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Abstract: The nonlinear coupling term in the Gross-Pitiaevski equa-
tion which describes a Bose-Einstein condensate (BEC) can cause four-
wave mixing (4WM) if three BEC wavepackets with momenta k1, k2,
and k3 interact. The interaction will produce a fourth wavepacket with
momentum k4 = k1 + k2 − k3. We study this process using numeri-
cal models and suggest that experiments are feasible. Conservation of
energy and momentum have different consequences for 4WM with mas-
sive particles than in the nonlinear optics case because of the different
energy-momentum dispersion relations.
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1. Introduction

Interference of matter waves formed from Bose-Einstein condensates (BECs) [1, 2, 3,
4, 5] has been demonstrated experimentally [1, 2]. By virtue of the nonlinear nature
of the self-interaction term in the Gross-Pitaevskii(GP) equation, which describes the
dynamics of such systems at zero temperature, one may expect nonlinear phenomena to
occur in BEC dynamics. The equivalent of the self-focusing nonlinearity in optical Kerr
media [6, 7, 8] is actually self-defocusing for the case of positive scattering length. This
example of nonlinear behavior has been observed in the expansion of the condensate
due to the mean field energy when the trap is released [9]. Goldstein et al. [10, 11]
have proposed that phase conjugation of matter waves should be possible in analogy
to this phenomenon in nonlinear optics, including the case of multiple spin-component
condensates [12]. They consider the case where a “probe” BEC wavepacket interacts
with two counterpropagating “pump” wavepackets to generate a fourth that is phase
conjugate to the “probe”; the “probe” is weak and causes negligible depletion of the
“pump”. Law et al. [13] also suggest analogies between interactions in multiple spin-
component condensates and four-wave mixing. Here we examine the four-wave mixing
(4WM) in a single spin-component condensate that occurs as a result of the nonlinear
self-interaction term in the GP equation when three BEC wavepackets with momenta
k1, k2, and k3 collide and interact. Nonlinear 4WM can generate a new BEC wavepacket
with a new momentum k1+k2−k3. Our assumptions on geometry and number of atoms
in the wavepackets are less restrictive than those of Goldstein et al. We suggest that
experiments with such wavepackets should be feasible, for example, using Raman output
coupling techniques which have been demonstrated experimentally by the NIST group
[14, 15]

2. Theory of four-wave mixing

The nature of 4WM in BEC collisions is unlike 4WM for optical pulse collisions in
dispersive media [8, 16, 17], since the momentum and energy constraints imposed are
different in the two cases. This is because the energy-momentum dispersion relation
for massive particles is quadratic in k, whereas it is linear in k for the case of light.
Moreover, in dispersive optical media, the momentum of light waves is proportional to
the product of the frequency of the light and the refractive index, and the refractive
index depends upon frequency (and the propagation direction in non-isotropic media -
hence conservation of energy does not in general guarantee conservation of momentum in
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optical 4WM). This complication involving the properties of the medium does not arise
in the BEC case. For 4WM in BEC collisions, when the magnitude of the momenta
of each of the wavepackets are identical, i.e., |ki| = |kj | for i 6= j, conservation of
momentum and energy. However, in general, when |ki| 6= |kj | for i 6= j, conservation of
momentum does not imply conservation of energy for 4WM in BEC collisions. Clearly,
creation of new BEC wavepackets in 4WM is limited to cases when momentum and
energy conservation are simultaneously satisfied.

Here we will study 4WM of BECs by numerical calculations on a model with
three BEC wavepackets. There are two possible choices of initial conditions: (1) a “whole
collision” in which initial spatially separated wavepackets come together at the same
time, or (2) a “half collision” in which the wavepackets are initially formed in the same
condensate at (nearly) the same time. Although we will assume initial condition (1),
similar to optical 4WM experiments with light pulses, the “half collision” version (2) will
be feasible exeprimentally using the methods of [14, 15]; similar conclusions regarding
4WM will apply to such a case. We assume the initial condensates are comprised of
magnetically confined atoms in the same F,MF state, and any trapping potentials are
turned off before propagation begins. The three condensate wavepackets are given initial
momenta and positions as in Fig. 1 so that they collide at a given point. We have carried
out calculations in 1D, 2D, and 3D.
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k1 k2

k3
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y

k1 -k 2

k 3k 4 = k 1-k 2+k 3

Vector Diagram for 4WM

Figure 1. Schematic view of the initial positions and momenta of the three BECs
wavepackets. The inset shows the momentum of the additional wavepacket formed
by the 4WM process.

