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Dynamics of short-pulse splitting in dispersive nonlinear media
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We develop a method to precisely propagate short optical pulses through dispersive media with a cubic
self-focusing nonlinear polarization. We show that above the critical cw self-focusing power, onset of pulse
splitting into pulselets separated in time occurs, and for a certain regime of parameyetie aeriesof pulse
splitting (into pulselets separated in tilnand pulse recombination occurs for diffraction length smaller than
dispersion length. At higher poweanotherthreshold for noncyclic temporal and spatial pulse splitting is
manifest. The physics of these phenomena are described and delin&4i@s0-294P7)07211-9

PACS numbes): 42.65.Re, 42.25.Fx, 42.65.5f

I. INTRODUCTION We also investigate the effects of self-steepening on these
phenomena.

Nonlinear dispersive systems are omnipresent in nature. Section |l describes the propagation equations used to
One such system that has been of great interest and impacarry out the pulse dynamics, Sec. Il contains the numerical
tance since the advent of intense short-pulse light sources results, and Sec. IV contains a summary and conclusion. The
that of temporally short optical pulses propagating in isotro-Appendix contains details regarding the derivation of the
pic dispersive nonlinear media. This system has a plethora afave equation used to propagate pulses.
technological and scientific applications. Many recent studies
[1-7] have shown that pulse splitting occurs ) media
for pulses with powers beyond the threshold for self- Il. PROPAGATION EQUATION
focusing(SH. Here we show that the phenomena associated

with pulse splitting of intense short optical pulses are con- : : -
. . . The propagation equation for the slowly varying envelope
siderably more complicated and elaborate than previously propag q y varying P

imagined. Specifically, we find that in the normal dispersionOf t_he_ ele(_:tnc_ field SVE), A(x,t), Can_t_)e derlved_ by d|1_‘fer-
regime, above the threshold for SF, there are two separaftiating it with respect to the position coordinate in the
mechanisms for pulse splitting, the second mechanism odirection of the central wave vectit,, so=K/|Ko|, which
curring only for pulse intensities above a high intensitywe choose to be along the space-fixedxis [8—10]. For
threshold. The lower threshold is for temporal pulse splittinglinearly polarized light

(for diffraction length smaller than dispersion length

wherein the pulse splits apart in time. For a certain regime of

parametergto be specified beloy a cyclic series of pulse a,&(; t) 1 to

splitting and pulse recombination into pulselets separated in = J d3de5\(K,w)(i[K—Ko]~§o)
time occurs. Thus pulses carry out a seriegafsplitting oz (2m)*) =

into two pulselets separated in time, afil recombination K =Kol %o aglt) 1 2o

into a central peak; this dance of splitting and recombining xe 0 o+ iyl AIA, 1)

cyclicly recurs. In the Fourieffrequency and wave-vector

domain, an annular ring forms around the central peak, then

the ring splits apart into separate peaks. For pulse intensitisghere y,=2mx®w,/[n(wg)c]. The details of the deriva-
above the higher threshold, temporal and spatial pulse splition are presented in the Appendix.

ting occurs(but the cyclic process does not ockuFhis is a Due to the dispersion relation, the variablésand
new mechanism for pulse splitting corresponding to splittingare not independent and the four dimensional integrals in
of pulses in both time and transverse space dimensions; jke first term on the right hand side of E() can be re-
occurs for intensities abov_e_ the higher threshold, with mul-y,ced to three dimensions. For numerical applications
tiple pulse breakup transpiring as the pulse propagates. Wgq ojiminate the integral oveK,, using the dispersion
demonstrate these phenomena using an exact numerical .o to expres¥, in terms of K,, K., and : K,
method to propagate short pulses in a nonlinear dispersive — T ) Sy )
medium, with dispersion and diffraction treated to all order,_\/“’ N(w)7/c™=K,—Ky. A pgrnal dlffe_rentla_l equatloq
as is necessary for a quantitative description, but the phdP’DE for the SVE can be obtained by using this expression,
nomena occur even when a second-order expansion of tf&Panding<; appearing in Eq1) in powers ofk,, K, , and
nonlinear Schidinger equation is used. We also present re{®@— o) and replacing these variables with/ox, id/dy,
sults for the anomalous dispersion regime and the regimand —id/dt, respectively8]. In what follows we consider a
where the group velocity dispersion vanishes. Pulse splittingjnearly polarized incident field in an isotropic medium and
occurs in these regimes, but the details of the splitting phetherefore we focus on one component of the SVE. Keeping
nomena are different than in the normal dispersion regimeterms up to third order, the PDE fé is [8]
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FIG. 1. Pulse intensity versusandct for various propagation distancks (in mm) as indicated next to the label, for wide pulse and
lower intensity.
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FIG. 2. Power spectrum versu&/c=(w— wg)/c andK, corresponding to Fig. 1.
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wherep; is the inverse group velocity, the group velocity
dispersion 85 the third-order dispersiony,, the Fresnel dif-
fraction coefficient, andy,,, the coefficient of the mixed

