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Sound waves and modulational instabilities on continuous-wave solutions
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We analyze sound waves (phonons, i.e. Bogoliubov excitations) propagating on continuous-wave (cw) solutions
of repulsive F = 1 spinor Bose-Einstein condensates (BECs) such as 23Na (which is antiferromagnetic or polar)
and 87Rb (which is ferromagnetic). Zeeman splitting by a uniform magnetic field is included. All cw solutions
to ferromagnetic BECs with vanishing MF = 0 particle density and nonzero components in both MF = ±1
fields are subject to modulational instability (MI). Modulational instability increases with increasing particle
density. Modulational instability also increases with differences in the components’ wave numbers; this effect
is larger at lower densities but becomes insignificant at higher particle densities. Continuous-wave solutions
to antiferromagnetic (polar) BECs with vanishing MF = 0 particle density and nonzero components in both
MF = ±1 fields do not suffer MI if the wave numbers of the components are the same. If there is a wave-number
difference, MI initially increases with increasing particle density and then peaks before dropping to zero beyond a
given particle density. The cw solutions with particles in both MF = ±1 components and nonvanishing MF = 0
components do not have MI if the wave numbers of the components are the same, but do exhibit MI when
the wave numbers are different. Direct numerical simulations of a continuous wave with weak white noise
confirm that weak noise grows fastest at wave numbers with the largest MI and show some of the results beyond
small-amplitude perturbations. Phonon dispersion curves are computed numerically; we find analytic solutions
for the phonon dispersion in a variety of limiting cases.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) [1–5] hold the promise
of opening many new prospects in physics, e.g., macro-
scopic systems that exhibit quantum effects, higher-resolution
measurements of time, inertia, and other quantities, and
a medium in which to carry out quantum computing and
simulation of quantum systems [6–10]. Many interesting
phenomena in BECs either occur against simpler backgrounds
or are prepared from initially simpler states, which are often
plane waves or approximations thereof. For example, vortices
[11–14] and dark solitons [15–17] are typically imbedded on
plane waves and a spin texture [18] may be composed of,
in part, many regions that are approximately plane waves.
When the dynamics of plane waves are understood better, the
structures that sit on them may be understood better. It is
useful to know, especially if those simpler states are not quite
as simple as had been thought, when they can and cannot
exhibit more complex dynamics and what those dynamics
are.

Bose-Einstein condensates can be composed of particles
with nonzero total angular momentum (F > 0). For example,
there is H [19], 7Li [20], 23Na [5,21], 41K [22], 52Cr [23],
84Sr [24], 85Rb [25], 87Rb [4], 133Cs [26], 164Dy [27], and
170Yb [28]. An optical (as opposed to magnetic) trap can
hold all the spin components (MF = −F, − F + 1, . . . ,F −
1,F ) [29–32]. In this case the BEC field is a spinor with 2F + 1
MF components and can exhibit phenomena that do not occur
in scalar fields. First and foremost, there is magnetism. More
complicated phenomena in spinor BECs that do not occur
in a scalar BEC are some forms of modulational instability
(MI) [17,33–36], oscillatory coherent spin mixing [37–39],
formation of spin textures, i.e., patterns of spatial variation

of the magnetization [18], and certain forms of vortices with
magnetization [11–13,18], including fractional vortices and
non-Abelian vortices [14].

Here we examine sound waves (phonons, acoustic waves, or
Bogoliubov excitations) that propagate on top of continuous-
wave (cw) solutions of F = 1 spinor BECs [40–45]. When the
frequencies of the sound waves have (do not have) imaginary
parts, they grow exponentially (do not grow), which implies
that the background is unstable (stable). Sound waves with
imaginary parts are most often called MI or Benjamin-Feir
instabilities [46–48]; there are instances where the instability
has been called self-pulsing instability [48] or dynamical
instability [14]. Section II introduces the equations for the
dynamics of an F = 1 spinor BEC, the general form of the
cw solutions, and sets out the formalism for describing small-
amplitude sound waves. Section III computes the phonon band
diagrams, i.e., the way the frequencies (chemical potentials) of
the sound waves depend on wave number. Special attention is
paid to complex-valued frequencies, since this MI causes the
sound waves to grow exponentially. Section IV presents direct
numerical simulations, which confirm the analytic results
for small-amplitude phonons, and investigates the evolution
of large-amplitude (highly nonlinear) noise. A summary is
presented in Sec. V.

II. QUANTITATIVE MODEL FOR SPINOR BECS
WITH MAGNETIC FIELDS

The Hamiltonian density for an F = 1 spinor BEC
with linear and quadratic Zeeman splittings induced by a
magnetic field B = B ẑ (and without spin-dipolar coupling)
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is [49–51]
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Here � = (φ1,φ0,φ−1)t is a vector composed of the amplitudes
of spin MF = 1, MF = 0, and MF = −1; m is the mass of the
particles; c0 and c2 are the coefficients of the spin-independent
and spin-dependent parts of the mean field; F is the total atomic
angular momentum vector and each component is a 3 × 3
spin-1 matrix; B is the magnitude of the (uniform) external
magnetic field, which is taken to be in the z direction; and p

and q are linear and quadratic Zeeman coefficients [11,12,37].
The results here actually apply to any strength Zeeman
effect and are not limited to magnetic fields small enough
for the dependence of the particle energies as a function
of B to be described by the first two terms of a Taylor
expansion. To generalize, substitute relative particle energies
as a function of spin state [Em=+1(B) − Em=−1(B)]/2 for
pB and [Em=+1(B) + Em=−1(B) − 2Em=0(B)]/2 for qB2.
Within the limitations of this paper, [Em=+1(B) + Em=0(B) +
Em=−1(B)]/3 is a global energy shift and may be neglected.

If the BEC is in a quasi-one-dimensional optical trap
with population only in a single transverse bound state, the
governing equations are
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Time and space are t and z, c0 is a coefficient of
self-phase modulation, and c2 is a coefficient of both self-
phase modulation and parametric nonlinearity (and is spin
dependent). Materials with negative c2 are ferromagnetic and
materials with positive c2 are antiferromagnetic, or polar. The
nonlinear coefficients are functions of the particle mass m and
the s-wave scattering lengths a0 and a2 for the F = 0 and
2 channels, g0 = (4π�

2/m)a0, and g2 = (4π�
2/m)a2, with

the nonlinear coefficients in the governing equations above
c0 = (g0 + 2g2)/3 and c2 = −(g0 − g2)/3. The values of the
nonlinear coefficients are modified when the BEC is in a
trap [52,53]. The scattering lengths of 87Rb are a0 = 101.8aB

and a2 = a0 − 1.45aB , where aB is the Bohr radius [54–56],
and the scattering lengths of 23Na have been measured to
be a0 = 50.0aB and a2 = a0 + 5.0aB . The ratios c2/c0 are
−0.0048 for 87Rb and 0.031 for 23Na. Equations (2) are

integrable when c2 = 0 (in which case the system is a set of
generalized Manakov equations [57,58]) or c2 = c0 [59–61].

