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Third-harmonic generation in isotropic media by focused pulses
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For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected
by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time de-
termined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend
on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the
phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics
described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given
by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-

wave case.
DOI: 10.1103/PhysRevA.70.053810 PACS nuniber42.65.Ky, 42.65.Re, 42.25.Fx, 42.25.Hz
[. INTRODUCTION extensive to summarize easily here. Some notable work on

THG related to that presented here is as follows. Reference

Third-harmonic generationTHG) by focusedpulsesof [9] finds group-velocity mismatch effects on THG in a fiber,

I;gnt)ergaggl ?rcosrl{ltfifrﬂgagng)\;gw)p léleS:rs;]’ nt:idic[:ﬁz_texede-and also includes phase-velocity mismatch and Kerr effects;

present a quantitative analysis of the limits of the validity of R€f: [10] considers spectral broadening of THG pulses re-
the cw approximation for THG by focused pulses, and elabosulting fror_n phase-velocity mismatch and Kerr effects; Ref.
rate the physics in regimes where the cw approximation fails[11] examines the consequences of Kerr effects on THG
For the instances of THG by focused pulses simulated nusPectra without any linear mismatch. Referefit2| covers
merically in Ref.[5], the group-velocity mismatch between €ffective THG via cascaded SHG, including phase- and
the fundamental and third-harmor€H) was the most sig- group-velocity mismatch, dispersion, and Kerr effects; Ref.
nificant source of divergence from the conventional cw beani13] looks at effective THG by cascaded SHG by focused
model[1,2]; Kerr and Raman effects, and higher-order dis-pulses, including phase-velocity mismatch, Kerr effects, and
persion and diffraction, were much weaker perturbationsparametric down-conversion; Refl4] deals with THG via
Consequently, we formulate a model for THG by a pulsecascaded SHG, with phase-velocity matching, group-velocity
including only the most essential effects: phase-velocity mismismatch, and dispersion. To our knowledge, effects of
match, group-velocity mismatch, diffraction, and THG. group-velocity mismatch on THG by focused pulsgs.,
Omission of Kerr effects and other nonlinearities makes thavhere diffraction is important, and where the cw approxima-
problem much more tractable, even allowing analytic soluion is insufficieny have not been studied.

tions. Two dimensionless parameters determine the nature of

the dynamics: the first is a function of the group-velocity

mismatch, the Rayleigh ranger the tightness of the focus- Il. MODEL

ing), and the pulse duration; the second is the phase-velocity

mismatch times the Rayleigh range. If the first parameter is risE(:‘ dui?(;n?u;gztmrghqgr?rty S:ﬁg”gi dpﬁlss'erz ?:] gggalli?g)-
small (short pulsep or large (long pulse¥ the results are P q y

especially simple. In the intermediate case, the results arté:OFJIC medium are

more complex, though still analytic. We apply the same 9 0 1/ P & 27(w,/C)?
analysis to higher-harmonic generation. O=i—up+iky U+~ S+ Jup+————
. . . . . z at 2k \ oxc oy ky
Harmonic generation is one of the basic nonlinear optical .

effects, and is the subject of a great deal of study. Second- X exf - i(3k; — kg)z]x"3u;?ug, (1a)
harmonic generatiofSHG), which requires a material with-
out parity inversion symmetry, has garnered more attention 9 L, 1/(6# &
than THG, because it is a lower-order effect. The basic SHG 0= P +ikg_Us+t o —| —5+ 5 |us

. . z at 2k \ ox= oy
dynamics in waveguides, and also Kerr and other perturba- ,
tions, may be found in Ref6], and citations therein. Exact 2m(3w,/C) _ THG,  \3
solutions for SHG by Gaussidne., focusegicw beams have + ks expli(3ky —ka)zlx "(uy)®,  (1b)

been known since 196@2,7]. Work on SHG by focused ) )

pulses including some exact solutions, may be found in Ref.Whereuy(t,x,y,2) is the fundamental slowly varying enve-
[8] and citations therein. Solutions to THG by focused cwlope, with carrier wave exp(kiz—wit)], andus(t,x,y,2) is
beamg1,2] were found a few years after those of SHG. Thethe envelope of the TH, with carrier wave ¢z
literature on THG in waveguides, and for effective plane—3wst)]. The respective wave numbers deg=n(w;)w;/cC
waves in crystals, for which diffraction is unimportant, is too and ks=n(3w)3w;/c, and the reciprocal group velocities
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are kiE(d/dw)[n(w)co/c]w:w1 and ks;=(d/dw)[n(w)w/ \’/Ell\’/; p( 1t2>
I (2b)

