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Gap solitons in a medium with third-harmonic generation
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We find two-component optical solitons in a nonlinear waveguide with a Bragg grating, including Kerr
effects and third-harmonic generation (THG). The model may be realized in temporal and in spatial domains.
Two species of fundamental gap solitons (GSs) are found. The first (“THG-gap soliton”) has the bulk of its
energy at the fundamental frequency (FF) and a lesser part in the third-harmonic (TH) band. The FF part of the
soliton is always single humped; the TH part may be single or double humped. Stability domains for quiescent
and moving THG-gap solitons strongly shrink with increase of velocity. The second species is the usual
(“simple”) GS, sitting entirely in the TH band. More complex solutions are also found, in the form of a bound
state of a THG-gap soliton and two simple GSs, with a finite binding energy. When a THG-gap soliton is
unstable, the instability is oscillatory. It may ultimately cause the THG-gap soliton to throw off some radiation
and evolve into a localized structure with the FF and TH components out of phase, with or without internal

oscillations. Stable solitons feature an excited state (i.e., they support a localized eigenmode).

DOI: 10.1103/PhysRevE.72.016624

I. INTRODUCTION

Gap solitons (GSs) in temporal [1-3] and spatial [4] do-
mains have been predicted in nonlinear media with Bragg
gratings (BGs). The BG creates (in the temporal domain)
dispersion or (in the spatial domain) diffraction, which, in
combination with material nonlinearity, supports GSs. GSs
have been the focus of much research due to potential appli-
cations, and because they are one of only a few distinct basic
soliton types (see earlier [5] and more recent [6] reviews of
GSs). A crucially important property of a resonant BG (i.e.,
modulation of the index of refraction at a period that is in-
phase with the wavelength of the light) is that the group-
velocity dispersion (or, in the spatial domain, diffraction) in-
duced by the Bragg scattering can be several orders of
magnitude larger than the intrinsic material (geometric) dis-
persion (diffraction) of the homogeneous optical medium. As
a consequence, GSs may be realized at much shorter lengths
than nonlinear Schrodinger (NLS) solitons [7]—in the tem-
poral domain, GSs are typically on the order of centimeters
long, while NLS solitons are generally kilometers. Temporal-
domain GSs have been produced in fiber gratings less than
10 cm long [8—10]. Recently, spatial GSs have been ob-
served in waveguide arrays [11] and in photonic lattices in-
duced in a photorefractive material [12]. Besides the Kerr
nonlinearity in the original GS work, GSs have been pre-
dicted in systems combining a BG with other optical nonlin-
earities, such as second-harmonic generation (SHG) [13],
self-induced transparency [14], and a combination of self-
focusing cubic and self-defocusing quintic terms [15]. Also,
more complicated types of spatial GSs, but with a simple
cubic () nonlinearity, have been predicted [16].

There has been a particularly significant interest in fwo-
color GSs supported by SHG (x'» nonlinearity) and Bragg
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gratings [17]. However, despite the theoretical predictions,
two-color GSs have not yet been experimentally created, ei-
ther in the temporal or the spatial domain. The problem is
obvious, it is hard to fabricate a long waveguide or fiber
from quadratic materials (a SHG monocrystal or a periodi-
cally poled medium) and also to write a regular grating on it.
The situation is especially problematic for temporal solitons,
as SHG waveguides are in practice, even without the added
difficulty of creating a BG on the waveguide, limited to a
few centimeters. Thus for SHG solitons, the nonlinear length
and the dispersion length of the soliton (at both harmonics)
must both be no larger than about 1 cm, which is extremely
difficult.

There has been much research that partly overlaps with
the model we propose. Ordinary (without a BG-induced band
gap) two-color solitons supported by a SHG nonlinearity
have been thoroughly investigated theoretically in myriad
settings (see, e.g., Ref. [18]). They have been created experi-
mentally in the spatial domain (see Ref. [19]). A temporal-
domain y@ soliton was observed in Ref. [20]. The latter
demanded a special effort to avoid the problem of insuffi-
cient material group-velocity dispersion—creating additional
effective dispersion with the tilted wavefront technique in a
planar geometry. Ordinary (without a BG-induced band gap)
two-color temporal solitons supported by the nonlinearities
THG and Kerr effects [self- and cross-phase modulation
(SPM, XPM)] were predicted in Ref. [21]. These two-color
solitons are far from experimental realization for a number of
reasons, the most serious being the lack of tools to enforce
phase- and group-velocity matching between the fundamen-
tal frequency (FF) and third harmonic (TH) bands. In other
words, THG, while it occurs locally, is washed out due to a
large phase-velocity mismatch [see Ref. [22], where numeri-
cal simulations of the full system of Maxwell’s equations
with a cubic nonlinearity, including both instantaneous
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(SPM, XPM, and THG) and retarded (Raman) effects, were
performed]. Recently, solitons were considered in models
combining a nonlinearly induced grating and THG [23].
(Note that this is very different from a system with a linear
BG, as in the present work. See Ref. [24] for solitons in a
system with a nonlinearly induced grating, but no THG.)
From yet another direction—not solitons, but rather towards
the goal of producing significant THG—various means of
attaining phase-matching between FF and TH waves have
recently been analyzed, for example, photonic crystals [25]
and use of the Kerr effect [26]. The strong dispersion pro-
vided by a BG, which may be a most effective tool for tuning
FF and TH waves, has not been considered in this nonsoliton
context either.