When the propagation equation is written in this form, it is
easy to determine the relative importance of each of the
terms in the equation based upon the size of the correspond-
ing length scales. Moreover, the length scale indicates at
what value of propagation distande, the corresponding
phenomenon is expected to become significant. Furthermore,
if we go to a frame moving with the puls@y making a
transformation of the formm=2z—t/3,) we eliminate the3,
term from the propagation equation.

The following scaling property of the propagation equa-
tion is worthy of note. If we restrict the expansion to second

space-time third-order terms that account for the spherice®rder in Eq.(3), and scalewo, 7o, Ao, andL, to {wy, {70,
nature of the wave front surface of a pulse originating from aAo/¢, and L, respectively, then the ratios of the lengths
point source. For a cylindrically symmetric pulse of width Lgs:Lgs:Ly:L, remain unchanged. Therefore the second-

Wy, or for a pulse whose transvergalimension is large and
can therefore be ignored, E(R) can be written in terms of
the following lengths(the smaller the length, the more im-
portant the corresponding term in the PDHliffraction
length
Las= 75/ B, third-order dispersion lengthLrop= 73/ B3,

length  Lg= yg,W5/2=mwW5/\o,  dispersion

third-order dispersion-diffraction length, 4jo4—= Towgl YVixx s

and nonlinear length ;= (yn|Aol?) ~! whereA, is the peak
amplitude of the pulse. Sincg = c/[N(wg) wg], L4 IS pOSi-

order pulse propagation dynamics in terms of the scaled vari-
ables is exactly as in the unscaled second-order dynamics.
The nonlinear length corresponding to critical cw self-

focusing Lpcse is given in the literature [2] as
Lncs—1.881 4. Two conditions must be met for self-
focusing to occur(l) the pulse powelP must exceed the
medium’s critical powerP .= (0.61\3n,c/(327x®), and

(2) the fluence must remain smaller than the medium’s dam-
age threshold fluendégyy (in units of, say, Jlcrf) [12]. For

tive in all our studies. The propagation equation can be writa pulse of initial spot sizev and initial temporal duration

ten explicitly in terms of these length scales as follows:

aA 5 oA 15 PPA 1o BPA Wi PA  PA
—=—B it — — i — — + —
9z Yot TLgs gt2  Lrop at  Larl ox2 ay?
2 3 3
WgTo[ J°A d°A
o7of — A+ —— | i ———|A2 )
Ldsdf\ X2t ay?at | Aol “L i
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70, the power corresponding to the damage fluefgg, is
Pamg= Famgh§/ 7. As long asP,<P<Pyn,, SF can pro-
ceed without damaging the medium.

The above damage threshold considerations restrict the
applications of scaling of the second-order expansion of Eq.
(3) as follows: Threshold power for SF does not depend on
the pulse cross section. The power corresponding to the dam-
age threshold, however, depends on pulse duration and cross
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FIG. 3. Pulse intensity versusandct for various propagation distancés (in mm) for wide pulse and medium intensity.
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FIG. 4. Power spectrum versds/c andK, corresponding to Fig. 3.

section. The range of intensities available for nondamagingarameters, the shortest length scalé js with L, about
SF decreases as the pulse width and temporal duration dggos larger. We shall plot three dimensio8D) surfaces

crease. and contour plots ofA(x,y,z,t)|? versusct andx for vari-
ous propagation distances bf in the frame traveling with
IIl. NUMERICAL RESULTS the group velocity [and the Fourier transforms
|A(K,Ky K, ,@)|? versus @—wp)/c and K,]. Figure 1