The Gross-Pitaevskii(GP) equation for a single component BEC can be written
as [18],

ih̄
∂Ψ

∂t
= (Tx + V (x, t) + U0|Ψ|

2)Ψ, (1)

where Tx =
−h̄2

2m (
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
) is the kinetic energy operator, V (x, t) is the potential

imposed on the atoms and U0 =
4πa0h̄

2

m
NT is the atom-atom interaction strength,

proportional to the s-wave scattering length, a0, atomic mass, m, and the total number
of atoms in all the wavepackets,NT . The initial wavefunction is comprised of three BEC
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wavepackets,

Ψ(x, t = 0) = N

3∑
i=1

ψ(x− xi) exp(iki · x), (2)

where ψ(x − xi) is the solution to the GP equation with a locally harmonic potential
centered around x = xi, i = 1, 2, 3; the normalization constant N chosen so that the
norm of Ψ is unity. We assume the three inital positions xi are spatially separated so
the initial wavepackets are non-overlapping (one could also consider the “half-collision”
case where the three xi are the same and the wavepackets are generated in situ from
the same initial condensate). Although the initial wavepackets can have arbitrary phases
multiplying the amplitudes ψ(x − xi) [3, 5], for simplicity we take the initial relative
phase between wavepackets to be zero, since 4WM will occur for an arbitrary set of
initial relative phases.

The nonlinear term in the GP equation will have terms with the factor exp[i(ki+
kj − kl) · x] where i, j and l can be 1, 2 or 3 respectively. These terms can generate a
wavepacket with a central momentum that is not in the initial wavefunction Ψ(x, t = 0).
For example, if k2 = −k1 (see Fig. (2)), then it is possible to produce a wavepacket
with central momentum k4 = k1 − k2 + k3 = 2k1 + k3.

We set up a numerical calculation where the initial state, Eq. (2), evolves
according to the GP equation (1). The time evolution is carried out using a split-
operator Fourier transform method [19, 20]. We have verfied numerically that energy
and momentum are conserved during the course of our calculation. Thus, dE(t)/dt = 0,
where E(t) = 〈Ψ(t)|(Tx +

1
2U0|Ψ|

2)|Ψ(t)〉 is the energy per particle in the BEC, and
dP(t)/dt = 0, where P(t) = −ih̄〈Ψ(t)|∇|Ψ(t)〉 is the momentum per particle.

In order to estimate the importance of the various terms in the GP equation, it
can be written in terms of characteristic time scales tDF , tNL in the following manner
[19, 20]:

∂Ψ

∂t
= i

w20
tDF
(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
)− i

1

tNL

|Ψ|2

|Ψm|2
Ψ. (3)

Here the diffraction time tDF = 2mw
2
0/h̄, and the nonlinear interaction time tNL =

(U0|Ψm|2/h̄)−1, where |Ψm|2 = (
4
3πw

3
0)
−1 approximates the mean value of |Ψ(x)|2, and

w0 stands for initial halfwidth of the colliding wavepackets. The smaller the characteris-
tic time, the more important the corresponding term in the GP equation. We also define
the collision duration time tcol = (2w0)/v, where v = k1/m is the initial group velocity
of a wavepacket. The ratio tcol/tNL gives an indication of the strength of the nonlinear-
ity during the collision. The larger the ratio of tcol/tNL, the stronger the effects of the
nonlinearity during the overlap of the wavepackets. These characteristic times stand in
the ratios tDF : tcol : tNL = 1 :

λ
2πw0

: w0
6a0NT

, where λ is the De Broglie wavelength
associated with the wavepacket velocity v. Experimental condensates with tcol/tNL � 1
can be readily achieved. Thus, the nonlinear term will have time to act while the BEC
wavepackets remain physically overlapped during a collision.