Equations (2) can be written in dimensionless form by
applying a change of variables

t ′ = t/td , (3a)

z′ = z/zd = z/
√

�td/m, (3b)

φ′
j = φj/φd = φj/

√
�/c0td . (3c)

The dimensionless equations have � = 1, m = 1, c0 = 1,
and c2|dimensionless = c2/c0. The dimensionless frequencies and
wave numbers go as the dimensional variables times td and
zd = √

�td/m, respectively. Here td is a free variable and may
be chosen such that the dimensionless time, space, or ampli-
tudes are convenient magnitudes. We will use dimensionless
variables in the figures in order to emphasize generality, but
retain the dimensions in the body of the text to more closely
connect the equations to the physical parameters.

A important observable is the magnetization vector m =
(mx,my,mz). For a spin F = 1 BEC, this is the spin-vector
density, which is equal to the expectation value of the spin
vector F = (Fx,Fy,Fz), where
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⎞
⎠ ,

multiplied by the maximum magnetic moment of the particles
that constitute the BEC. For the dimensionless variables, we
take the maximum magnetic moment to be unity. That gives
the dimensionless magnetization vector
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⎛
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⎞
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√
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Im[
√
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⎞
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If any two of the three spin fields are zero, then the
remaining field is governed by a simple nonlinear Schrödinger
(NLS) equation, called the Gross-Pitaevskii equation, which is
completely integrable [62,63]. If the MF = 0 component spin
field vanishes (φ0 = 0), then the spin MF = ±1 fields (φ1,
φ−1) are governed by a pair of coupled nonlinear Schrödinger
(CNLS) equations
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which have been intensely studied (see, e.g., Ref. [64]).
They describe, among other physical systems, light in optical
fibers [48]. In optics, one convention is to describe the ratio
of the coefficients of cross- to self-phase modulation as B =
(c0 − c2)/(c0 + c2). Linear polarization in optics is described
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by B = 2/3, which corresponds to a ratio c2/c0 = 1/5;
circular polarization in optics has B = 2, which corresponds
to c2/c0 = −1/3. Because of the positive and negative signs
of the corresponding c2/c0, the dynamics of linearly polarized
light resembles the dynamics of repulsive ferromagnetic BECs
and circularly polarized light resembles antiferromagnetic
(polar) BECs, provided the BECs do not contain any par-
ticles with spin m = 0. The CNLS equations for light in a
fiber often contain group-velocity birefringence terms. These
terms may be eliminated by a transformation that changes
variables, which shifts the frequencies and wave numbers
of the component fields [see, e.g., Eq. (7.2.29) in [48]].
Changing the group-velocity birefringence (e.g., setting it to
zero) corresponds to shifting the wave numbers of the spin
m = +1, − 1 up and down, respectively.

A. Continuous-wave solutions

We begin by considering the solutions of the dynamical
equations with the simplest shape, a flat constant field, or cw.
The most general cw ansatz is

φ1 = A1 exp[i(θ1 + k1z − ω1t)], (7a)

φ0 = A0 exp[i(θ0 + k0z − ω0t)], (7b)

φ−1 = A−1 exp[i(θ−1 + k−1z − ω−1t)], (7c)

where the parameters are real valued and, without loss of
generality, Aj are positive definite. Spin components with
different wave numbers have, in general, different velocities.
In this model, the domain is infinite. In an experiment (or in
numerical simulations), a BEC with different wave numbers in
the different spin components would need to be long enough
to avoid edge effects or one could replenish the fields at the
boundaries or arrange the fields in a ring (confined by a toroidal
potential) [65–69]. In a ring, the wave numbers would be
quantized, but otherwise all the results would hold. Modulation
instability of spinor BECs in a ring geometry has been studied
theoretically in Ref. [34].

Let us substitute the cw trial function (7) into the dynamical
equations (2). If c2 = 0, there are cw solutions for every value
of the amplitude Aj , wave number kj , and phase θj . The
frequencies of the fields are

�ωj = �
2k2

j

2m
+ c0

(
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1 + A2
0 + A2

−1

)
. (8)

If c2 �= 0, then the parametric term requires a relation between
the phases of the three fields
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where n is an integer. The frequencies of the spin components
MF = 1,0, − 1 are
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For consistency of the frequency ω0 of the MF = 0 field
[Eqs. (10) and (9b)], the magnitude A0 of the MF = 0 field
must be

A2
0 = 2(−1)nA1A−1

(
1 − (�2/2m)[(k1 − k−1)/2]2 + qB2

c2[A1 + (−1)nA−1]2

)
.

(11)

The left-hand side of Eq. (11) is real and non-negative. If
c2 < 0 (ferromagnetic), for the right-hand side to be positive,
the cw solutions must have even n (for conciseness, we write
n = 0 to denote even n and n = 1 for odd n). If c2 > 0
(antiferromagnetic), then over certain ranges of the cw spin
components MF = ±1, there are only n = 0 solutions, both
n = 0 and 1 solutions, or only n = 1 solutions; there is always
at least one cw solution with a nonvanishing MF = 0 field, with
the exception of MF = ±1 particle densities exactly equal to
each other and below the threshold at which n = 0 cws exist,
A2

1 = A2
−1 < (4c2)−1[�2(k1 − k−1)2/8m + qB2]. For the (n =

0)- and (n = 1)-type cw solutions, there is a particle density
Aref that roughly separates the regimes in which linear compo-
nents of the energy are more important from regimes in which
nonlinear polarization-dependent components of the energy
are more important: Taking the internal (in the reference frame
in which the spin m = 0 field has wave number zero) kinetic
energy plus the quadratic Zeeman energy, i.e., all the linear
terms, Elin = {�2[(k1 − k−1)/2]2/(2m) + qB2}|Aref|2 and the
energy scale of the nonlinear polarization-dependent terms as
ENL = c2|Aref|4, the particle density at which the absolute
values of these linear and nonlinear energies are equal is
A2

ref = |{�2[(k1 − k−1)/2]2/(2m) + qB2}/c2|. This reference
particle density is a rough marker for the blurred boundary
between the two regimes.

The dimensionless magnetization components of this cw
are

mx = Re{(i)n
√

2A0[A1 exp(iφ�/2) + A−1 exp(−iφ�/2)]},
(12a)

my = Im{(i)n
√

2A0[A1 exp(iφ�/2) − A−1 exp(−iφ�/2)]},
(12b)

mz = |A1|2 − |A−1|2, (12c)

where the phase difference between the +1 and −1 com-
ponents is φ� ≡ φ1 − φ−1 + (k1 − k−1)z − (ω1 − ω−1)t . The
magnetization is flat in the “natural” orientation direction of
the cw and sinusoidal in space and time in the transverse
directions. See Ref. [39] for a more detailed elucidation of the
consequences of Eq. (11).
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B. Sound waves and modulational instabilities

Sound waves in BECs have been studied experimentally
in, e.g., Refs. [40–44]. In the context of mean field theory,
sound waves (or by other names, acoustic waves, phonons, or
Bogoliubov excitations) and also MI (where sound waves have
complex-valued frequencies) may be represented by small
perturbations to a cw solution [17,33–35,45–48,70–73]

φj = [Aj + aj (z,t)] exp[i(θj + kj z − ωj t)], (13)

where j = 1,0, − 1. It is convenient to define the frequencies
and wave numbers of the phonons with respect to the cw so-
lution on which it propagates, rather than φj = Aj exp[i(θj +
kj z − ωj t)] + aj (z,t).