In all numerical results presented here, Eb).was used, shows the pulse propagation dynamics as a function of

but the third-order expansion, E¢R) or _(3), yields results ropagation distanck, . Self-phase modulatiofSPM) due
close to the exact ones. For presentation purposes, we ta

they transverse width to be very large and plot the propaga- the nonlinear polarizgtioq is strongest at the gen_ter .Of the
tion results vsx and ct for various propagation distances pulse (small t anq X) ' this v_wdens the spectral distribution,
L, [11]. In what follows we consider pulse propagation apd group veloqty dispersiofGVD) spatially separatt_as the
in silica (SiO,). We choose the following pulse parameters:d'fferent colorslln the:- pulse. Hence, the pulse splits mto' two
in the normal dispersion regime we take the central wavep'“'Ise|EtS’ bUt diffraction effects are very S‘TO_”Q and dominate
length Ao=800 nm, temporal pulse duration,=66 fs, the Qyngmlcs after the temporal pulse spitting oceurs. Note
and initial spot size ofwy=12\, and 40, for the small that in Fig. 1 we have plotted'only a small frac'tlon of the
and large spot size case, respectively. Fige=12\,(~10 andct space region over which the computation was per-
um), Lg=362u<Lyeq=7.7X10* um<Ly=2.4x105um  formed(hence the actual boundary is much larger than the
<L7op=1.1X107 um. Forw,=40\, (32 um), Ly=4021  boundary shown in the figureThis is true of all of the
uM<Lge=2.4%X10° um<Lge=8.5X10° um<Lqop=1.1 figures(we have checked to make sure there is no reflection
%107 um. In the anomalous dispersion regime we shall takeoff the actual boundapy Figure 2 shows the Fourier trans-

a wavelength of\,=1400 nm, and in the zero dispersion form picture of the results shown in Fig. 1. The dominant
regime, the central wavelength Xg= 1270 nm. effect in Fig. 2 is the development of a bimodal distribution
of frequencies around the central frequency. The lower
(highep frequency distribution travels fastéslowep in time

and gives rise to the forwardackward peak in Fig. 1.

We consider first the normal dispersion regime+€ 800 Figures 3 and 4 are for a slightly higher intensity
nm). We begin by presenting results for the case of(7.0x10 W/cn?, corresponding to a power such that
wo=40nq (32 wm) since the dynamics is less complicated P/P.=2.2) but are otherwise similar to Figs. 1 and 2. Now,
for this case of relatively large pulse width. We take a rela-the formation of an annular ring in momentum space, which
tively low intensity of 4.7 10'° W/cn?, which corresponds was barely perceptible for the lower intensity, is clearly seen.
to a power just above the SF threshol/P.=1.5) corre- This ring structure evolves into a four peaked distribution
sponding to a nonlinear length,;=5000um. For this set of having peaks at higher and lower frequency and two peaks at

A. Normal dispersion regime
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FIG. 5. Pulse intensity versusandct for various propagation distancés (in mm) for narrow pulse width.

the central frequency with high and low momenta. Intually turning it into a two-bulged structure centered at

position-time space, these momentum satellites are respoar,+=Q whereQ grows with increasing due to GVD[see

sible for the wide shoulders &t=0. Fig. 4(d)]; this spectral widening of the pulse occurs despite
We now present results for the smaller initial width, |, <1 ,, since SPM introduces significant additional band-

Wo=12\o. We keep the pulse duration unchanged, hencgyidth. (d) Temporal pulse splitting occurs as SF continues to

diffraction effects are enhanced over dispersion singél.4s  pull the pulse into smalk, the hole at medium and smallt

is decreased. With the damage related restrictions mentionggl pulled into smalk, and GVD disperses the intensity away

aboye in mind, we choose a 2sufficiently low intensi.ty 10 fromt=0 [see Figs. B) and 5c)]. (6) The y,,, term causes
avoid damage; we takie=2x 10'2 W/cn?. The progression asymmetry between the leading and trailing pulselas

In the pulse propagation dynamics With incr.eas[nzgis a5 _ with the trailing peak being more inten§€igs. 5b)—5(d)];
follows whenLn~Lar<Lgs: (@) The nonlinearity causes SF the normal dispersion regime the leadificniling) pulse-

of the pulse{see reduced transverse dimension in Fig)s nIgts are redshiftetblueshifted. (f) As the hole at small and