In this work, we propose a way of making (temporal or
spatial) two-color GSs, using third-harmonic generation
(THG) rather than SHG. This approach is more realizable, as
one does not need to manufacture a fiber (or waveguide)
from x® materials, which are difficult to work with. Experi-
mental realization requires the same sort of waveguide as for
simple GSs [8-10], with the additional stipulation that it
must be sufficiently nonabsorbent at the TH as well as at the
FF (over the relevant propagation length). An ordinary di-
electric medium with a Kerr nonlinearity (x®), such as silica
or AlGaAs (which has a nonlinear coefficient approximately
500 times larger than silica, making the necessary lengths
much smaller) will do the job. Current technology can
readily produce regular gratings more than a meter long on
such materials by writing the BG on the fiber cladding—this
is more than long enough for GS experiments [8—10]. An-
other way to realize the system is with a photonic-crystal
fiber with a hollow core—here, the BG can be written on the
inner surface of the fiber, as proposed in, e.g, Ref. [27]. The
condition of nonabsorption (over the relevant length) is rela-
tively lax because the relevant length for GSs is quite small.
For propagation lengths up to about 1 m, sufficiently low
fiber loss at the fundamental frequency and third-harmonic
bands is easily achieved in optical fibers. A comparison with
typical experimentally realizable simple GSs [8—10] suggests
that solitons in the THG-Bragg grating system will have spa-
tial extent =1 cm, peak power density on the order of
10 GW/cm?, and (if the GS is produced in a straightforward
experiment by simple self-trapping of a soliton from a laser
pulse) soliton velocity between ¢/(2n) and c¢/n, where ¢ is
the speed of light in vacuum and » is the mean index of
refraction in the fiber. The combination of THG and Kerr
nonlinearity with a BG thus offers a real possibility of cre-
ating two-color gap solitons, which may be practically unat-
tainable by other means.

In Sec. II, we set forward a model for light in a waveguide
with a BG (in resonance with both the FF and TH waves),
and with SPM, XPM, and THG nonlinearities. The model
applies to light evolution in both temporal and spatial do-
mains in X(3) media. The relaxation method, by which we
find numerical soliton solutions, is briefly described in the
Appendix. Section III characterizes quiescent (zero-velocity)
fundamental and compound solitons in detail. The set of fun-
damental solitons include “simple” ones, with only the TH
component present, which are equivalent to the simple GSs
[1-3], and a family of two-color THG-gap solitons. Most of
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the solutions are found to be stable. A feature of the THG-
gap soliton (not exhibited by the simple GSs) is that they
may feature both single-humped and double-humped shapes
in the TH component, and the soliton may be stable in both
cases. Solitons with several humps in the FF band, which
may be considered as compound solitons, i.e., stable bound
states comprised of one THG-gap soliton and two simple
GSs in the TH, are also found. The existence and stability of
such compound objects is a noteworthy result, as they are
absent in the standard BG model. Moving THG-gap solitons
are considered in Sec. IV (in the spatial domain model, the
“moving” solitons represent tilted beams in the planar wave-
guide). Detailed discussion of the solitons’ stability is pre-
sented in Sec. V. A feature of THG-gap solitons is that the
stability region quickly shrinks with the increase of the ve-
locity, and all the moving solitons become unstable when the
velocity attains a critical value (which is, roughly, half-the-
maximum velocity up to which the solitons exist); this is
quite different than simple GSs, for which the stability prop-
erties are relatively insensitive to soliton velocity. Section VI
concludes the paper.