III. PHONON-DISPERSION BAND DIAGRAMS

The dynamics of sound waves on top of the cw solutions
are obtained by substituting the ansatz (13) into the governing
equations (2). If the sound waves are weak, one may linearize

in the perturbations aj . The perturbations are then superposed
and the general solution is a sum of sound waves. This allows
a spectral approach. We look for solutions one frequency and
wave number at a time, i.e., eigenvalues and eigenvectors,

aj (z,t) = pj cos(kz − ωt) + iqj sin(kz − ωt). (14)

The phonons are here represented in terms of sines and cosines,
but they could equally well be in terms of exponentials.
The former tends to be use more often in looking for MI
(frequencies with complex values) [48], while the latter is more
typical when considering stable sound waves (Bogoliubov
excitations) or more quantum mechanical problems.

There are six equations in pj and qj , each of which are
complex valued,

0 = Mv =
([

− �ω + �
2

2m
(k1 + k−1)k

]
I + P + Q + R

)
v,

(15)

where v = (p1,q1,p0,q0,p−1,q−1)t and

P = �
2k

2m

⎛
⎜⎜⎜⎜⎜⎝

�k k 0 0 0 0
k �k 0 0 0 0
0 0 0 k 0 0
0 0 k 0 0 0
0 0 0 0 −�k k

0 0 0 0 k −�k

⎞
⎟⎟⎟⎟⎟⎠ , (16a)
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⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
(c0 + c2)A2

1 0 (c0 + c2)A1A0 0 (c0 − c2)A1A−1 0
0 0 0 0 0 0

(c0 + c2)A1A0 0 c0A
2
0 0 (c0 + c2)A0A−1 0

0 0 0 0 0 0
(c0 − c2)A1A−1 0 (c0 + c2)A0A−1 0 (c0 + c2)A2

−1 0

⎞
⎟⎟⎟⎟⎟⎠ , (16b)

R = (−1)nc2

⎛
⎜⎜⎜⎜⎜⎝

0 −A2
0A−1/A1 0 2A0A−1 0 −A2

0
−A2
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0 0
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A2
0 0 2A1A0 0 −A2
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⎞
⎟⎟⎟⎟⎟⎠ . (16c)

Note that the frequency (chemical potential) ω of the
perturbations (relative to the cw on which it sits) and the
average wave number k0 = (k1 + k−1)/2 appear only on the
diagonal. Off-diagonal terms depend on the parameters of
the cw, A1, A−1, �k ≡ k1 − k−1, and n; note that A0 is a
function of the other cw parameters [Eq. (11)]. In addition,
c2/c0 cannot be simplified or reduced to more trivial terms.
The linear and quadratic Zeeman effects do not appear
explicitly. The quadratic Zeeman terms appear implicitly in
the magnitude of A0. The quadratic Zeeman splitting will
affect the perturbations of the cw solutions with nonzero
MF = 0 fields, but will not affect the cases without an MF = 0
field.

Equations (15) and (16) constitute an eigenvalue-
eigenvector problem, with solutions being six eigenvalues
ωj = ωj (k), with eigenvectors (pj,i(k),qj,i(k)), j = 1, . . . ,6.
Some insights into the phonon dispersion curves may be

obtained by expanding the characteristic polynomial |M|
from Eqs. (15) and (16), in energy �ω and wave number
k. We may express the sixth-order polynomial equation for
the eigenvalues (frequencies or energies of the sound waves
or Bogoliubov excitations), leaving the dependence on the
background cw implicit in the coefficients

0 = (�ω)6 + (
C

cw(n=0,1)
k0ω4 + C

cw(n=0,1)
k2ω4 k2 + C

cw(n=0,1)
k4ω4 k4

)
(�ω)4

+ (
C

cw(n=0,1)
k1ω3 k + C

cw(n=0,1)
k3ω3 k3)(�ω)3 + (

C
cw(n=0,1)
k2ω2 k2

+C
cw(n=0,1)
k4ω2 k4 + C

cw(n=0,1)
k6ω2 k6 + C

cw(n=0,1)
k8ω2 k8)(�ω)2

+ (
C

cw(n=0,1)
k3ω

k3 + C
cw(n=0,1)
k5ω

k5 + C
cw(n=0,1)
k7ω

k7
)
(�ω)

+C
cw(n=0,1)
k4ω0 k4 + C

cw(n=0,1)
k6ω0 k6 + C

cw(n=0,1)
k8ω0 k8

+C
cw(n=0,1)
k10ω0 k10 + C

cw(n=0,1)
k12ω0 k12. (17)
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There are six dispersion curves, corresponding, at any given
wave number, to six mutually orthogonal phonon perturba-
tions. The coefficients C

cw(n=0,1)
kiωj = (i!j !)−1∂i

k∂
j
ω|M| are too

lengthy to be included explicitly in full in the body of the
text. The explicit analytic expressions for the coefficients may
be obtained from a file in Wolfram’s Computable Document
Format (CDF) in Ref. [74]. From the band diagrams ω =
ωj (k) come the energies of the phonons � Re[ωj (k)], the MI
Im[ωj (k)], phase velocities vp = Re[ωj (k)]/k, group veloc-
ities vg = (d/dk){Re[ωj (k)]}, phonon group-velocity disper-
sion values (d2/dk2){Re[ωj ]} = (d/dk)vg , and higher-order
dispersion (dn/dk2){Re[ωj ]}, where n > 2. Solving involves
finding the roots of a sixth-order polynomial. Numerical
solutions may be readily obtained. The general case is not
analytically soluble. There are analytic solutions in some
limiting and special cases.

In the case with a zero particle density of spin MF = 0, the
equation for the phonons in spin states MF = ±1 is the same
as for the CNLS equation

0 = (�ω)4 + (
CCNLS

k2ω2 k2 + CCNLS
k4ω2 k4)(�ω)2 + CCNLS

k3ω
k3(�ω)

+CCNLS
k4ω0 k4 + CCNLS

k6ω0 k6 + CCNLS
k8ω0 k8, (18)

which are well known from optics. This is in principle soluble,
though the solutions for a quartic polynomial is long even with
simple coefficients and for spinor BECs the coefficients are not
very short. The fully explicit formulas for the coefficients in
terms of the parameters of the cw can be obtained from a CDF
file in Ref. [74].