Clu=30,, With n(w) the index of refraction. The second de- f(t) = " e
rivatives with respect tox and y represent(lowest-ordey P
diffraction. THG is taken as effectively instantaneous. Dis-The coefficients in Egs. (2) give normalizion
persion, higher-order diffraction, and Kerr and other nonlin-J [ f|u,|?dtdxdy=E,, which is proportional to the pulse en-
ear effects are neglected. Equatiqi$ are appropriate for ergy. Without loss of generality, the Rayleigh range half
paraxial pulses that are not so intense that Kerr effects behe confocal parametgrzg, is taken to be positive, and the
come important, for which the percentage of the energy irphase of the fundamental is chosen to be zero at the focus
the third-harmonic band remains relatively small, and forz=0.

which dispersion is relatively unimportant. When a relatively

small part of the energy is in the TH, the rightmost term in || SOLUTION EOR THE THIRD-HARMONIC PULSE

Eq. (1a—a x'® form of parametric down-conversion, or a o _
downshifting counterpart to THG—may be droppetaking ~ To convert the problem_from a _parngl differential equa-
the equations non-Hamiltonignwhich we do henceforth. tiontoan ordinary differential equation, insert the fundamen-
Equation(1a) has an exact solution with a spatially Gaussiantal pulse(2) into the equation for the THilb), and Fourier-
profile, and an arbitrary temporal profile translating at grouptransform

p

velocity (1/ky), o,k k) = FEEX,Y)}
Vkyzg/ ™ p( ky x2+y2) _3,2f J fw .
— ! _ = - 7 . = (2 f(t;x, t—k
uy(t,x,y,2) = f(t—k;2) Ttz ex otz 2 (2m) 3 (txy)expi(wt = kx
(2a) - k,y)ldtdxdy
We assume that the temporal profile is Gaussian, from real space to momentum space,

E+iE 27(30/0)?

s T T e (3 — ke 2 (X020 (3a
3 3

. d ,
0=i a_ZU3((,(),kX, Ky,2) + Kgoug —

=L,k k z)+< ’w——kiJﬁ)u o 16 (301/0) 203 (kiZeE) "t e
gz 3y T ks )TN T Bkks O (ze+i2)?

_ , B’ Zr+izIkC+ K
><(§Xp|:|(3k1—|(3+k1w)Z—‘[%Se?—3—k1X—ZkM . (3b)

This inhomogeneous first-order linear differential equation can be integrated. We choose a constant of integration such that the
TH field is zero az=z,. Physically, this describes a fundamental pulse incident on a nonlinear medium at distapcthe

result is a solution for the TH pulse in momentum spéeek,,k,,2); it is also useful to have the solution inverse Fourier-
transformed to real space,

3w)/c)? 2 t, (kizzE t KE+ K3 K+ K
Us(wrkok,2) = 1y THE 32 )—,—E< 127 1) exp[ Lo’ mkitky il KK,

3k1k3 7T \3'5 3 2 3k1 2 2k3
k2+ 2
ex (3k —ky—> + (k- k’)w]z’}dz', (4a)
f (zR+ (zr+i2')? ! 23k)kg/ t°

312 2.2
re(B0/0® 2t ( —klzREl> exp( - w—ﬁtg + ikéwz)

3k1k3 5/4 \5’ t'2)

z 3ki—ks \7T
R .Z 9K 32’)

Us(w,X,Y,2) =iy

— | =+
ZO(zR+iz'>2<3kl e 3Kk

Zn . Z 3k -k f _1X2+y2 . ’ ’ ’ ’
pHs—kk‘skk 2 TGkt li-lgwz Jdz, o
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3w,/ k,ZmE, | %2 K2 + K2
Us(t, Ky ky,2) =iy me(Bed/o” 5/4( g 1) expl - | R +iZ |2 TN
v