3. Numerical simulations

We solve Eq. (3) numerically in reduced form by chosing the units of length x0 and
time t0 so that (t0/tDF )(w0/x0)

2 = 1/2; once x0 is chosen, t0 is given by t0 = mx20/h̄.
Here we choose the unit of length x0 to be x0 = 10µm, so that t0 = 36.2 ms for

23Na
atoms. Consequently, the unit of energy E0 = m(x0/t0)

2 = h̄/t0 is E0 = 2.91× 10−33 J
= h(4.39 Hz), and the unit of momentum p0 = m(x0/t0) = h̄/x0 is p0 = 1.05×10−29 Kg
m/s. For comparison purposes, the recoil energy and momentum for a 589 nm photon
(the Na resonance transition) are 5690E0 and 107p0 respectively.
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In 1D, only head-on collisions of the condensates are possible. With the energy-
momentum dispersion relation, E = h̄2k2/(2m), the constraints imposed by conserva-
tion of energy and momentum during the collision do not permit additional wavepackets
to be created in 1D. Let us consider the following initial conditions: x1 = −x2, and
x3 = 0, and k2 = −k1, and k3 = 0. Two wavepackets move symmetrically towards the
central wavepacket whose center is at x3 = 0. Since the nonlinear term in the prop-
agation equation is of third order in Ψ, and Ψ is a superposition of condensates with
momenta k1, −k1 and 0, the nonlinear term could become a source of wavepackets prop-
agating with momentum 0, ±k1, ±2k1 and ±3k1; in addition the collision could transfer
population between the condensate wavepackets. We carried out numerical experiments
with different values of nonlinearity U0, up to the value of the τcol/τNL = 10. As ex-
pected, the only effect observed in 1D simulations was a slight delay of the maximum
of the moving wavepacket peaks. No transfer of population, or additional peak creation
was present, i.e., no wavepackets of momentum ±2k1 and ±3k1 were created. Even if we
had taken k3 6= 0, or |k1| 6= |k2|, no new wavepacket would appear in a 1D calculation.

Figure 2. Probability distribution |Ψ(x, y, t)|2 versus x and y in length units of
x0 = 10 µm. Panels (a), (b), and (c) are for respective times t = -1, 0, and 1 t0
before, during, and after the collision, where t0 = 36.2 ms. The initial wavepacket
started at t = −2t0, and expanded about 8-fold by the time of panel (a). Panels (d),
(e), and (f) show the corresponding momentum distribution |Ψ(kx, ky , t)|2 versus

kx and ky in x
−1
0 units.

Next we consider the two dimensional case with initial configurations such that
x1 = −x2 = (20, 0), k1 = −k2 = (10, 0), and x3 = (20α,−40α), k3 = (−10α, 20α),
with several different values of the parameter α; α = 0.5, 0.7, 1, 1.25 and 1.5. We
take NT = 1.4 × 106 23Na atoms equally partitioned between wavepackets with initial
w0 = 10 µm, for a typical tight trap with a mean trap frequency of 200 Hz. For this
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case tDF = 72 ms, tcol = 7.2 ms, and tNL = 0.031 ms. The wavepacket momenta ki are
significantly larger than the internal momentum. Fig. 2a shows the initial configuration
of the colliding wavepackets. The initial conditions were selected such that the three
wavepackets collide at t = 0 at the origin of the reference frame. Fig. 2 shows results of
our 2D calculations for the case of α = 1.0. Fig. 2a-c shows the probability distribution
|Ψ(x, y, t)|2 before, during, and after the collision, and Fig. 2 d-f shows its Fourier
transform, the momentum distribution |Ψ(kx, ky, t)|2. Fig. 2b illustrates the wavepacket
interference during the collision.

The striking feature in Figs. 2c and 2f is an additional 4WM wavepacket
created in the collision with momentum k4 = k1−k2+k3. The three other wavepackets
seen in Fig. 2c are the ones that pass through the collision region without changing
their central momenta. Redistribution of population between different wavepackets must
satisfy conservation of energy and momentum. Before or after the collision, when the
wavepackets are separated in space, the population of the i-th one is given by the integral
Ni = NT

∫
Vi
dx〈Ψi|Ψi〉 where the integration region Vi is selected to include the region

around the i-th wavepacket. If we use Ni and N
′
i to denote inital and final populations,

conservation of energy and momentum show that N ′4 = ∆N3 = ∆N1 = −∆N2, where
∆Ni = N

′
i −Ni. These relationships are satisfied in our numerical simulations.