A. Special cases with full analytic phonon bands

There are a few cases for which the whole dispersion band
function is available analytically. If two of the three spin fields

are zero, the frequency of the cw is �ωj = �k2
j

2m
+ 2cA2

j , where
c = c0 + c2 for spin MF = j = ±1 and c = c0 for spin MF =
j = 0. Sound waves on top of this cw have frequency

�ω = �
2kj

m
k ±

√
�2k2

2m

(
�2k2

2m
+ 2cA2

j

)
. (19)

Equation (19) is the well-known Bogoliubov dispersion
relation [45]. When the nonlinearity is repulsive or zero
(c � 0), the frequencies are real valued and all the cw solutions
are stable. When the nonlinearity is attractive (c < 0), there
are sound waves with complex-valued frequencies, i.e., MI,
for wave numbers �

2k2/2m < −2cA2
j . The largest MI is at

wave numbers k = ±√−2mcAj/� and the growth rate is
Im(ω) = −cA2

j /� [46].
For perturbations on top of cws with nil MF = 0 fields,

the eigenvalues (energies, frequencies, or chemical potentials)
are roots of fourth-order polynomials, which can be solved in
terms of roots. In the limiting case in which the wave numbers
are the same (k1 = k−1), the phonon frequency as a function
of wave number, i.e., the band diagram, is

�ω = qB2 ±
(

�
2k2

2m

)1/2(
�

2k2

2m
+ (c0 + c2)

(
A2

1 + A2
−1

) ± {[
(c0 + c2)

(
A2

1 + A2
−1

)]2 − 16c0c2A
2
1A

2
−1

}1/2
)1/2

. (20)

Two of the four branches of the phonon solutions in Eq. (20) contains frequencies with complex parts, i.e., modulational
instabilities, when the BEC is ferromagnetic c2 < 0, such as is the case for 87Rb; the frequencies are real valued for
antiferromagnetic BECs c2 � 0. There are analytic solutions for phonons in the general CNLS case, where the cw contains
nonzero wave-number differences. However, we found the general formulas for sound waves in the MF = ±1 fields to be long
and complex to the point that computational efficiency but little understanding could be gained from the exact solutions.

For the ferromagnetic CNLS-type phonons, the largest MI (imaginary component of the frequency) and the wave numbers
(up to a sign and offset with respect to the average of the wave numbers) at which they occur (k1 − k−1)/2 are

ωCNLS
MI (k1 = k−1) ≡ 1

2�

{√[
(c0 + c2)

(
A2

1 + A2
−1

)]2 − 16c0c2A
2
1A

2
−1 − (c0 + c2)

(
A2

1 + A2
−1

)}
, (21a)

kCNLS
MI (k1 = k−1) ≡

√
2m

�
ωCNLS

MI (k1 = k−1), (21b)

which is similar to Bogoliubov dispersion [45] and MI in the NLS equation [46], though with different parameters. The MI range
is |k| < 2kCNLS

MI (k1 = k−1). Since there is no MI above a certain wavelength, the cw should fail to manifest MI if the domain is
periodic with length less than or equal to π/kCNLS

MI (k1 = k−1).
For the CNLS case, the small-amplitude (linearized) MF = 0 fields decouple from the MF = ±1 phonons and have simple

analytic solutions

�ω = ±
{[

�
2k2

2m
+ c2

(
A2

1 + A2
−1

) − qB2 − �
2

2m

(
k1 − k−1

2

)2]2

− 4c2
2A

2
1A

2
−1

}1/2

. (22)

The cw will be modulationally stable in the MF = 0 field if

Ecrit
MI ≡ c2[A1 − sgn(c2)A−1]2 − qB2 − �

2

2m

(
k1 − k−1

2

)2

� 0 (23)
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and subject to MI if Ecrit
MI < 0. In the unstable case, the maximum MI values occur at wave number (recall that the system is being

analyzed in a reference frame in which k1 + k−1 = 0) k = 0 if

c2
(
A2

1 + A2
−1

) − qB2 − (�2/2m)[(k1 − k−1)/2]2 � 0, (24)

yielding peak MI

max[Im(ω)] = �
−1

√
4c2

2A
2
1A

2
−1 − [

c2
(
A2

1 + A2
−1

) − qB2 − �2(k1 − k−1)2/8m
]2

; (25)

otherwise, the maximum MI occurs at phonons that are
combinations of

k = ±
√

(k1 − k−1)2/4 − (2m/�2)
[
c2

(
A2

1 + A2
−1

) − qB2
]
,

(26a)

yielding peak MI

max[Im(ω)] = 2|c2|A1A−1/�. (26b)

There are analytic solutions for the band diagram of sound
waves on (n = 0)-type cws in the limiting case in which
the wave numbers are all the same (k1 = k0 = k−1) and the
quadratic Zeeman splitting is zero,

ω = ±�k2

2m
, (27a)

ω = ±1

�

[
(�k)2

2m
− 2c2(A1 + A−1)2

]
, (27b)

ω = ±1

�

√
(�k)2

2m

[
(�k)2

2m
+ 2(c0 + c2)(A1 + A−1)2

]
. (27c)

It follows from Eqs. (27) that the cws have MI if and only
if c0 + c2 < 0. This is not the case for either 23Na or 87Rb,
so for these the n = 0 cws are stable when the wave numbers
are all the same and quadratic Zeeman splitting is absent.
Thus, ironically, in ferromagnetic BECs, the (n = 0)-type
cw solutions are modulationally stable and the CNLS-type
solutions have MI, even though the former cws have higher
energy than the latter. We failed to find analytic formulas for the
phonons when there was quadratic Zeeman splitting or nonzero
differences in the wave numbers of the spin components MF .

B. Small- and large-wave-number k limiting cases

1. Continuous-wave background solutions of types n = 0,1

In the large-wave-number limit, the equation for the band
diagram for sound waves on top of the cw (n = 0,1) solutions
approaches (in dimensionless units)

0 = (ω2/k4)3 + C
cw(n=0,1)
k4ω4 (ω2/k4)4

+C
cw(n=0,1)
k8ω2 (ω2/k4) + C

cw(n=0,1)
k12ω0

= (ω2/k4)3 − 3
4 (ω2/k4)4 + 3

16 (ω2/k4) − 1
64

= (
ω2/k4 − 1

4

)3
(28)

or, with the dimensions left in, ω = ±�k2/2m. At large wave
numbers, the kinetic terms dominate over the nonlinearities
and the dispersion approaches a quadratic dependence on the
wave number (i.e., constant dispersion), the same as it would

be in the absence of nonlinearities. In the limit of small wave
numbers (k ≈ 0), the dispersion curves can be obtained by
substituting a Taylor expansion

ω(k) = ω0 + ω1k + 1
2ω2k

2 + · · · (29)

into the equation (17) for the complete dispersion curve.
Two of the phonon dispersion curves at low momentum

(small |k|) have Taylor coefficients

ω0 = ±
√

−C
cw(n=0,1)
k0ω4 , (30a)

ω1 = C
cw(n=0,1)
k1ω3 /2C

cw(n=0,1)
k0ω4 , (30b)

ω2 = − 1

ω0

(
C

cw(n=0,1)
k2ω4 − C

cw(n=0,1)
k2ω2

C
cw(n=0,1)
k2ω4

+ 3C
cw(n=0,1)
k1ω3

4
(
C

cw(n=0,1)
k0ω4

)2

)
;

(30c)

four dispersion curves have ω0 = 0 for the zeroth order in
the expansion; and the linear terms in the dispersion curves
are the roots of the quartic equation in ω1,

0 = C
cw(n=0,1)
k0ω4 �

4ω4
1 + C

cw(n=0,1)
k1ω3 �

3ω3
1 + C

cw(n=0,1)
k2ω2 �

2ω2
1

+C
cw(n=0,1)
k3ω

�ω1 + C
cw(n=0,1)
k4ω0 . (31)

Explicit analytic formulas for higher orders in the expansion
of the dispersion curves do not seem very useful, so we stop
at this order.