3|<1|<3 t 3k, ky/ 2
3(t—kiz— (K, - 3)z’>2 ( M) }
— = _exp-> +i(3k, —kg)| 1+ 'dz, 4
f (zR+|z 7 xp{ 2( G i(3ky — k3) 230k, Z |dz (40
(Bwy/c)? 2 (k 1Z:E4 )3’2 f (zR z 3k —ks )‘1
t.x,y,2) = iy"HC = = -2
us(t,x,y,2) =iy 3keks Ly (ZR+IZ )2\ 3K, ||<3 I 3kky z
3 t—kéz—(kl—k3)2'>2 (zR .z 3K —ks_, ) X+y? }
wexp - > Y (e B +i(3k, — ko)Z' | 4
exp[ 2( to 3 e A 2] 2 Gk “d

All forms (4) of the solution are equivalent. This is the gen- velocity matchingk; =k3. The pulse takes a spatially Gauss-
eral and mathematically exact solution for a TH field due toian form in the case of perfect phase-velocity matching,
a fundamental pulse of the for@) in Egs.(1) without the  3k;=k;. Otherwise, with a nonvanishing phase-velocity mis-

parametric down-conversion term. match, the radial momentuiti,,k,) in the integrand gives
the TH field a more complex form. For many purposes, how-
IV. ANALYSIS ever, the pulse is very close to being spatially Gaussian, and

The physics may be elucidated by examining some limitave may make the approximatic(mkl—k3)(k§+k§)—>0. In-
and approximations. The TH far field is, in general, not andeed, it is conventional to do $&,2]. In this approximation,
exact Gaussian, either in time or in space. The pulse takesthe TH field can be expressed in real space and/or momen-
temporally Gaussian form in the case of perfect grouptum space,

meBe/0® 2 t (kzefi |2 | o Ktk Ktk
ex 37 +il k z

K.,k 2) =
Halokeky 2 =T g ke 3L 2 3, 2 7 g
z 1
X fzo m exp{i[3k; — kg + (ki - ké) w]z'}dZ, (59
(3wy/c)? 2 (klzRE1>3’2< m .z )‘1 ?t3 < R .z )‘1x2+y2 . }
sjyrreal 2 Cp [MREL) (R LG L) ey L[R2 +ikjwz
Us(@,X,Y,2) =ix ks m°y3\ 3k, ks 6 3k; kg 2 3@
z
1 H ! ! ! !
Xf (Z+—IZ')2 expli[3k, — ks + (k; — k3)w]Z'}dZ (5b)
7 \“R

(3(1)1/0) ( klzREl>3/2 ( ZR . Z ) k2 + k2
k. k — i, THG RN [ SO Bl . S
Ua(t, X Z) I 3k1k3 775/4 tFZJ ex 3k1 I k3 2

z 1 3 t_k/ _ kl_k/ 7\ 2
><J —.,zexp{——< 2~ (kg 3)Z> +i(3k1—k3)z'}dz’, (50)
Z (zg+iz") 2 ty
(Bwy/c)? 2 (klzRE1)3’2< s z)‘l p{ < Zr z)‘1x2+y2}
us(t,x,y,2) =ix'H¢ = +i— ) expl-|=—+i—
s(txy.2) ks T\ B 3, ke A, k) 2
21 3(t—kgz—(k;—kg)z'>2 _ }
X| — -= +i(3k; —kg)Z' |dZ. 5
JZO (ZR+iz’)2eXp{ 2 ty 1Bk ~kg)2" |2 (5d)
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Three limits have analytic solutions. One is propagation from

a near field to a near fielf2]. Here, diffraction plays no
important part, and the pulse approaches a plane wave. |

this case, none of the methodology developed here is rel'S

evant. Second is the limit in which the pulse starts and end
far away from the focus, or far-field to far-field propagation.

Here, integrals may be considered as starting and ending ¢

infinity, and they may be analytically integrated. Third is
propagation from a far-field to a focus, or vice versa. In this
limit, the integrals may be transformed into special func-
tions.

A. Far-field to far-field propagation

In the limit of far-field to far-field propagatiofz,<-z5
and z> zz), the integral(4a may be solved because the in-
tegrand is analytic except for a second-order pole=arg,

t2

The 3@/ C)zitp/\”§< >3/2
p

3kiks 74z
X qﬁeXp{ b’z itk
3k, 2

—h—-RE _
¢ 32
k2+ 2
+i kéw——kzx Z|H(¢),
2Kk,
with generalized dimensionless mismatch going to
K+ )
1+

X
2(3ky ks

KiZzEq

Us(w,ky, Ky, 2) =i

(6a)

b= ¢(wakkay) = |:(3k1 - k3)<

+ (kg = ké)w]ZR, (6b)

andH is the step function,

|

In the far-field limit, when the TH field is expressed as a
function of momentum spadev, k,,k,), there is az depen-

1, x=0
0, x<0.