4. Interpretation

A physical interpretation of our results can be made in analogy with 4WM in non-
linear optics. We can regard the collision of the condensates as producing a grating
formed due to the nonlinear term in Eq. (1). If Bragg conditions are satisfied (i.e., if
energy and momentum are conserved in the formation of new peaks), new 4WM induced
wavepackets may be formed in addition to the wavepackets present initially. Consider
a nonlinear term in Eq. (1) and assume that Ψ(x, t) consists of three wavepackets:

Ψ(x, t) =
∑3
i=1Ψi(x, t), as in Eq. (2). Hence, the nonlinear term |Ψ(x, t)|

2Ψ(x, t) in
Eq. (1) becomes a sum of nine contributions. Terms homogeneous in the index i de-
scribe self phase modulation (self-focusing or actually, self-defocusing for the case of
positive scattering length), in analogy with nonlinear optics, and these terms can not
be a source of new wavepackets. Moreover, crossed phase modulation terms of the form
|Ψi(x, t)|2Ψj(x, t) for i, j = 1, 2, 3 and j 6= i also can not contribute to the formation
of new peaks. Only mixed terms, containing different indices may be a source of new
wavepackets, but only when the Bragg conditions (i.e., conservation of momentum and
energy) are satisfied. Specifically, these conditions are: (a) k4 = ki − kj + kl, and (b)
conservation of energy, which for our initial configuration (see Fig. 2) is equivilant to
|k4| = |k3| where i = 3 and j = 1, l = 2. Referring again to the analogy with nonlinear
optics, one can say that wavepackets with indices j and l create a grating during the
collision whose grating vector is K = −kj + kl, and the wavepacket i = 3 scatters
off of this grating. This is confirmed by our numerical simulations. Only when α = 1
does the central K vector satisfy the Bragg conditions stated above. However, since
the wavepackets contain momentum components spread around the central K vector,
formation of the additional wavepacket may still occur for α 6= 1 due to internal mo-
mentum compensating the momentum mismatch of the central K vectors. As |α − 1|
increases, the number of atoms in the additional wavepacket decreases rapidly.
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Figure 3. Blowup of the probability distribution |Ψ(x, y, t)|2 of panel (c) in Fig. 2.

It is important to note that the new 4WM wavepacket with momentum k4 is
not a phase conjugate of the wavepacket with momentum k3, since the wavepackets with
momenta k1 and k2 do not form a static grating, but rather, form a dynamic grating
which changes in time due to the evolution and interaction of the wavepackets throught
the course of the collision. The new k4 wavepacket is cigar-shaped, whereas the initial
k3 wavepacket is spherical. The final k1 and k3 wavepackets are mirror images of one
another (about a plane containing the centers of wavepackets 2 and 4). Their final shape
is distorted relative to their initial shape; a bite has been removed from wavepackets 1
and 3 by the 4WM process which (1) created the new wavepacket with momentum k4
and (2) added Bose atoms to the wavepacket with momentum k2. Fig. 3 is an enlarged
view of the final wavepackets in coordinate space with the details of their shapes shown
more clearly. If we were to view the final wavepackets in the reference frame in which
the new wavepacket is stationary, the trailing edges of wavepackets 1 and 3 would be
reduced and the trailing edge of wavepacket 2 would be enhanced. The structure of
the wavepackets clearly shows that the nature of the matter waves obtained after the
collision is sensitive to the details of the collision dynamics and the properties of the
initial wavepackets. A static grating picture is not sufficient to explain the results.

Our 3D calculations show similar results to the 2D ones. The quantity∫ ∞
−∞

dz|Ψ(x, y, z, t)|2, (4)

which indicates the z-averaged distribution, is similar to the 2D distribution and to the
probability distribution cut at the collision plane z = 0. These different distributions
show only a few percent difference in the ratio of number of atoms in the four final
wavepackets.

The formulation developed here assumes that the BECs are at zero temperature
and can therefore be treated in the mean-field approximation as given by the GP equa-
tion. At finite temperatures, the collision must include the above-the-mean-field part of
the wavefunction (order parameter), and a density matrix treatment is required. More-
over, even at zero temperature, there may be effects due to non-vanishing expectation
values of the above-the-mean-field part of the wavefunction involving the creation of ex-
citations due to the collision [21]. Moreover, in our treatment we have assumed that only
one value of MF is present for atoms in the condensates (e.g., F = 1, MF = −1) with
the z-axis perpendicular to the scattering plane. Another means of carrying out 4WM
experiments is to use far off-resonance light traps to confine separate BECs [22], and im-
part momentum boosts to the BECs. In this case, the BECs would be multi-component
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in nature with all values of MF being present in the condensates. A multi-component
GP equation could be used to describe such experiments, as for example, the phase-
conjugation experiment proposed by [12].
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