2. Continuous-wave background solutions with zero-particle
density for spin m = 0

In the large-wave-number limit, the band diagram of
phonons on top of cw solutions without an MF = 0 component
approaches ω = ±�k2/2m. At large wave numbers, the kinetic
terms dominate over the nonlinearities and the dispersion
approaches a quadratic dependence on the wave number (i.e.,
constant dispersion), the same as it would be in the absence
of nonlinearities. In the limit of small wave numbers (k ≈ 0),
the dispersion curves can be obtained by substituting a Taylor
expansion

ω(k) = ω0 + ω1k + 1
2ω2k

2 + · · · (32)

into the equation (18) for the CNLS dispersion curve. The
zeroth-order term is nil, ω0. The first-order terms ω1, one
for each of the four curves, are the solutions of the quartic
polynomial

0 = �
4ω4

1 + CCNLS
k2ω2 �

2ω2
1 + CCNLS

k3ω
�ω1 + CCNLS

k4ω0 . (33)

We stop at the linear expansion terms because general explicit
analytic formulas for the higher-order terms in the series are
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FIG. 1. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of a CNLS-type cw
solution (vanishing MF = 0 field) of a 87Rb BEC where the MF = 1
and −1 spin components have the same wave vectors and amplitudes 2
and 2.5, respectively. The energies (chemical potentials) come from
the real parts of the frequencies (E = � Re[ω]), which are shown
as solid lines, and the MI comes from the imaginary parts of the
frequencies, which are dotted lines. All quantities in the figure are
dimensionless; see Eqs. (3).

not very helpful. One may carry out the expansion numerically
for specific cw solutions.

C. Band diagram illustrations

To illustrate the range of different behaviors in the sound
waves and the MI, we show the real parts of the frequencies
[Re(ω)] and MI [Im(ω)] versus the wave number of sound
waves propagating on a background of each of the allowed
cws in a BEC of (i) 23Na and (ii) 87Rb, in which the wave
numbers of the different spin components (a) are all identical
and (b) have different values. Each of the examples in Figs. 1–9
takes the dimensionless amplitudes of the MF = ±1 fields to
be A1 = 2 and A−1 = 2.5 and the quadratic Zeeman splitting
is zero.

In the CNLS-type solutions, the MF = 0 particle density is
zero; the (dimensionless) Hamiltonians for 87Rb are 52.5191
when the wave vectors are the same (corresponding to Fig. 1)
and 53.800 4 when k1 − k−1 = 1 (corresponding to Fig. 2);
the Hamiltonians for 23Na are 52.587 7 when the wave vectors
are the same (corresponding to Fig. 3) and 53.8689 when
k1 − k−1 = 1 (corresponding to Fig. 4). Of the (n = 0)-type cw
solutions, a 87Rb BEC has A0 = 3.1622 8 and H = 204.288
when the wave vectors are the same (corresponding to Fig. 5)
and A0 = 4.783 08 and H = 548.323 when k1 − k−1 = 1
(corresponding to Fig. 6); the (n = 0)-type cw in a 23Na BEC
has A0 = 3.162 28 and H = 52.587 7 when the wave vectors
are the same (corresponding to Fig. 7) and A0 = 2.689 06 and
H = 156.589 when k1 − k−1 = 1 (corresponding to Fig. 8).
For the (n = 1)-type cw solution for 23Na with k1 − k−1 = 1
(corresponding to Fig. 9), A0 = 14.638 5 and H = 25 234.6.

A sense of the effects of a nonzero wave-number difference
can be gained by comparing Fig. 1 with Fig. 2, Fig. 3
with Fig. 4, Fig. 5 with Fig. 6, and Fig. 7 with Fig. 8.
Wave-number differences in the spin components increase the

FIG. 2. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of a CNLS-type cw
solution (vanishing MF = 0 field) of a 87Rb BEC where the MF = 1
and −1 components have wave vectors that differ by k1 − k−1 = 1 and
amplitudes 2 and 2.5, respectively. The energies (chemical potentials)
come from the real parts of the frequencies (E = � Re[ω]), which are
shown as solid lines, and the MI comes from the imaginary parts of
the frequencies, which are dotted lines. All quantities in the figure
are dimensionless; see Eqs. (3).

modulational instability, whether the BECs are ferromagnetic
or antiferromagnetic, with or without a nontrivial MF = 0
field. Note that the displayed phonon-dispersion curve for a
CNLS-type cw in a 23Na BEC with nonzero difference in the
wave numbers (Fig. 4) has zero MI, but similar cws but with
smaller particle densities are subject to MI. This is consistent
with the well-known fact that (in the language of optical fibers)
the cw with components of the same wave number in a pair of
CNLS equations without birefringence is stable when the ratio

FIG. 3. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of a CNLS-type cw
solution (vanishing MF = 0 field) of a 23Na BEC where the MF = 1
and −1 spin components have the same wave vectors and amplitudes 2
and 2.5, respectively. The energies (chemical potentials) come from
the real parts of the frequencies (E = � Re[ω]), which are shown
as solid lines, and the MI comes from the imaginary parts of the
frequencies, which are dotted lines. In this case, the frequencies
are real valued, so there is no MI. All quantities in the figure are
dimensionless; see Eqs. (3).
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FIG. 4. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of a CNLS-type cw
solution (vanishing MF = 0 field) of a 23Na BEC where the MF = 1
and −1 components have wave vectors that differ by k1 − k−1 = 1 and
amplitudes 2 and 2.5, respectively. The energies (chemical potentials)
come from the real parts of the frequencies (E = � Re[ω]), which are
shown as solid lines, and the MI comes from the imaginary parts of
the frequencies, which are dotted lines. All quantities in the figure
are dimensionless; see Eqs. (3).

of cross- to self-phase modulation B = (c0 − c2)/(c0 + c2)
is less than zero (similar to an antiferromagnetic BEC)
and modulationally unstable when the ratio is greater than
zero (similar to a ferromagnetic BEC) [48,70,71]. This also
confirms the known result that—recall that group-velocity
birefringence terms in CNLS equations can be eliminated
by a change in variables in which the frequencies and
wave numbers of the cw components are shifted [see, e.g.,
Eq. (7.2.29) in [48]]—group-velocity birefringence (which
maps to a difference in the wave numbers of the cw components

FIG. 5. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of an (n = 0)-type cw
solution of a 87Rb BEC where the MF = 1 and −1 spin components
have the same wave vectors and amplitudes 2 and 2.5, respectively.
The energies (chemical potentials) come from the real parts of the
frequencies (E = � Re[ω]), which are shown as solid lines. The
imaginary parts of the frequencies, shown as dotted lines, are zero,
so there is no MI.