H(x) (60)

dence in the phase, but not in the magnitude. The TH pulse

thus continues to propagate—with group velocitkz+and
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FIG. 1. Power spectrum of the TH pulse, after far-field to far-
field propagation: dependence on the dimensionless mismatch
={(Bky ~ka)[1+(KE+K2)/ (Bk;ks) ]+ (k —ki) w}zg, holding other pa-
rameters constanBx ¢? exp(—2¢)H(¢). Here, k; and k; are the
wave vectors in the fundamental and T{,andkj are their deriva-
tives with respect to frequency is frequency within the THK,
andk, are transverse wave numbezg,is the Rayleigh range, and
H is the step function.

complexity of these forms make them less useful. The power
spectrum of the TH band is obtained by integrating the in-
tensity over transverse coordinates,

P(3w1+w)=fj|u3(w,kx,ky,z)|2dkxdlg,
=fJ|u3(w,x,y,z)|2dxdy
(3&’1/0)2 2 -
- THG 16V
[X ks |

><exp<

43

kiE7
4
tp

¢2

242
_2¢_w_tl2

. ®)

o

to diverge, but in an essentially trivial manner. Dependenceavhere ¢ is given by Eq.(7).

of the TH power on the dimensionless mismaitis shown
in Fig. 1. The spectrum vanishes at negatifepeaks atp
=1, and drops off at large. The nontrivial dynamics occur

only in the near or intermediate field. Real-space expressions
are not available in as simple a form because the contour

does not vanish at large imaginary valuesgfor the func-
tion is not meromorphic in real space.

If we neglect spatially non-Gaussian featur&k;
~kg)(Kz+K5) — 0], the TH field is given by Eq(6a), where
the dimensionless mismatch parameter is

! !

¢:<1+ kl k3
3kl_k3

w) (3ky = K3)Zg. (7)

Three parameters determine thealitative properties of
the TH output: the fundamental pulse widghthe character-
istic time scale

tcharE (ki - ké)ZRa (9)

which can be either positive or negative, and the phase-
velocity mismatch times the Rayleigh rang&k;—ksz)zg,
which is dimensionless. The ratio of the first two parameters
is dimensionless, and it, together with the third parameter,
are the two dimensionless parameters that determine the dy-
namics.

1. Short duration pulses

Expressions in terms of time rather than frequency may be When the fundamental pulse is much shorter than the
obtained, but not simplified in the same way, since the intemagnitude of the characteristic time scatgs |tonal=|k;
grand does not vanish at large imaginary values. Also, the kj|zg, the power spectrum in the region of the TH is essen-
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tially determir_ned by the medium and the. Rayleigh range of Aw'™HC = \E/tp, (110
the pulse, while the fundamental pulse width only scales the _ _

entire TH spectrum by a factor. The peak spectral density ifand the temporal width of the TH pulse is

the TH band is then

AtT™He =43, (11d)
(3w,/0)? |16\ t3(3ky — ko)? | K'E3 . . : .
pgeHaGk: x'He L expl - T—— 5 141 The TH pulse energy is obtained by integrating the power
3kqks & 6(k; —kg)” | tg spectrum over the TH band,
(109 43
(Bwy/c)? |2, =~ KE;
— — THG |
at E3—f P(Bw;, + w)dw = {X Kok, 16V37 tg
3k; — k X (3Ky — K3)?Z5 exf— 2(3k; — kg)zg]. 11¢
“’geH'i:Swl_ k’l_ k/s_ (10) (3ky — kg)*Z& exH — 2(3k; — kg)Zg] (119
173 Perfect group-velocity matchinds;=k;, is subsumed into

this limit: the physics is like that of cw beams, no matter how
short the pulses are.
1 When the fundamental pulse is long compared to the

The spectral width of the TH band is approximately given by

Aw™C= W (109 magnitude of the characteristic time sca|g |teaf, but the
17 IR phase-velocity mismatch is negatiy8k; —ks;)zz <0, the far-
and the tempora| width of the TH pu|se is field TH energy comes Only from the tail of the fundamental
pulse’s frequency distribution. This is because the step func-
At™C = |Kk; - kj|zg. (10d)  tion in the power spectrur¢8) totally cuts off light near the