II. THE MODEL

Propagation of forward- and backward-moving FF and
TH waves (at frequencies w; and 3w,, respectively) in a
single-mode lossless waveguide, with a Bragg grating in
resonance with the FF and TH, is described by a set of non-
linear coupled-mode equations. Using standard techniques
[7,28,29], we derive the equations for the slowly varying
envelopes (SVEs) U,,V,,Us,V; of which the electric field
E(x,1) is composed,

2 /c)?
0=iU1,+i51U1,+K1V1+M3X(3)[(|U1|2+2|V1|2
” ’ kA,
+2|U5)* + 2|5 U, + U US], (1a)
. 2 /c)?
0=—iV1,+i51V“+K1U1+M3X(3)[(Z|U1|2+|V1|2
= ' kA,
+2|U5)2 + 2|5V, + V2V, (1b)

27(3w,/c)? 3)

O=l.U3’Z+l.53U3’[+(k3—3k1)U3+K3V3+ (3k1)A3

1
X[(2|U1|2+2|V1|2+|U3|2+2|V3|2)U3+§U3], (1c)

| | 273w /c)’ 5

1
X[(2|U1|2+2|V1|2+2|U3|2+|V3|2)V3+gV?], (1d)

where ¢ and z are time and the coordinate along the wave-
guide (fiber), subscripts z and ¢ after a comma stand for
respective partial derivatives, and asterisk means complex
conjugation. Equations (1a) and (1b) govern the evolution of

016624-2



GAP SOLITONS IN A MEDIUM WITH THIRD-...

U, and V|, which are SVEs centered about carrier waves
with frequency w; and wave vectors *k; (i.e., forward- and
backward-moving FF waves), respectively. Equations (1c)
and (1d) are for U; and V3, which are SVEs centered about
carrier waves with frequency 3w, and wave vectors +3k; (in
other words, they are forward- and backward-moving TH
waves). Linear properties of the waveguide with a BG are
characterized by the dispersion relation k=k(w)=n(w)w/c,
where n(w) is the refractive index: The wave numbers of the
carrier frequencies are k;=k(w;) and +3k,. (We choose
wave vector 3k, for the carrier wave of the TH SVEs rather
than k3 =k(3w,) so that the phase-velocity mismatch is ex-
pressed as an additive linear term rather than as a phase in
the THG and parametric downshifting terms [30].) The re-
ciprocal group velocities are & =(dk/dw),-, and &
= (dk/dw) ,-3,,- The Bragg reflectivity, assumed frequency-
independent within the FF and TH bands, is denoted by «;
and k3. The well-known condition justifying the latter as-
sumption is that the spatial scale of the field envelopes
U, 3,V 3 should be much larger than the period of the Bragg
grating and the wavelengths of light. These conditions hold
for all cases of practical relevance. The coefficients of the
nonlinear terms, SPM, XPM, THG, and the FWM term (i.e.,
the parametric down-conversion counterpart to THG) are
locked together, as in the usual model with an instantaneous
nonlinear dielectric response, Py (x,7)=x*[E(x,1)]?, where
E(x,?) is the whole electric field [7,29]. The cross-sectional
areas of the waveguide for the FF and TH waves are A; and
A5 [7,28]; setting A;=A;=1 recovers the equations for plane
waves. We have not written coefficients for effects related to
the difference in the cross-sectional areas of the fundamental
and TH, consequently making the XPM coefficients exactly
twice their SPM counterparts. Material dispersion, which is
dwarfed by the BG-induced dispersion (typically, by six or-
ders of magnitude) is omitted.

The system of equations (1) can also describe propagation
of the forward-backward FF-TH wave quartet in the spatial
domain if the variables are identified with other physical
quantities. In this case, the forward-backward FF-TH wave
quartet propagates in a spatial BG, a system of parallel
grooves on a planar waveguide. Waves of the same fre-
quency propagate at the same angle relative to the BG. The
variable ¢, the propagation coordinate, runs parallel to the
grooves of the waveguide, z is the perpendicular coordinate,
and Ak [see Eq. (4b), below] is a wave vector mismatch.
Therefore, the results herein may also represent spatial soli-
tons.

The variables in the governing equations (1) are rescaled,

6 /¢)23)
u =0, \/W(:;\#, (2a)
141K
[67(wy/c)* X"
v =V, M (2b)
k]A]K]
|67(wy/c)* X"
uz; = U; M, (2¢)
klAlKl/Kl
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[67(w /)X
V3=V, (a)]—*;x, (Zd)
k1A1K1 /Kl

T= Mi, (2e)
Oy

55 |K1 <y (2f)

to yield the coupled-mode equations in the normalized form,

0= iul’.,+ l.lzll’§+ v+ (|M1|2 + 2|Ul|2 + 2|M3|2 + 2|U3|2)M1

+uT2u3, (3a)
0=ivy ,—ivy ¢+ uy + luy|* + v [* + 2|us]* + 2Jvs v,
+0,’vs, (3b)
0=idus .+ ius ¢+ Akus + ko3 + U3(2Juy|* + 2]v [ + [us]?

