , j ,k,l12vp~c!21
]

]v

3@n21x i , j ,k,l
~3! ~2v,2KW ;v1 ,KW 1 ;2v2 ,2KW 2 ;v3 ,KW 3!#. ~A20!

In our numerical examples we used short~femtosecond! pulses. Assuming thatx (3) does not have resonances near the cen
frequencyv0, we estimate that the contribution of the shock term should be of order (v0t0)21 times smaller than the
contribution from the first nonlinear term in Eq.~A19!. We checked the influence of the shock term on the dynamics and fo
that, in all but the anomalous dispersion regime where part of the pulse becomes extremely narrow in time, the contri
negligible for the parameters employed over the propagation distances used in our presentation.
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