] ] ) center of the TH bandleaving very little TH energy The
The energy in the TH pulse is the integral over the TH powelspectral peak is at

spectrum,

1 ki—k; 3
212 _ wTHG:3w+[——(3k—k)z} L =40t
E3:f P(Bw;, + w)dw= [XTHG—(gwl/C) ] N peak 4 LR 3k, = kat;z) P
3kKs (12)
t25(3k, — ka)? KiES , _ , ,
Xexp - K — k02 | — K (109  The TH spectral width and maximum are found by inserting
6k —kg)* Jtplki —kelze this into the formula for the power spectru®). The TH that

The assumption that dispersion is unimportant will breakre.aches the far-field, in this case of negative phase-velocity

down for sufficiently short pulses. The results in this subsecnismatch, shows a more pronounced influence due to the

tion hold for pulses that are short compared to the characte?—'mens'Onless mismatginterference effecjthan due to the
istic time of the focused pulse in the mediujii,—kj|zg, but undamental power spectrum.

not so short that the assumption herein that dispersion is _ _
relatively unimportant becomes inappropriate. 3. Intermediate duration pulses

When the fundamental pulse is of the same order as the
2. Long duration pulses characteristic time scale, the qualititive properties of the TH
espectrurr(8) may depend equally on the material and on the
width of the fundamental pulse. In the general case, the peak
spectral density occurs at

When the fundamental pulse is much longer than th
magnitude of the characteristic time,> [tna|=|k;—kj|zr,
and the phase-velocity mismatch is positit@k; —ks)zz>0,

the reverse holds: the TH power spectrum depends essen- _ "L
. ) THG 1| 3ks —ks (K —k3)zg
tially on the fundamental pulse, and the properties of the wpeak=3w1—§ — >
medium merely scale the entire spectrum up or down by a ki—ks t/3
factor. The peak spectral density is . \/}{ 3K —ks (K- ké)ZRJZ . 3 13
43 K. 2 2
pTHG [XTHG(30)1/C)2}216\,;k1E1(3k1 k)22 L ki—k /3 %
pea 3kqks to The spectral and temporal widths of the TH pulse are directly
Xexg - 2(3k; - ks)zr] (113 accessible from Eq8). The explicit forms are complex and

opaque, so we do not write them out.
at, simply, triple the fundamental frequency,
B. Focus to far-field propagation

The TH field that accumulates between a fotxrs0) and
In the long-pulse limit, the TH power spectrum approaches a far-field(z> zz) can also be solved analytically, but only in
simple Gaussian. The spectral width of the TH pulse is apthe sense that the integred) transforms to an expression
proximately with special functions,

Wponr= 301, (11b)
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e(Bwi/o? 2 tp/\"g(klzRE1>3/2
3k1k3 ’775/4 ZR tg

exl - O _ KK

exp| - -
6 3k 2
k2+ 2

+i< éw—x—ky)z]
2ks

Ei(¢) +imH(e)
X<1_¢ exp(¢) )

Us(@,Kky, Ky, 2) = x

(14a

where the exponential integral is (Bi=—/"t" exp(-t)dt,
taking the principal value of the integrfl5].

The net TH generated by propagation from a far-field to a

focus is

(3(1)1/0)2 2 tp/\r'g klzREl 312
,k ,k ,0 - _ ,THG =
Us(w, Ky y ) X 3kgks 54 Z tF2)

o -8 2 )
6 3k 2
X<1_¢w>,

exp() (14b

Except for a difference in sign, and the fact that this far-field (Bwy/c)? |2
to focus result is expressed as the TH at the focus rather thanPpgg~ 1.1 XTHG?,I(—k exp| -
113

approaching infinity, this result is similar to E¢l4g), the
focus to far-field result.

The power spectrum of the TH pulse, either to or from a

focus, is

P(3w; + w) = J J |uz(w,ky, ky, 2)[?dk,dk,
_| meBwi/o? 2 4 KIES
X 3k | 72

Ei(¢) +imH(¢)
expl¢)

wth)
expl - —°
-

(15

2

X|1-

Note the implicit frequency dependence via Figure 2

PHYSICAL REVIEW A70, 053810(2004

P(¢), focus to far field propagation

93 -2 -1 0 1 2 3 4 5 6

FIG. 2. Power spectrum of the TH pulse after focus to far-field
propagation: dependence on the dimensionless misnsgli3k,
—k3)[1+(k§+ké)/(6k1k3)]+(ki—ké)w}zR, holding other parameters
constant,P« |1-#[Ei(¢) +imH(¢)]/exp(¢)|2. Here, k; andkg are
the wave vectors in the fundamental and Tij,and k; are their
derivatives with respect to frequeneyiis frequency within the TH,
ki andk, are transverse wave numbezg,is the Rayleigh range, Ei
is the exponential integral, artd is the step function.