+2[vs)us + 7], (3c)

0= l'5v3’7.— i03’§+ Akv3 + K*M3 + 7[3(2|M] |2 + 2|Ul|2 + 2|u3|2
+ o3y + 03], (3d)

with coefficients

5
o=, 4
5 (4a)
ky—3k
Ak=—=—1 (4b)
|K1|
k=23 (4¢)
K
A
==L 4d
Y 1, (4d)

Thus, recalling the descriptions of the coefficients above, Jis
a ratio of the group velocities, Ak is a dimensionless phase-
velocity mismatch, « is a dimensionless Bragg scattering co-
efficient, and the Kerr coefficient vy is a ratio of cross-
sectional areas of the waveguide modes at the FF and TH. In
terms of the dimensionless variables, the FF frequency gap
has size w,,(FF)=2, and is centered at the middle of the FF
frequency band; the TH gap has size w,,,(TH)=2|«/ 8|, with
offset (Ak/S) from the middle of the TH band.
Equations (3) have three dynamical invariants, one is

* S
Elot(T)Ef {|“1|2+|U1|2+;(|“3|2+|U3|2) az, (5)

—o0

which we refer to as the total energy (in the temporal domain
model, it is proportional to the physical energy; in the spatial
domain it measures the total power carried by light in the
planar waveguide); two others are the Hamiltonian and mo-
mentum, which we do not write explicitly. To limit the pre-
sentation to a reasonable case with a tractable number of free
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parameters, from this point forward we fix the relative group
velocity, Bragg and nonlinear coefficients to be d=xk=y=1.
In fact, calculations were also carried out for values of these
parameters different from 1; this variation yielded no notable
difference in the results. Below, we vary the normalized
phase-velocity mismatch Ak (which is known to be the most
critical parameter in harmonic-generation systems), and fre-
quencies and velocities of the soliton solutions, as variation
of these parameters produces the most interesting results for
solitons.

Solutions to Egs. (3) with a fixed shape and constant ve-
locity (p) in both the FF and TH bands were sought in the
form

u,(7,) = exp(= imwn)u,,({ - p7), (6a)

Um(T’ g) = exp(_ imwT)Um(§ - PT) ’ (6b)

with m=1 and m=3. This simply says that the solutions
should be of fixed shape, with constant eigenvalue and ve-
locity. Substituting this ansarz into Egs. (3) yields a set of
ordinary differential equations whose localized solutions are
solitons. The numerical procedure used to solve the latter set
of equations is described in the Appendix.

III. FUNDAMENTAL THG-GAP SOLITONS

An obvious family of solitons has all the energy in the TH
(u3,v5#0) and nothing in the FF band (u;=v,=0). In this
case, Egs. (3c) and (3d) for the TH components u3,v; reduce
to those for simple GSs, whose soliton solutions [2,3] and
stability properties [32,33] are known (an additional linear
instability of these solitons cannot be induced by small per-
turbations in the FF band, as their coupling to the TH equa-
tions is nonlinear). We refer to them as Aceves-Wabnitz-
Christodoulides-Joseph (AWCIJ) solitons. Direct simulations
(not shown here) demonstrate that the coupling to the FF
fields does not add a nonlinear instability to the AWCJ soli-
tons in the TH component either.

The second family of solutions, which we will refer to as
THG-gap solitons, are qualitatively distinct. In the regions
examined herein, they have the bulk of their energy in the FF
component, and a smaller amount in the TH band. The THG-
gap solitons were found to always display a single-humped
shape in the FF band, while their shape in the TH compo-
nents may be either single or double humped. Figures 1 and
2 illustrate a single-humped quiescent (p=0) THG-gap soli-
ton (Fig. 1 shows it in coordinate space, and Fig. 2 in wave
number space). Figures 3 and 4 illustrate a quiescent THG-
gap soliton with a double-humped structure in the TH band
(Fig. 3 in coordinate space, and Fig. 4 in wave number
space).