The focusing is strongest near the peak of the pulse arou X becomes pronounced, the intensity in this region falls and
t=0. In w-K, space, the power spectrum develops an annu P ' y 9

lar ring around the central peath) SF is strongest near 0 the SF _cannot prevent the dispersion from pushing the Inten-
and pulls the pulse into smatl most strongly near=0. At S't,y which had been self-chuseq at smalloutward inx
medium range values of, a hole develops near0 [see LFi9S- 3¢ and 3d)]. Pulse widens ix at smallt but remains
contour lines on the 3D plot of Fig(&]. (c) SPM due to the gdjOlned(as we sha!l see this |s_npt a case at higher mtensr
nonlinearity is strongest at the center of the pulsmallt  ties, above the spatial pulse splitting threshold) Intensity
andx): this widens the spectral distribution. K, space, at smallx and smalt is filled in and a central high intensity
the intensity of the annular ring increases at largeand ~ Peak is formed at the expense of the leading and trailing
decreases at largé, thereby deforming the ring, and even- Pulselets[Figs. 5d) and Je)]. The processes seen in Figs.
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FIG. 6. Pulse intensity versusandct for various propagation distancés (in mm) for wide pulse and high intensity.

5(a)—5(e) begin over agaifsee Fig. &), which is similar to by formation of two additional satellite peaks centered at
Fig. 5(b)] and the process cyclicly recurs a few times. t=0 and nonzer, as shown in Fig. 6. If the pulse intensity
The next example illustrates the dynamics of spatial pulsés high enough, satellite peaks may undergo futher temporal
splitting. We have chosen an initial pulse of spot sizesplitting, before dispersion and diffraction smear out the
Wo=40\,, but a higher intensity of 1X10'* W/cm?. SF  structure. This splitting of the side peaks leads to the multi-
initially leads to temporal pulse splitting, but this is followed peak structure observed in the autocorrelation measurements

power spectrum in arbu.

power spectrum in arb.u.

FIG. 7. Power spectrum verss/c andK, corresponding to Fig. 6.
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FIG. 8. Pulse intensity versusandct for various propagation distances (in mm) in the anomalous dispersion regime.

[4]. In Fourier space, the intial peak transforms into aThis extremely short temporal duration peak ultimately splits
“Mexican hat” structure having an annular ring and then apart in the transverse spatial dimension. Figure 9 shows the
transforming into a structure containing two peaks at finitepower spectrum. Amazingly, no splitting is evident in mo-
Sw, two sideband peaks symmetric aroukg=0, and a mentum space. What is present is a very wide pedestal in
central peak centered Kt,=0, w=0, as shown in Fig. 7.  frequency which develops nek=0. If Ly>|L4J, the role
of x andt would be largely reversed from that shown in Fig.
B. Anomalous dispersion regime 8 (but not completely since the effects of thg, term are

not completely negligible the pulse would “self-focus in
We now present results of our calculations in the anomatime.” Hence, in the anomalous regime above the self-

lous dispersion regimé,=1400 nm. The temporal pulse focusing threshold, transverse spatial pulse splitting occurs
duration is again taken to bg=66 fs, and the initial spot first (rather than temporal pulse splittindor diffraction

size is 40, and intensity 6.6 10'° W/cn?. The length length larger than the dispersion lengttery wide pulses
scales of this case aréy =703 um<L g~ 8.6x10% _ _ _

um<|Lyd=6.9x10° um (but negativeé. Note that in the C. Zero dispersion regime

anomalous dispersion regime whege<0, a symmetry ex- Figure 10 shows the pulse propagation dynamics for a
ists with respect to theand the position coordinatesandy, pulse with the same parameters as in Figs. 8 and 9 but inten-
in the sense that the signs of the corresponding coefficientsity 4.4x 10'° W/cn? and central wavelength of,=1270

in the propagation equation are identical in the anomalousm, whereB,=0 (hencelL 4=0). The pulse self-focuses and
dispersion regime. Figure 8 shows the pulse propagation dythen splits into two pulselets but the leading pulse is much
namics as a function of propagation distaige We again  more intense than the trailing pulse. The self-focusing of the
see the self-focusing of the pulse and eventually the pulskading pulselet is more pronounced than that of the trailing
splits in time. The central peak in time is extremely short.pulselet. The Fourier transform picture in Fig. 11 shows the
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FIG. 9. Power spectrum versd&/c andK, corresponding to Fig. 8.

initial formation of an annular ring which breaks up into IV. SUMMARY AND CONCLUSION

pulselets in the normal and anomalous dispersion regimes. . .

