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Highly nonlinear dynamics of third-harmonic generation by focused beams
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Beams that experience third-harmonic generation~THG! also experience Kerr effects. With Kerr effects,
beams do not take simple Gaussian shapes, but exhibit nonlinear dynamics. These nonlinear dynamics have an
effect on the THG accumulated by focusing and then diverging beams. We formulate a self-consistent and
complete set of nonlinear Schro¨dinger equations for a pair of coupled beams—a fundamental and its third-
harmonic. Numerical simulations show that the Kerr nonlinearities allow some third harmonic to propagate to
the far-field even for zero or negative phase mismatch. This is because the nonlinear dynamics break the
beams’ reflection symmetry about the focal plane and therefore increases far-field THG by changing some of
the interference from destructive to constructive. THG conversion efficiencies are computed as functions of
several beam parameters.
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I. INTRODUCTION

We study the dynamics of two-color beams in a nonlin
isotropic medium. We take the initial conditions to be a on
color beam with Gaussian profile. With a cubic (x (3)) non-
linearity, which is the lowest order possible in an isotrop
medium, the possible nonlinearities are third-harmonic g
eration~THG!, Kerr, and Raman. Any other nonlinearity re
quires either a different susceptibility~second-harmonics
high-harmonics!, or more than two slowly-varying envelope
~sum and difference frequency generation!. This is one of the
simplest nonlinear optics problems, and is for that rea
important; it has an application to THG microscopy@1#.

The usual model of THG takes the fundamental beam
be Gaussian, and~inconsistently, or as an approximation! has
THG as the sole nonlinearity@2,3#. This model has an exac
analytic solution in which the third-harmonic~TH! beam
takes a Gaussian profile. For a phase mismatch that is ze
negative, the energy in the TH peaks at the focus of
fundamental beam, and, after the focus, destructive inte
ence causesall the TH to be reabsorbed by the fundament
The latter is often said to be due to the Guoy shift@3#, the
phase shift ofp that a Gaussian beam experiences in go
from a far-field, through a focus, to a far-field. But, in fac
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the details show it to depend on the beam’s phase and s
everywhere along its path. However, the fast~electronic!
nonlinear response of optical materials that yields THG a
generates Kerr effects~self- and cross-phase modulations!.
Therefore, one should include Kerr and perhaps also Ra
effects when modeling THG. These can have quite dra
effects on a beam@4#. Although it was recognized as early a
1973 that Kerr effects could influence THG@5#, and although
Kerr, THG, and dispersion have been examined in stud
without transverse spatial dynamics@6,7#, the results of
transverse nonlinear dynamics on THG have not hereto
been studied in quantitative detail.

We have derived a set of coupled nonlinear Schro¨dinger
~NLS! equations for two slowly-varying envelopes, with th
relevant nonlinearities treated rigorously and consisten
@8#. Because of the microscopy application, we are interes
in very tightly focused beams and pulses, with large mom
tum and frequency spreads. The NLS equations are
given to all orders in dispersion and diffraction; numeric
simulations are carried out with a method that is accurate
all orders relevant for the grid@9–11#. We express the field a
a fundamental,Av(x,t), centered about a carrier wave
frequencyv0, and a TH,A3v(x,t), centered about a carrie
wave at frequency 3v0:
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In the NLS equations~1!, D'[]x
21]y

2 is the transverse Laplacian,n(v) is the index of refraction at frequencyv, and
b(v)[n(v)v/c is the wavenumber. The first summation terms on the right-hand sides of Eqs.~1! are dispersion, the secon
summation is diffraction, the third summation is cross-dispersion/diffraction. The nonlinear polarization includes THG
and Raman effects@3,7,12#. Self-steepening terms@13,14#, of the form](uAu2A)/]t and self-frequency shifting terms of th
form (]uAu2/]t)A are contained in the first-order time derivatives of the nonlinear polarizationsPv(x,t) andP3v(x,t) in Eqs.
~1!. The NLS equations~1! show that self-steepening terms and self-frequency shifting terms are just the first terms of a
of higher order nonlinear terms.

The nonlinear polarization is taken to be of the form

Pv~x,t !53xelec~2v0 ;2v0 ,2v0,3v0!exp$2 i @3b~v0!2b~3v0!#z%Av~x,t !* 2A3v~x,t !

13xelec~2v0 ;v0 ,2v0 ,v0!uAv~x,t !u2Av~x,t !16xelec~2v0 ;3v0 ,23v0 ,v0!uA3v~x,t !u2Av~x,t !