We found THG-gap solitons in a two-dimensional region
in parameter space, shown in Fig. 5. Obvious existence con-
ditions for the THG-gap solitons are |w|, |3w+Ak| < 1, mean-
ing that the solitons must sit inside the band gaps in each
component; outside this region, the solutions become delo-
calized. Close to other borders, the THG-gap soliton may be
lost by becoming singular through developing too many high
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FIG. 1. (Color online) Typical example of a quiescent (p=0)
THG-gap soliton with the single-humped structure, in the coordi-
nate space. The solution has w=0.52 and Ak=-2.09. Here and in
Fig. 3 below, the solid, dashed, and dotted lines show, respectively,
the absolute value, real, and imaginary parts of the four constituent
fields.

wave numbers. However, the evidence provided by the re-
laxation method close to the borders is insufficient to remove
ambiguity about the cause.

A fundamental characteristic of the family of THG-gap
solitons is that, like the AWCJ solitons, all the quiescent (p
=0) solitons satisfy symmetry restrictions that are compat-
ible with the corresponding equations, u({)=-v(-{) and
u($)=-v"(¢). Figure 6 shows the total energy of the family
of the THG-gap solitons, E,,, vs w and Ak, within the exis-
tence region of the solitons. Note that, for any fixed phase-
velocity mismatch Ak, the energy E,, decreases as a function
of the FF frequency w. By the Vakhitov-Kolokolov criterion
[34], this implies that the quiescent THG-gap solitons cannot
be unstable against nonoscillatory perturbations (correspond-
ing to real unstable eigenvalues).

2
lu,|
o
[=] o -
L

-6 -4 -2 0 2 4 6

FIG. 2. (Color online) Fourier image of the THG-gap soliton
from Fig. 1. The power spectrum (absolute square) of the solution is
displayed.
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FIG. 3. (Color online) Typical example of a quiescent (p=0)
THG-gap soliton featuring a double-humped structure in its TH
component in the coordinate space, found at w=0.38 and Ak=
-1.47.

Figure 7 shows the share of the soliton’s energy in its TH
component, J*7(|us|>+|vs|*)d{/E,; vs the same parameters,
o and Ak, and Fig. 8 displays the “cleavage depth” in the TH
component, M(7) = (Ju3(7,0)[*+[v3(7,0)|?)/max (|us(7, >
+|vs(7,0)[*). A value M=1 means that the TH component of
the soliton is single humped, while M <1 indicates a double-
humped structure. Figure 5 shows that a large region of the
single-humped solitons is adjacent to a region with a deep
cleavage, which is followed by a region with a more moder-
ate drop-off of the intensity between the humps.

Compound THG-gap solitons: We have also found a fam-
ily of solitons with multiple humps in the FF. We refer to
these as compound solitons, since they may be considered as
bound states of THG-gap solitons and simple AWCIJ ones. A
typical example is displayed in Fig. 9. This particular solu-
tion continues, in parameter space, into a family of com-
pound solitons. To illustrate the family and compare it with

o
I 05F |
0 .
o
> 05F R
0 .
0.1 . . . . . . .
o
= /\, |
o . . .
0.1 T T T T T T T
L
=7 0.05F l\/\ J
0 . N i
-0 -8 -6 -4 -2 0 2 4 6 8 10

FIG. 4. (Color online) Fourier image of the THG-gap soliton
from Fig. 3. The power spectrum (absolute square) is shown.
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double-humped

-05f E
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< -15F unstable 1
-2r stable =
25+ : E
—_—
unstable single-humped

3 . . ; i . ;

~0.4 ~0.2 0 0.2 0.4 06 0.8 1

(O]

FIG. 5. (Color online) Regions of existence (dots) and stability
(bounded by the solid lines), and shape of the third-harmonic com-
ponent (single- and double-humped regions separated by a dashed
line) for quiescent (zero velocity) THG-gap solitons in the param-
eter plane (w,3w+Ak), where Ak is phase-velocity mismatch, and
w is FF frequency; the same for the parameter plane (w,Ak). Sta-
bility was determined by direct numerical simulations, up to 7
=200.

families of fundamental solitons, Fig. 10 shows the energies
of the THG-gap solitons, AWCIJ solitons, and compound
ones over a range of FF frequencies w, for a fixed phase-
velocity mismatch Ak. The soliton shown in Fig. 9 has three
distinct peaks in the TH component (which holds for the
entire family originating from this solution), while both the
simple AWC]J solitons and the THG-gap ones always feature
a single-humped shape in this component. The three distinct
peaks in the FF component for this example of a compound
soliton do not persist in the entire family of compound soli-
ton solutions—the side FF peaks may sometimes merge into
the central one.