FIG. 6. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of an (n = 0)-type cw
solution of a 87Rb BEC where the MF = 1 and −1 components have
wave vectors that differ by k1 − k−1 = 1 and amplitudes 2 and 2.5,
respectively. The energies (chemical potentials) come from the real
parts of the frequencies (E = � Re[ω]), which are shown as solid
lines, and the MI comes from the imaginary parts of the frequencies,
which are dotted lines. All quantities in the figure are dimensionless;
see Eqs. (3).

here) adds to the MI. Modulational instability in the CNLS
limit with wave-number differences has been, for BECs,
referred to as the countersuperflow instability [75,76]. A sense
of the difference between ferromagnetic and antiferromagnetic
BECs can be obtained by comparing Fig. 1 with Fig. 3, Fig. 2
with Fig. 4, Fig. 5 with Fig. 7, and Fig. 6 with Fig. 8. Bose-
Einstein condensates of 87Rb (ferromagnetic) are more subject
to MI than 23Na (antiferromagnetic) for CNLS-type cws
and (n = 0)-type cws with nonzero wave-number difference.
Continuous waves of type n = 0 with all spin components at

FIG. 7. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of an (n = 0)-type cw
solution of a 23Na BEC where the MF = 1 and −1 spin components
have the same wave vectors and amplitudes 2 and 2.5, respectively.
The energies (chemical potentials) come from the real parts of
the frequencies (E = � Re[ω]), which are shown as solid lines.
The imaginary parts of the frequencies, shown as dotted lines,
which would create MI, are zero. All quantities in the figure are
dimensionless; see Eqs. (3).
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FIG. 8. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of an (n = 0)-type cw
solution of a 23Na BEC where the MF = 1 and −1 components have
wave vectors that differ by k1 − k−1 = 1 and amplitudes 2 and 2.5,
respectively. The energies (chemical potentials) come from the real
parts of the frequencies (E = � Re[ω]), which are shown as solid
lines, and the MI comes from the imaginary parts of the frequencies,
which are dotted lines. All quantities in the figure are dimensionless;
see Eqs. (3).

the same wave number are stable against MI for both 87Rb
and 23Na. One of the differences between ferromagnetic and
antiferromagnetic BECs is that only the antiferromagnetic
ones allow (n = 1)-type cws, such as with the band diagram in
Fig. 9. These cws have MI, but it is weak compared to MI on
the other comparable cw solutions. A sense of the differences
between the different types of cw solutions (different values
of the amplitudes of the spin MF = 0 component for given
MF = ±1 fields) may be obtained by comparing Fig. 1 with
Fig. 5, Fig. 2 with Fig. 6, Fig. 3 with Fig. 7, and Figs. 4, 8,

FIG. 9. (Color online) Band diagram (frequency as a function of
wave vector) for phonons propagating on top of an (n = 1)-type cw
solution of a 23Na BEC where the MF = 1 and −1 components have
wave vectors that differ by k1 − k−1 = 1 and amplitudes 2 and 2.5,
respectively. The energies (chemical potentials) come from the real
parts of the frequencies (E = � Re[ω]), which are shown as solid
lines, and the MI comes from the imaginary parts of the frequencies,
which are dotted lines. All quantities in the figure are dimensionless;
see Eqs. (3).

and 9. In 87Rb, the n = 0 cws are more stable against MI than
the CNLS-type cws. In 23Na, there is no MI in either type of
cw when the wave numbers are all the same; when there is a
wave-number difference, the n = 1 cws have the weakest (but
not vanishing) MI, the CNLS cws have stronger MI, and the
n = 0 cws have the greatest MI. For the convenience of the
reader, the Supplemental Material includes a file in Wolfram’s
CDF, which, with freely available software, produces band
diagrams for phonons propagating on arbitrary cw solutions
and eigenvectors of the phonons at arbitrary wave number [74].

D. Peak modulational instabilities

Modulational instabilities are often more consequential
than stable sound waves because amplification can make them
grow from weak to strong and the phonons with the largest
amplification tend to dominate after sufficient propagation. Let
us then look at the maximum MI (the wave number at which the
imaginary part of the frequency is largest, or maxj,k[ωj (k)], as
well as the value of the wave number k at which the maximum
is found). Since we are now examining maxima rather than
the entire band diagrams, we can look at larger sections (more
dimensions of) the parameter space. We plot the maximum MI
over two-dimensional cross sections of the cw parameter space
(rather than, as above, for one cw at a time). Figures 12–15
show the maximum MI against the amplitudes (square root of
the particle density) of the MF = ±1 and fields, for particular
differences in wave numbers (k1 − k−1 = 0,1 in dimensionless
units), for the different classes of cw solutions (CNLS, n = 0,
or n = 1), for 23Na (which is antiferromagnetic, with c2 > 0),
and for 87Rb (which is ferromagnetic, with c2 < 0). The
quadratic Zeeman splitting is zero in these figures.

Figure 10 shows the peak MI for the cws of a 87Rb BEC with
identical wave vectors in the spin MF = ±1 components, k1 =
k−1, and zero quadratic Zeeman splitting. See Fig. 1 for the
dispersion curves underlying one point in this plot. Figure 11
shows the peak modulational instabilities for the cws of a 87Rb
BEC with wave vectors in the spin MF = ±1 components with
(in dimensionless units) unit difference k1 − k−1 = 1 and zero
quadratic Zeeman splitting. See Fig. 2 for the dispersion curves
underlying one point in this plot.

Coupled NLS-type cws for a 23Na BEC with identical wave
numbers k1 = k−1 and without quadratic Zeeman splitting

FIG. 10. (Color online) Maximum MI of the CNLS-type cws
(zero MF = 0 particle density) of a 87Rb BEC, as a function of
the amplitudes of the MF = ±1 fields, where the spin components
have identical wave vectors k1 = k−1 and quadratic Zeeman splitting
is zero: (a) the peak MI values and (b) the wave vectors at which
the maxima occur. All quantities in the figure are dimensionless; see
Eqs. (3).
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FIG. 11. (Color online) Maximum MI of the CNLS-type cws
(zero MF = 0 particle density) of a 87Rb BEC, as a function of
the amplitudes of the MF = ±1 fields, where the spin components
have wave vectors that differ by k1 − k−1 = 1 and the quadratic
Zeeman splitting is zero: (a) the peak MI values and (b) the wave
vectors at which the maxima occur. All quantities in the figure are
dimensionless; see Eqs. (3).

have zero MI (cf. Fig. 3) for all values of the amplitudes A1

and A−1. Figure 12 shows the peak modulational instabilities
for the cws of a 23Na BEC with spin components with a
unit difference between the wave numbers of the spin MF =
±1 components, k1 − k−1 = 1, and zero quadratic Zeeman
splitting. See Fig. 4 for the dispersion curves underlying one
point in this plot.

Next, let us show peak MI data for cross sections of the
parameter space for the n = 0 family of cw solutions, i.e.,
cws in which A0, the square root of the MF = 0 particle
density, is as in Eq. (11), with even-valued n. The (n = 0)-type
cws for a 87Rb BEC with identical wave vectors in the
spin MF = ±1 components, k1 = k−1, and zero quadratic
Zeeman splitting show vanishing MI at all values of the spin
MF = ±1 amplitudes A±1. See Fig. 5 for the dispersion curves
underlying one point in the parameter space and note that the
phonon band diagram is real valued everywhere. In contrast,
the corresponding cw but with wave numbers that are not all the
same is subject to MI. Figure 13 shows the peak MI for cws of a
87Rb BEC with wave vectors in the spin MF = ±1 components
with (in dimensionless units) unit difference k1 − k−1 = 1 and
zero quadratic Zeeman splitting. See Fig. 6 for the dispersion
curves underlying one point in this plot.