2(3k; - k3>2] KIES

6k —k)? | tg
(163
at frequency
3k, — k
opee ~ 3wy - 0.437 2. (16b)
ki— ks
The spectral width is
THG — 2
Ap™C= ———r (160
ki — kalzs
the temporal width is
At™C = |k; - kb|zg/2, (16d)

shows the dependence of the TH power spectrum on th@nd the total energy in the TH pulse is

dimensionless mismatah. Neglecting the frequency depen-
dence due to the finite width of the fundamental pulse, the

maximum power occurs for mismat@hpe.~0.437(in con-

trast t0 ¢yeq=1 for the far-field to far-field limit. There is
some spectral density at mismatches that are very large in
either the positive or negative directigin contrast to the

3wy/c)? |? t3(3ky — ka)?
E3 ~ 354|:XTHG(0);C:| exp[_ Jj(ll—,‘?’)z
3klk3 6(kl - k3)

KiET

TR (169
tﬁlkl — kalzg

complete cutoff for negative mismatch in the far-field to far- As in far-field to far-field propagation, these results hold for

field limit), but the amount is relatively small fa=<-2 or
¢$=6.

1. Short-duration pulses

Let us neglect non-Gaussian spatial featur@k; —ks)
(K;+k5)—0. For very narrow pulsest,<|k;-Kjzz, the
spectral peak is

pulses that are short compared to the magnitude of the char-
acteristic time of the focused pulse in the mediulii,
—kj|zg, but not so short that dispersion becomes important.

2. Long-duration pulses

When the pulse is wide,> k] —kj|zz, behavior is like in
the cw limit. The spectral maximum is

053810-6
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(Bwyi/c)? |? 4 KIES ! ! ! ‘ T
PTH(IE(: |: THG _ 1- (3k1 3 (k1 _ks) ZH/tp=
peal A = S ost /\ (3K, ky) 2, =3 |
K )ZREi((3k1 — kg)zR) +imH((3k; — k)zg) | 2 i 2 0 2 4 6
3 T T T T
expl (3k; — Kg)zg] 3 (k) Zg /=1
(179 o (3k,—k.)z_ =0
0 ) ‘ ‘ 1 I3 R
at frequency -4 -2 0 2 4 6
THG ~ = 0.05F (k1’—k3’) Zg /tp: 1 B
Wpeak ~ 3W1. (17b) = (O k) 233
The spectral width is 0— = . 5 > .
— 0.02 : : : : :
A(I)THG - \“S/tp, (17c) E (k1'—k3') ZR/tp= 1
. . & 001 o k)z -6
the temporal width is . YR , . ‘
- -4 -2 0 2 4 6
At =1 /43, (174 o-30, [ ]
1 Ppulse:
and the energy in the TH pulse is
212 i3 FIG. 3. Spectral density vs frequency, after focus to far-field
E.= h6 (Bwi/C) 4 KEy 1 - (3k;  ky)2 propagation, with group-velocity mismatdk; —kj) and Rayleigh
3T X 3kyks \«‘577 t’3) 173 range zz such that the characteristic time scale is approximately

equal to the pulse duratid, and for several values of the phase-

velocity mismatch. The full frequency dependence of the power
(178 spectrum goes as Pocexq—tgw2/3)\1—¢[Ei(¢)+iwH(qS)]/

exp(¢)|?, with Ei the exponential integral arid the step function.