A detailed consideration allows us to interpret this com-
pound as a bound state of one THG-gap soliton and two
AWCI solitons. This interpretation motivates a definition of

soliton energy

FIG. 6. (Color online) Energy of the THG-gap soliton, defined
as per Eq. (5), over the soliton’s existence region, as a function of
phase-velocity mismatch Ak and frequency w.
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FIG. 7. (Color online) Share of the THG-gap soliton’s energy in
the third-harmonic component. The data are displayed over the soli-
ton’s existence region in parameter space of phase-velocity mis-
match Ak and eigenvalue w.

energy defect (or as a “mass defect” if the conserved quantity
E, is considered as its effective mass; or also as a binding

enegy)
AE= ETHG gap + 2EAWCJ ~ Lcompound (7)

as a combination of the respective energies, each computed
separately according to Eq. (5) at the same values of @ and
Ak. Results are shown in Fig. 11. The positive definite en-
ergy defect implies that the compound soliton should be
stable, which is always confirmed by direct simulations (not
shown here).

IV. MOVING THG-GAP SOLITONS

We performed systematic searches for moving THG-gap
solitons over two dimensions in the parameter space, soliton

1

0.8
o ..
-3
o
§§ 0§
S \
Ssoa [N en 11 NN
T © =
=0
£790 02
0, \
[ W\
08 | i “‘ | AN
‘ \
0.6 ARE
— i
0.4 = =
@4
0.2
0
-0.2

-25 -2 AK

FIG. 8. (Color online) Cleavage depth of the THG-gap soliton in
its third-harmonic component, whose shape may be both single
humped and double humped, is shown over its existence region, as
a function of phase-velocity mismatch Ak and eigenvalue w. Values
less than unity indicate a double-humped structure in the third-
harmonic component.
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FIG. 9. (Color online) Compound quiescent (p=0) THG-gap
soliton in the coordinate space, at frequency w=0.58 and phase-
velocity mismatch Ak=-1.89. The solid, dashed, and dotted lines
show the absolute values, real, and imaginary parts of the fields.

velocity p and frequency o [see Egs. (6)]. To illustrate the
generic situation, we present results for a constant phase-
velocity mismatch, Ak=-1.89. Typical examples of moving
THG-gap solitons are displayed in Figs. 12 and 13. Clearly,
symmetries of the quiescent THG-gap solitons between the
forward u, 5 and backward v, 3 components are broken by a
finite velocity.

Figure 14 summarizes numerical results for the moving
THG-gap solitons, existence and stability domains in the
(w, p) parameter space (cf. Fig. 5 for quiescent solitons). The
family of moving solitons is further quantified by Fig. 15,
which shows the soliton energy vs velocity and frequency.
Note that, as in the case of quiescent solitons, energy always
decreases smoothly with the frequency. The disappearance of

0 . . . . . . L . .
2 0 0.2 04 0.6 0.8 1
3w1+Ak

FIG. 10. (Color online) Energy [defined in Eq. (5)] for the THG-
gap soliton (solid line), AWCIJ soliton (dotted), and the compound
soliton (dashed) vs frequency w, for a fixed phase-velocity mis-
match, Ak=—1.89.
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FIG. 11. (Color online) Energy defect (binding energy) of the

compound soliton, defined in Eq. (7) vs frequency o, for fixed
phase-velocity mismatch, Ak=-1.89.

the moving solitons at borders of their existence region can,
in some cases, be traced to the energy in one of the FF modes
approaching zero. Other boundaries of the existence region
are harder to interpret, due to poor convergence of the relax-
ation method very close to the borders. As for quiescent
THG-gap solitons, the moving THG-gap soliton may de-
velop a singularity as it approaches the borders. Stable mov-
ing compound states can also be found, but we do not dis-
play them here.

V. STABILITY

The Vakhitov-Kolokolov (VK) criterion [34], applied to
the families of the THG-gap solitons, disallows nonoscilla-

O

FIG. 12. (Color online) Example of an (unstable) moving THG-
gap soliton in the coordinate space, for phase-velocity mismatch
Ak=-1.89, FF frequency w=0.44, and velocity p=0.2. The solid,
dashed, and dotted lines are the absolute values, real parts, and
imaginary parts of the amplitudes.
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0
¢

FIG. 13. (Color online) The same as in Fig. 12, but for w
=0.86 and p=0.1. This THG-gap soliton is stable.