The pulselets on either side of the central frequency travel at I_n summary, we have_descrll_)ed th? prop_a_ganon of short
different speeds, thereby accounting for the breakup of thgptical pu_Ises In isotropic media for intensities above the
central peak in position space. These pulselets are nonsy glf-foc_usmg threshold in the normal, anomalous, and Z€ro
metric in their intensity, the lower frequency having more ISpersion regimes. We have shown tha't gboye the critical
power. cw self—focgsmg power, onset qf puls_e splitting into pulselets
separated in time occurs for diffraction length smaller than
dispersion length. For sufficiently long dispersion length, a
cyclic series of pulse splittinginto pulselets separated in
In order to determine whether the nonlinear effects oftime) and pulse recombination occurs. At higher power, an-
self-steepening are important, we added a term to the righdther threshold exists for noncyclic spatial pulse splitting for
hand side of Eq(2) of the form yn|w51&(|A|2A)/at (see diffraction length smaller than dispersion length. Although
Appendix and 13]). For all of the cases studied here, exceptpulse splitting occurs in normal, anomalous, and zero disper-
one, no noticeable effects of self-steepening were observeslon regimes, we saw that the details of the pulse splitting are
over the propagation distances used. The exception is thdifferent in these regimes. In particular, in the anomalous
case of anomalous dispersion, where the certratime) regime the pulse did not break apart in frequency-momentum
pulselet became extremely short. The time derivative in thepace, only in physical space. This indicates that pulse chirp
self-steepening nonlinear polarization term therefore bets more important to pulse splitting in this regime. In the zero
comes large, even for the initial pulse duration of 66 fs usedlispersion regime we saw the asymmetry of the leading and
in our simulation. A careful study of this effect will be pre- trailing pulselets; their intensity and spatial and temporal
sented elsewhere. widths are substantially different. In the range of parameters

D. Self-steepening
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FIG. 10. Pulse intensity versusandct for various propagation distancés (in mm) in the zero dispersion regime.

studied here self-steepening does not affect the pulse propa- ACKNOWLEDGMENTS
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FIG. 11. Power spectrum versd®/c andK, corresponding to Fig. 10.
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direction propagatiori). If the nonlinear term is negligible,

The purpose of this appendix is to describe the derivatiorihis €quation yields the linear wave vectt, which is in-

of the nonlinear propagation wave equation for an isotropi

dependent of the electric field amplitudgl =n(w)w/c.

dispersive medium. We begin by describing the dispersiorfVnen the nonlinear term on the right hand side of &)
relation, and then proceed to consider the linear and nonlirfS not entirely negligible, but still small, a perturbative ap-

ear optical susceptibilities.

1. Dispersion relation

proach can be used.

The nonlinear polarization appearing in E&6) can be
approximated by the first few terms in the series expansion
in powers of electric field. In glasses, crystals, and many

We derive the nonlinear dispersion relation in an opti-other condensed phase media this series expansion converges
cally isotropic dispersive medium. We begin by writ- for incident field strengths well below the optical damage

ing down the Ampere and Faraday equatigits Gauss-
ian unity: VXE(X,t)=—(1/c)(a/at)B(x,t), VXH(X,t)=

threshold of the media. In many cases the first nonvanishing
term is sufficient. For optical materials with a center of in-

(1/c)((9/at)|5(§,t). Next we Fourier transform these equa- version symmetry, only odd powers appear in the expansion

tions to obtain

IZXE(IZ,w):—EB(K,w), (A1)
Kxﬁ(ﬁ,w)=ED(K,w) (A2)
We used the notation
.. 1 [+ .. ..
E(x,t)= J d*KdwE(K,w)exdi(K-x—ot)].
(2m)*) —=
(A3)

Multiplying Eq. (A1) by KX from the left, substituting foB
using the constitutive relation

B(K,w)=pu(K,w)H(K,w), (A4)

and substituting EqiA1) into the resulting equation, we ob-

tain

5 nw?

KXKXE(K,w)=——D(K,w).