FIG. 12. (Color online) Maximum MI of CNLS-type (zero
MF = 0 particle density) cws of a 23Na BEC, as a function of
the amplitudes of the MF = ±1 fields, where the spin components
have wave vectors that differ by k1 − k−1 = 1 and the quadratic
Zeeman splitting is zero: (a) the peak MI values and (b) the wave
vectors at which the maxima occur. All quantities in the figure are
dimensionless; see Eqs. (3).

FIG. 13. (Color online) Maximum MI of (n = 0)-type cws of
a 87Rb BEC, as a function of the amplitudes of the MF = ±1
fields, where the spin components have wave vectors that differ by
k1 − k−1 = 1 and the quadratic Zeeman splitting is zero: (a) the
peak MI values and (b) the wave vectors at which the maxima
occur. The (dimensionless) reference amplitude for this plot is
Aref ≡ √

[�2(k1 − k−1)2/8m + qB2]/|c2| = (8|c2|)−1/2 ≈ 5.103. All
quantities in the figure are dimensionless; see Eqs. (3).

Next consider the (n = 0)-type cw for a 23Na BEC with
identical wave vectors in the spin MF = ±1 components,
k1 = k−1, and zero quadratic Zeeman splitting. The numerical
spectral analysis shows that the MI for all these cws is nil for
all values of the spin MF = ±1 amplitudes A±1. See Fig. 7
for the dispersion curves underlying one point in this plot.

Figure 14 shows the peak MI for cws of a 23Na BEC with
a unit difference between the wave numbers of the spin MF =
±1 components, k1 − k−1 = 1, and zero quadratic Zeeman
splitting. See Fig. 8 for the dispersion curves underlying one
point in this plot.

Last in this series, let us show peak MI data for cross
sections of the parameter space for the n = 1 family of cw
solutions, i.e., cws in which A0, the square root of the MF = 0
particle density, is as in Eq. (11), with odd n. Figure 15 shows
the peak MI for (n = 1)-type cws of a 23Na BEC with spin
components with a unit difference between the wave numbers
of the spin MF = ±1 components, k1 − k−1 = 1, and zero
quadratic Zeeman splitting. See Fig. 9 for the dispersion curves
underlying one point in this plot.

The figures are consistent with the well-known fact that
there are no modulational instabilities when there is only one
spin component in an attractive BEC [45,46,48]. Figure 10

FIG. 14. (Color online) Maximum MI of (n = 0)-type cws of
a 23Na BEC, as a function of the amplitudes of the MF = ±1
fields, where the spin components have wave vectors that differ
by k1 − k−1 = 1 and the quadratic Zeeman splitting is zero: (a)
the peak MI values and (b) the wave vectors at which the maxima
occur. The (dimensionless) reference amplitude for this plot is Aref ≡√

[�2(k1 − k−1)2/8m + qB2]/c2 = (8c2)−1/2 ≈ 2.368. All quantities
in the figure are dimensionless; see Eqs. (3).
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FIG. 15. (Color online) Maximum MI of (n = 1)-type cws of
a 23Na BEC, as a function of the amplitudes of the MF = ±1
fields, where the spin components have wave vectors that differ
by k1 − k−1 = 1 and the quadratic Zeeman splitting is zero: (a)
the peak MI values and (b) the wave vectors at which the maxima
occur. The (dimensionless) reference amplitude for this plot is Aref ≡√

[�2(k1 − k−1)2/8m + qB2]/|c2| = (8c2)−1/2 ≈ 2.368. All quanti-
ties in the figure are dimensionless; see Eqs. (3).

confirms that cws in 87Rb without MF = 0 particles are
modulationally unstable even for the case in which all the
wave numbers of the cws’ spin components are the same.
Comparison with Fig. 11 shows that a difference in the wave
numbers of the MF = ±1 fields increases the MI, mostly
at low particle densities. Differences in the wave numbers
also increase the values of the wave numbers at which the
MI is fastest. At higher particle densities, the effects of the
wave-number differences become less important and the MI
approaches the values of those of the cws with identical wave
numbers in all spin components.

Continuous waves in 23Na without MF = 0 particles are
stable when all the wave numbers of the spin components are
the same (no surface plot of the maximum MI is displayed
because this is identically zero). Figure 12 shows that cw
solutions of 23Na without MF = 0 particles and with nonzero
difference in the wave vectors of the different spin components
are modulationally unstable at low particle densities but
become stable at larger particle densities. For cw solutions with
MF = 0 fields with relative phase corresponding to n = 0, MI
is zero when the wave numbers of the spin components are all
the same and nonzero when the difference in the wave numbers
is nonzero. The effect of differences in the wave number is
larger at low particle densities and smaller at high particle
densities. Modulational instability for an n = 1 cw approaches
zero when the densities of the spin MF = ±1 components are
almost the same (when the density of the MF = 0 particles
in the cw is greatest) and also when the densities of the spin
MF = ±1 components are as different as is allowed (when the
density of the MF = 0 particles in the cw is lowest). It may be
relevant for experiments that small amounts of particles with
spin MF = 0 particles may destabilize a cw.

IV. INSTABILITY GROWTH BEYOND THE LINEAR
APPROXIMATION

We carried out direct numerical simulations, forward in
time, for cws with initially small amounts of white noise. The
full time evolution shows a great many different phenomena,
such as collision of phonons on top of the cws and other effects
when the system can no longer be considered a perturbed cw.
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FIG. 16. (Color online) (a) Modulational instability band dia-
gram for phonons in a BEC with the (dimensionless) parameters
� = 1, m = 1, c0 = 1, and c2 = −.479 3, on top of an (n = 0)-type
cw with amplitudes A1 = 2.5, A0 = 3.182 6, and A−1 = 2.0; wave
numbers k1 = 0.5, k0 = 0, and k−1 = −0.5; and frequencies ω1 =
10.686 1, ω0 = 10.672 2, and ω−1 = 10.658 3. (b) Spectral density
at the start. The peak in the middle is the cw and the remainder
of the spectrum is statistically flat. All quantities in the figure are
dimensionless; see Eqs. (3).

Phonon collisions will not be analyzed in the present article,
since to do so properly would require a great deal of space.
The dynamics in a system where a cw cannot be discerned is
too large and varied a topic to be contained within this paper.
To better focus on confirmation of the spectral analyses, we
show numerical simulations with a spin-dependent nonlinear
coefficient c2 that is larger than the physical values in 23Na
and 87Rb. The fact that in these materials c2 is smaller than c0

by two orders of magnitude causes the MI to be weak. With
slow growth rates, once the unstable phonons grow to a certain
amplitude, they tend to collide with each other before growing
very large and this obscures the MI-induced amplification.
Running simulations with larger values of c2 allows us to avoid
phonon collisions and to better focus on one phenomenon at a
time: confirmation of the MI.