tory instabilities. Full stability of the solitons was investi-
gated by direct numerical simulations, propagating the solu-
tion with a small initial perturbation by means of the split-
step fast-Fourier-transform method [7]. Stability borders
identified this way are shown in Fig. 5 for quiescent THG-
gap solitons, and in Fig. 14 for the moving THG-gap soli-
tons. All the soliton instabilities were found to be oscillatory,
consistent with the VK criterion precluding monotonic insta-
bilities. A notable characteristic of THG-gap solitons is that
their stability region considerably shrinks with increase of
the velocity (in sharp contrast to the AWCJ solitons, whose
stability depends only weakly on the velocity [33]). The ve-
locity up to which THG-gap solitons remain stable is smaller
(roughly, by a factor of 2) than the velocity up to which
THG-gap solitons exist.

Figure 16 illustrates, through the evolution of peak inten-
sities of all the fields, propagation of a fairly typical stable

1 T T T T T T T

SEEAES
o7} - 1 J
unstable —

0sf -

04} -

0.3 -

02 I L L I I L ! I

FIG. 14. (Color online) Existence and stability regions for mov-
ing THG-gap solitons in the parameter space of velocity and FF
frequency, (p,w), for constant phase-velocity mismatch, Ak=
—1.89. Stability was identified by direct simulations, similar to the
case of Fig. 5.
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soliton energy

FIG. 15. (Color online) Energy of moving THG-gap solitons
[defined as per Eq. (5)] vs velocity p and frequency w, for fixed
phase-velocity mismatch, Ak=-1.89.

THG-gap soliton, to which initial perturbation noise was
added. The perturbation does not completely disappear, but
rather excites persistent internal vibrations of the soliton.
This strongly suggests existence of a stable intrinsic mode.
Figures 17 and 18 illustrate evolution of an initially per-
turbed unstable THG-gap soliton. In this case, most of the
initial noise disperses, but a particular perturbation mode
grows and destroys the soliton. The localized pulse does not
then disappear, but rather becomes a breather. In this ex-
ample, as well as in all others observed, the surviving local-
ized structures seem to be mutually incoherent, in the sense
that its FF and TH component remain effectively coupled
only through the XPM interaction, while the phase-sensitive
THG and FWM couplings are virtually nullified by the rapid
oscillations. The stability and instability of moving solitons
is generally similar to that of their quiescent counterparts.

eak
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third-harmo
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0.017 L L L L L
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FIG. 16. (Color online) Evolution of the peak intensities of the
constituent fields (maximum values of the absolute squares) from a
stable perturbed quiescent THG-gap soliton, for phase-velocity mis-
match Ak=-2.25 and FF frequency w=0.56. Solid and dashed lines
are for, respectively, fields u; ;3 and v; 3. The peak intensities of
fields u; and v and of u3 and vj are visually indistinguishable.
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FIG. 17. (Color online) The same as in Fig. 16, but for an
unstable THG-gap soliton, with Ak=-2.25 and w=0.88. As in Fig.
16, the intensities of the FF fields «; and v, and of the TH fields u;
and v3 are visually indistinguishable.

Figures 19 and 20 illustrate evolution of all the fields
from, initially, an unstable moving THG-gap soliton with
noise perturbation. This figure displays the evolution of the
peak intensities as a function of time 7, and Fig. 20 displays
a surface plot with the field intensities as functions of (£, 7).
The oscillatory perturbations grow until they destroy the
THG-gap soliton, which then evolves into a messier breath-
ing localized state.

VI. CONCLUSIONS

We have introduced a coupled-mode system for the
forward- and backward-propagating fundamental frequency
(FF) and third-harmonic (TH) waves, which are linearly
coupled by a resonant Bragg scattering (on a single Bragg
grating), and nonlinearly coupled by a full set of third-order
nonlinear (y*)) terms, including self- and cross-phase modu-
lation (SPM and XPM), third-harmonic generation (THG),
and four-wave mixing (FWM—or, more specifically, the

FIG. 18. (Color online) Surface plots of field intensities for the
same case as in Fig. 17.
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FIG. 19. (Color online) Evolution of the peak intensities of the
constituent fields (maximum values of the absolute squares) from
an unstable perturbed moving THG-gap soliton, for phase-velocity
mismatch Ak=-1.89, frequency w=0.44, and velocity p=0.2. Solid
and dashed lines are for fields u; 3 and v, 3, respectively.