> (A5)

We can write the constitutive equation relating the displace

ment and electric vectors as

D(K,w)=&(K,0)E(K,0)+47P"(K,0).  (AB)
The linear part of the polarization is given by
PL(K,w)=x(K,»)E(K,®) where  YyW(K,w)=

(47) e(K,w)—1]=(4m) " Y(n¥n—1). In an isotropic

homogeneous dispersive medium, the dielectric teassiof

of the polarization in powers of the electric field strength
pr=pni® 4 priG)+ ...  Expanding the wave vector on the
left hand side of Eg. (A7) as K=K-+ sKN-?)

+ 6kNH4)+ ... and substituting the expansion of the polar-
ization into Eq.(A7) we find the following set of relations by
comparing terms of the same order:

. 4 w?
2KLSKNPE(K, w) =

Z PR (A8)
-~ o drw? . S
[2KE KM@ + (SKM@Y2IE(K, w) = 7P”'<5>(K,w),
(A9)

etc. Note that in an isotropic medium, since the nonlinear
polarization has the same direction as the driving electric
field, 5K is alongK".

2. First-order optical susceptibility: The linear term

If the amplitude of the electric field is small, we can ne-
glect the influence of the nonlinear polarization. In this case
the right hand side of the dispersion relation in E&7) is
equal to zero. The slowly varying envelope of the electric
field is defined by extracting the centril vector IZO and
central frequency w, of the pulse, E(x,t)=

A(X,t)exp(Koy-X—wgt). It can be expanded in plane waves as

AX,t)= !
W 2

+ N
f d®Kdw A(K,w®)

xexp(i[K—Ko]- X—[w—wo]t). (A10)

the form of a dielectric constant times the unit tensor and thd © derive the propagation equation for the slowly varying
nonlinear polarization has components only in the directiorenvelope of the electric field we take the derivativeA@k, t)

of electric fieldE, andEL K. Upon substituting Eq(A5) into
Eqg. (A6) we obtain the dispersion relation

’7T(1)2

) 2 ol 22 4 R
K= —=n“E(K,0)=—; P™(K,w).
C C

(A7)

In deriving Eg. (A7) we used the
KxKxE=K(K-E)—KZ2E. Equation(A7) determineX as

identity

in the direction of thesy=Ko/|K,|, which we have chosen to
be along thez axis:

dAXt) 1
Jz (277)4

f+wd3de (i[K—Ko]-So) A(K,®)

— o0

X exp(i[K—Ko] - X—[w—wo]t). (A11)

a function of frequency, and the magnitude of the electric We may now substitut¢K — Kol-So With K,—K,. More-
field (in an anisotropic medium, it is also a function of the over, due to the dispersion relation quantities, K, , K,
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andw are not mdependent. It is consistent with our chqce of Aj(lzl1wl)A:(K21w2)AI(R3vw3)- (A14)
propagation axis alongto relateK, to the rest of the Fourier
variables, K,—Ky=f(K,,K,,w). We can now treak,, The expression for the nonlinear polarization in E414)

Ky, and w as independent variables. It follows from Eq. incorporates energy conservation and phase matching condi-
(A10) that A(K,»0) should be written as tions. To third order, only the lowest-order nonlinear wave-

,&(K K,,)8(K,—f(K, Ky ,)). The integral ovei, in vector component is necessary in the expansion of &),
Eq ("Aﬁ')’ can be evaluated to obtain z hence the equation for the nonlinear wave vector is given by

. N 2TW . o
JA(Xt) 1 fﬂch K do GHHK. K SK"E(K, )= n—CP”'(K,w). (A15)
9z _(277)4 . xURy o {i[f(K,, y:w)]}
) To obtain an equation of motion for the SVE we expand
XA(Ky, Ky, 0,2) expli[Kx+Kyy]—[o the term ([K—Kq]-So)=(i[{K-—K5}+ 5K"]-s) around
— wlt) (A12) central wave vectoK . The part of this expression which is

enclosed in the curly brackets describes the linear response
R N . . L L .
where A(Ky,Ky,0,2)=A(Ky Ky, 0) explilf(Ky.K,,0)12. of the medium. The relation betweét; , Ky, Kz, andw is

Consequently we obtain the following differential equation9Ven by the linear dispersion relation. Note that in an iso-
in Fourier space foA(Ky K, ,o,2): tropic medium there is no difference between the definitions
X y ) 1 .