% Ei((3ky — kg)zg) +imH((3ky — k)zg) |

ex (3k; ~ ks)zg]

3. Intermediate duration pulses

The frequency dependence of the general power spectruia the most important instance of harmonic generation for
(15) comes from competition between two elements, namelysotropic media. The simplest governing equations for
(i) the Gaussian, which is due to the Gaussian spectrum afth-order harmonic generation are
the fundamental pulse, and) the function of the dimen-
sionless phase mismate) which is due to interference. The
first elementendsto maximize the spectrum at=0 (within
the TH band, which is the spectral peak for long duration d d 1 ( # P )

1

O=i—up+iky—uy + —+ u
1HIK Uy PP

pulses. The second elemarhdsto maximize the spectrum 9z o 2_k1
at w=-0.4373k;—ks)/(k;—k3), which is the spectral peak

; 27 (w4/C)? «
for short duration pulses. For short and for long pulses, one 4 S gHG —i(ak - 2

: s . X7 exp - (ks — kg)zlqu,“ug,

of the elements dominates. When the pulse is of intermediate ky
duration, a small phase mismatch will put the two peaks (1839
close together, and they will merge. A large phase mismatch
will put one of the peaks on the tail of the other, making the
second tendency to peak insignificant. Figure 3 illustrates
several intermediate instances, with pulse duration the same .0 ., 0 1(# &
order as the characteristic time. The TH power spectrum is 0 =t 'kqauq+ % 22 a° Ug
shown versus frequency, for a particular group-velocity mis- 5
match and several phase-velocity mismatches. . 2m(qw,/c) N

. HCexli(qky — kg)zl(up?, (180

V. HIGHER-ORDER HARMONICS

The same analysis may be applied to a system with th&hereug(t,x,y,2) is the envelope of carrier wave eik,z
nonlinearity of arbitrary-order harmonic generation. For two~dwit)], the wave number of the harmonic of ordgs k
reasons, we will give the basic results, but we will not elabo-=n(dw1)qw;/c, and the reciprocal group velocity in this
rate on the various limits and approximations. First, evenband isk;=(d/dw)[n(w)w/c],=q,,. Other terms are as in
order susceptibilities require a medium with spatial inversionEgs. (1). Clearly, ionization effects are not included in this
asymmetry. This is usually inconsistent with an isotropic op-model, and physical situations where ionization occurs must
tical medium. Second, lower-order processes in the electribe treated differently.
field strength tend to be the most important in the most com- Assuming the same fundamental pulgas for THG, the
monly encountered media and typical intensities. Thus THGjth harmonic pulse takes the form
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2 . /2 2 2 2,12 2,12
ol =i 9207 a2l ex%‘tﬂﬁ(kx* Mi(k’ -ErS )z]

akikg X i\ 7 29 2qk, W 2Kq
z . SR PR I O
><Lmew{'[“kw(“ﬁq)“kl‘kq)‘“}z}"Z' "

In the case of far-field to far-field propagation, the integral isThe elaboration of the general higher harmonic generation
soluble because the integrand is analytic except for a pole afase to all the various limits is straightforward and lengthy,
order(g-1) at z=izg, so we do not give this explicitly.

(Quifo? o (2mPNg_ 1 (klzRE1>q’2
akiky * (@-2! A2 A2

Ug(®,ke Ky, 2) = VI. CONCLUSIONS

We showed that in third-harmonic generation by focused

2,2 2,12
X a2 exp{ b- o ZR(kx'Ir ) pulses, group-velocity mismatch, as well as the familiar
2q 29k, phase-velocity mismatch, can strongly affect the third-

12+ 12 harmonic pulse produced. We limited the analysis to cases in
+i(kéw— ﬂ)%m@ (203 which dispersion(within the envelope of the fundamental
2kq and third harmonig and Kerr effects may be neglected.
with dimensionless mismatch Whether dispersion and Kerr effects are small enough, com-
pared to effects of phase- and group-velocity mismatch and
K2+ g ., of diffraction, will depend on the medium and the duration
¢=dlokk) = {(qkl kq)(l + 2gk kq) * k- kq)“’]ZR' and intensity of the pulse.
There is a characteristic time scale determined by the dif-
(20D ference between the group velocities at the fundamental and

In the case of focus to far-field propagation, the integral mayts third harmonic, and the Rayleigh range. Pulses with tem-
be integrated by parts recursively, until it can be expressed d¥ral width much greater than the characteristic time scale

a special function, behave like continuous-wavgmonochromatix beams;
pulses with temporal width in the range of, or shorter than,
Ug(@, KKy, 2) the characteristic time scale exhibit qualitatively different be-
(lelc) 277/\q zé KE, \92 havior_. _We de_tailed the _ behaviqr qualitatively and
xHe =i 35 quantitatively—giving analytic solutions—for pulses in
qkikg (@-2)' 7"\ zem which most of the energy is in the fundamental beam.
gq-3 . .
Ei(¢) +imH(¢)
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