Figures 16–20 show snapshots of a BEC with c2 =
100c2(87Rb) = −0.4793c0 that is initially an (n = 0)-type
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FIG. 17. (Color online) Amplitudes of the BEC spin fields MF =
1,0, − 1, in dimensionless variables, at time t = 176.7. The magni-
tudes of the amplitudes are solid lines, the real parts dashed lines,
and the imaginary parts dotted. The cw structure is visible and the
amplified noise is also large enough to be visible to the eye. All
quantities in the figure are dimensionless; see Eqs. (3).

cw with dimensionless amplitudes A1 = 2.5, A0 = 3.182 6,
and A−1 = 2.0; wave numbers k1 = 0.5, k0 = 0, and k−1 =
−0.5; frequencies ω1 = 10.686 1, ω0 = 10.672 2, and ω−1 =
10.658 3; and initial weak white noise. Figure 16 shows
the initial spectral particle densities of the fields with spin
MF = 1,0, − 1 and MI as a function of wave number. At
dimensionless time t = 176.7, the noise at the modulationally
unstable wavelengths has grown, but not to the point that the
BEC cannot still be considered as a perturbed cw. Figure 17
shows the amplitudes in real space: the magnitudes and the
real and imaginary parts of the fields φ1,0,−1. Figure 18(a)
shows the magnetization vector components and |φ0|2, the
density of particles of spin m = 0. The variation in space
of the magnetization may be referred to as spin texture
(cf. [18]). Figure 18(b) shows the spectral particle densities
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FIG. 19. (Color online) Amplitudes of the BEC spin fields MF =
1,0, − 1 at (dimensionless) time t = 372.9. The magnitudes of the
amplitudes are solid lines, the real parts dashed lines, and the
imaginary parts dotted. This is a snapshot of dynamical turbulence.
The cw has been destroyed by amplified noise and phonons are no
longer helpful in describing the system. All quantities in the figure
are dimensionless; see Eqs. (3).

of the fields with spin MF = 1,0, − 1. At dimensionless time
t = 372.9, the noise has been amplified so much that the
cw has been destroyed, as one can see in Fig. 19, which
shows the amplitudes (magnitudes and real and imaginary
parts) in real space. Figure 20(a) shows the magnetization
density vector (spin texture [18]) and |φ0|2 and Fig. 20(b)
shows the spectral particle densities of the spin components
MF = 1,0, − 1; compare this with the initial noise and the MI
spectrum in Fig. 16. The t = 176.7. snapshot looks similar to
most of the prior development, a cw with amplified noise at
the MI wavelengths, except for the magnitude of the amplified
noise. At t = 372.9, the MI has amplified some of the noise to
the point that it has destroyed the cw. The BEC is turbulent.
It is no longer meaningful here to talk about phonons. The
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FIG. 18. (Color online) Snapshot at dimensionless time t = 176.7. (a) The (dimensionless) magnetization components (mx,my,mz) and
the particle density of the m = 0 spin components |φ0|2. The pattern is the spin texture. (b) Squared amplitudes of the fields in momentum
space, i.e., the particle density as a function of wave number, divided by the domain length. The BEC field with spins MF = 1,0, − 1 are
represented by solid, dashed, and dotted lined, respectively. All quantities in the figure are dimensionless; see Eqs. (3).
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FIG. 20. (Color online) Snapshot at dimensionless time t = 372.9. (a) The (dimensionless) magnetization components (mx,my,mz) and
the particle density of the m = 0 spin components |φ0|2. The pattern is the spin texture. (b) Squared amplitudes of the fields in momentum
space, i.e., the particle density as a function of wave number, divided by the domain length. The BEC fields with spins MF = 1,0, − 1 are
represented by solid, dashed, and dotted lines, respectively. All quantities in the figure are dimensionless; see Eqs. (3).

t = 372.9 snapshot cannot be said to typify the fields past the
point at which the cws have been destroyed; there does not
seem to be one typical static or statistical state of the BEC
after destruction of the cw. Comparison of Figs. 18 and 20
shows that nontrivial textures (rather than a simple sinusoidal
pattern) in the transverse components of the magnetization
vector are an indication that the underlying perturbed cw
has been destroyed. At lower values of c2, phonon collisions
can play a dominant role while the cw is still intact and
this can change the development of the noise. The effects
of phonon collisions are beyond the scope of the present
article.

V. CONCLUSION

We examined the dynamics of sound waves (phonons,
acoustic waves, or Bogoliubov excitations) in F = 1 spinor
BECs propagating on top of the most general cw solutions.
We focused more on cws with nonvanishing MF = 0 spin
components, since this does not have an analog in optics and
consequently has not been thoroughly investigated. Emphasis
was placed on 23Na (which is antiferromagnetic) and 87Rb
(which is ferromagnetic), both of which have repulsive
nonlinearities.

At any given wave number, the phonons on top of a cw
background can take up to six distinct eigenvalues (frequencies
or chemical potentials), each with its own eigenvector (i.e.,
a specific mixture of MF = 1,0, − 1 spin components). We
showed the band diagrams (plots of phonon frequencies
against wave number) for representative cases of each of
the different supported types of cws, for 23Na and 87Rb.
Many of the cws are modulationally unstable, i.e., have
frequencies with imaginary parts over some range of wave
numbers. Perhaps unexpectedly, the cws with nonvanishing
MF = 0 components tend to be less subject to MI than
cws with nil particle density for MF = 0, even though the
Hamiltonian densities are higher for the latter. The MIs are
in many cases weak and only occur for wave numbers with
magnitude up to a given point, beyond which there are no more

instabilities (or, equivalently, all phonons with wavelengths
smaller than a certain value are stable). Thus, even an
“unstable” cw (unstable on an infinite domain), when confined
in a toroidal potential, may not support any unstable phonon
modes.

Broadly speaking, differences in the wave numbers of the
spin components MF = −1,0,1 tend to make the cw unstable.
All cws without any MF = 0 particles with nonzero wave-
number difference are subject to modulational instabilities,
even though such a cw in a 23Na BEC is stable when there
is zero difference in the wave numbers. The destabilizing
effects of a difference in wave numbers are significant when
the particle densities are small and insignificant when the
particle densities are large. All cws with MF = 0 particles with
nonzero wave-number difference are subject to modulational
instabilities, even though the (n = 0)-type cws for both 23Na
and 87Rb are stable when there is zero difference in the
wave numbers. Note that linear Zeeman splitting may be
relevant here, even though it is mathematically trivial. The
transformation of variables that eliminate the linear Zeeman
terms changes the frequencies and wave numbers of the
components with MF = ±1. Thus a cw in a BEC that
experiences a linear Zeeman splitting, if it is to have the same
frequency (chemical potential) in all original (not transformed)
physical components, needs to have different wave numbers
for the cw to exist.

Our simulation of the dynamics of BECs confirmed the
spectral analyses, i.e., the band diagrams. We observed that
MI can lead to exponential growth of noise and that this can
eventually destroy the initial underlying cw and create a spin
texture. Nonlinear evolution of the phonons (which includes
phonon collisions) is an extensive topic, which should be
examined in greater detail in future work.
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