parametric downconversion that is an inverse of THG). The
model may be realized in both the temporal and spatial do-
mains, i.e., in a fiber (which seems especially interesting), or
in a planar waveguide, with an appropriate grating. The
model exhibits a variety of soliton behaviors. Alongside the
gap solitons (GSs) in the TH band alone [which are identical
to (well-known) simple GS solutions], we have found a
qualitatively distinct species of “THG-gap” solitons, with en-
ergy split between the FF and TH bands. In the better part of
the existence region, quiescent (zero-velocity) THG-gap soli-
tons are stable. For moving THG-gap solitons, the stability
region quickly shrinks with increase of velocity. The TH
component of stable THG-gap solitons may assume both
single- and double-humped shapes. (Note that double humps

FIG. 20. (Color online) Evolution of the constituent field inten-
sities (squares of the absolute value) from an unstable moving
THG-gap soliton, for phase-velocity mismatch Ak=-1.89, fre-
quency w=0.44, and velocity p=0.2 (the same case as in Fig. 19).

PHYSICAL REVIEW E 72, 016624 (2005)

do not exist in the simple GSs supported by a Bragg grating.)
When the THG-gap soliton is unstable, it may evolve, shed-
ding some radiation, into a localized structure, often in the
form of a breather. Compound solitons were also found, in
the form of bound states of two simple GSs in the TH band
and one THG-gap soliton. Stability of the compound solitons
was confirmed by calculation of a finite binding energy.
Stable THG solitons support an intrinsic mode, i.e., they may
exist in an excited state.

The theoretical results reported here suggest experiments
which may achieve two purposes that have so far been elu-
sive: creation of two-color GSs, and creation of a soliton
combining the fundamental-frequency and third-harmonic
waves.
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APPENDIX: THE RELAXATION METHOD

Substituting the ansatz (6) into the set of partial differen-
tial equations (3) yields the set of ordinary differential equa-
tions,

0=wu; +i(1-puj+v; + (|”1|2 + 2|Ul|2 + 2|'43|2 + 2|U3|2)M1

+ u]kzu3 , (Ala)

0=wv,—i(1+p)v| +u + Qlu;|* + [v]|* + 2us|* + 2[v5H)v,

+0]%s, (Alb)

0 =3wus +i(1 = p)us+ Akuz + v5 + 32|y > + 2|v[* + |us)?

+2|vs)us + 3, (Alc)

0=3wus—i(1 + p)v} + Akvs + us + 32y |* + 2[v, > + 2|us)?

+[v3]Hvs + 7. (A1d)

Numerical soliton solutions of the stationary equations were
found by means of the relaxation technique [31]. [As an
aside, the shooting method, which is a common alternative
method for solving equations of this general nature, could
not be implemented for Egs. (A1) due to our lack of a mea-
sure of how “close” a guess is from a soliton solution.] We
discretize the spatial axis and impose periodic boundary con-
ditions (making sure, in the end, that a spatial extent of the
resulting solutions is much smaller than the domain). This
turns the ordinary differential equations for the functions
u;,us3,0;,03 into a set of finite-difference equations,

- Wt —wt . . ‘
0= +i(1 =)= v+ P+ 2Jof P+ 20

+ 2|vé|2)u{ + (u’i*)zué, (A2a)
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gl , . '
0=wv)-i(l+ p)% +ul + (2Jul|* + [V * + 2]u

+ 2|0} )] + (0],

| 2

(A2b)

0=3wu +i(1 -p)W + Ak + v+ 32|l + 2Jv P

+[us]? + 2[vh P + (), (A2¢)
i v’;’l —vé_] : . . .

0=3wv}—i(l + p)T + Akv} + u + 3(2|uf)? + 2|v)?

+ 20uy? + [P + (), (A2d)

where A( is the transverse discretization step size, and j is
the discrete coordinate on the grid. Finally, we use Newton’s

PHYSICAL REVIEW E 72, 016624 (2005)

method [31] to obtain numerical solutions. Making initial
guesses in Newton’s method is a delicate process because the
guess depends on many variables—the number of the spatial
grid points times eight (as we are dealing with four complex
variables). Our guesses were based on known solutions in
various limits, with parameters altered. After obtaining par-
ticular solutions, nearby solutions were obtained by a con-
tinuation procedure, i.e., slightly changing the parameters
and reapplying Newton’s method, with the previous solution
taken as the initial guess. We constructed families of solu-
tions by evolving the numerical solutions in several dimen-
sions of the parameter space: frequency (w), velocity (p) [see
Egs. (6)], and phase-velocity mismatch (Ak). In this work,
we do not present results obtained by varying other param-
eters, since they were found to be less critical for the soliton
solutions than the set (w,p,Ak).
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