of linear and nonlineak, andK; the nonlinearity in our

IR(K, Ky, 0.2) approach modifies onli(,. Following Eq.(A11) we divide
X'azy' i ={i[f(Kx,Ky,w)]},&(Kx,Ky,w,z), the propagation equation into linear and nonlinear parts:
(A13) IA L
A = O“A+O"A. (A16)
whose solution is A(Ky Ky, 0,2)= z

expli[f(K«.Ky )]zt A(Ky Ky ,@,0). Upon taking the inverse (LA s the contribution associated wifl\"— K5} andO"A
Ztog:]ler tgzﬂfg(r)ér?nv;'ga?zta:;;he solution for the pulse Shap%vith the nonlinear termsK™. The linear part of Eq(A16)

yp pace. can either be expanded to obtain a differential equation, or
treated in the Fourier domain if we want to avoid the slowly
varying envelope approximation and the paraxial approxima-
tion. To handle the nonlinear part, represented&?y", we
Here we develop only with the lowest-ordghird-orde)  have to combine definitiongA8) and(A14). It is convenient

main, the nonlinear polarizatioR™® can be expanded as then into a new function:
follows:

3. Third-order optical susceptibility
and the pulse propagation equation

e ‘/’(_wv_Kiwla}zli_wz,—ﬁz;wg,,lzs)
Pinl(lz’w):J d*K1dw;d°Kodwpd®K sdwax| T

— oo

2T 3) R - - -
= X (-0, -Koy Ky — e, ~ Ky 03,K3).

X(_w,_K;wl,Kl;_wz,_Kz;w3,K3) (Al?)

X K=K+ Ky—K3)d(wo— 01— wy+ w3) We introduce the abbreviated notation

Wi ki(— 00, — Ko 09,Ko; — w9, — Ko 09,Ko) = i j k1

Jd - S - -
. . . Y
Jw, ltbi,j,k,l(_wv_KiwliKli_w21_K21w3!K3)|w:w1:w2:w3:wo_ Ir/,i,j,k,l ’

where the superscriptindicates differentiation with respect te=0, . . . ,3 therth argument ofi}; ; .

Using definitiong/A10) and(Al11), and expanding thé functions in all arguments around)é,izo) we can perturbatively
treat the nonlinear term:

+ o0 o N N N N N R
O"A = f_ d*Kdwd*K;dw;d°K dw,d3K sdwsA (K, 01)Af (Ko, 02) Al(Kz, 03)[ i j kT (0— wg) l/fi(,)j,k,|

+(w1— wo)l//i',lj,k,l+(w2_wo)l//i,zj,k,|+(w3_wo) l/’i’?’j,k,l"’ - 18(K—Ky+ K= Kg) 80— w1+ wp— wg)exp(i[K

—Kol-X—[w—wolt) (A18)
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and apply the convolution theorem to obtain the propagation equation for the SVE in closed form. Pulse propagation is driven
by a polarization given by a superposition of linear and third-order polarization terms:

d(AY)
AL A+ A o At B AAE ——

IA,

oy HAAEA) L a(A
0z

= OG5 A+ i kI AAE A+ 5 ot LB e

ij
(A19)

In this presentation we treat the case of linearly polarized pulses. Hence, only two indepgfitietements f,~ x1 and
Xxzz=X2) are present. The first nonlinear term is equal i|2|%A;+ #,A?A* , which for a linearly polarized pulse is
simply (24, + ) |A|?A; . Terms including derivatives af are related to the derivatives gf with respect to frequency. For
example, the third term in EqA19) is equal to

- >

,0 :i 2 -1..(3) _ _K K . _}Z . K) — -1, . 2 _li
¢i,j,k,| (9&)[ Tw(NCc) Xi,j,k,l( w, yw1,K1,—wy, 2,03,K3)]=(w) wl,j,k,|+ om(C) o

X[nilXi(,B}),k,l(_w,—K;wlﬁli_wz,_Kziws,Ka)]- (A20)

In our numerical examples we used shdemtosecongpulses. Assuming that® does not have resonances near the central
frequencyw,, we estimate that the contribution of the shock term should be of ordgrof " times smaller than the
contribution from the first nonlinear term in EGA19). We checked the influence of the shock term on the dynamics and found
that, in all but the anomalous dispersion regime where part of the pulse becomes extremely narrow in time, the contribution is
negligible for the parameters employed over the propagation distances used in our presentation.
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