1Av~x,t !E
0

`

@3xnucl~2v0 ;v0 ,2v0 ,v0;s!uAv~x,t2s!u213xnucl~2v0 ;v0 ,23v0,3v0;s!uA3v~x,t2s!u2#ds

1A3v~x,t !E
0

`

exp~22iv0s!3xnucl~2v0 ;3v0 ,2v0 ,23v0;s!Av~x,t2s!A3v~x,t2s!* ds, ~2a!

P3v~x,t !5xelec~23v0 ;v0 ,v0 ,v0!exp$ i @3b~v0!2b~3v0!#z%Av~x,t !316xelec~23v0 ;v0 ,2v0,3v0!uAv~x,t !u2A3v~x,t !

13xelec~23v0 ;3v0 ,23v0,3v0!uA3v~x,t !u2A3v~x,t !1A3v~x,t !E
0

`

@3xnucl~23v0 ;v0 ,2v0,3v0;s!

3uAv~x,t2s!u213xnucl~23v0 ;3v0 ,23v0,3v0;s!uA3v~x,t2s!u2#ds1Av~x,t !E
0

`

exp~2iv0s!

33xnucl~23v0 ;v0 ,2v0,3v0;s!Av~x,t2s!* A3v~x,t2s!ds. ~2b!

This breaks up the nonlinear response into an electronic~fast! part and a nuclear~slow! part. It also assumes that the electron
part of the response may be considered frequency-independent on the scale of the pulse bandwidths; it does not
assumption for the nuclear part of the response. For the calculations, we take a more specific nonlinear polarization, e
the standard model of the third-order susceptibility of fused silica@12,15–17# plus a generalization:
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Here the THG coefficient is decoupled from the other el
tronic susceptibilities; this is outside the usual model for p
fused silica in which the electronic contribution is consider
instantaneous and the nuclear contribution takes the f
arising from a single damped harmonic oscillator,

x~ t;t1 ,t2 ,t3!5xelecd~ t2t1!d~ t12t2!d~ t22t3!

1xnucl~ t12t2!d~ t2t1!d~ t22t3!,

with xelec5n2(12 f Raman), xnucl(t)5n2f Raman(t1
2

1t2
2)t1

21t2
22exp(2t/t2)sin(t/t1), n25n(v)cn2

I /(2p), n2
I

52.8310220 m2/W, f Raman50.18, t1512.2 fs, and t2
532.0 fs. If the electronic THG susceptibility differs from
the other electronic susceptibilities, the electronic contri
tion to the susceptibility is not instantaneous compared to
scales. Direct experimental measurements of the THG
ceptibilities are available@18–20#. The more recent measure
ment of the THG coefficientxTHG @19# is smaller than the
electronic contribution to self-phase modulation@18# xelec by
a factor of almost 4; older measurements@20# give a THG
coefficient smaller than the electronic part of the self-ph
modulation by a factor of about 1.5. In the absence of dir
experimental measurements of all the nonlinear polariza
coefficients for doped silica, we use the simplest casexTHG

5xelec in numerical simulations, but discuss how the resu
scale for different values of the THG coefficient. Vector e
fects are neglected. Interband Raman scattering is neglig
at the carrier frequenciesbecause of the fast relative pha
oscillation; but in the pulse simulations, inter-band Ram
scattering is possible between the lower frequencies wi
the higher frequency band, and the higher frequencies wi
the lower frequency band.

II. NUMERICAL SIMULATIONS

A numerical NLS propagation scheme may be said to
accurate to all orders of dispersion and diffraction if it
accurate to as many orders as there are grid points. Accu
up to all available orders requires the index of refraction o
the entire numerically represented frequency range. In
split-step fast Fourier transform scheme, linear propaga
is carried out in momentum space; the algorithm may
made accurate to all orders by putting the frequency dep
dent index of refraction directly into the formulas for th
propagators@8#, i.e.,

2 i ]zAv~x,t !5F 21$@Ab~v01v!22k'
2

2b~v0!#F$Av~x,t !%%

1F 21H 2p~v01v!2/c2

Ab~v01v!22k'
2
F$Pv~x,t !%J ,

~4a!

2 i ]zA3v~x,t !5F 21$@Ab~3v01v!22k'
2
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HereF andF 21 are Fourier and inverse Fourier transform
in x,y,t, k'5Akx

21ky
2 is the transverse momentum, andv is

frequency. The linear dispersion effects are contained
b(v)5n(v)v/c; diffraction is contained ink' . The offsets
by v0 and 3v0 are due to the fact that the fields are slow
varying envelopes about carrier waves at those frequenc
when these appear,v is the frequency relative to the offse
There is no need to compute the coefficients for dispers
diffraction, self-steepening,etc., explicitly because they are
contained implicitly in the linear dispersionb(v). Since we
simulate focusing and collapse, during which diffractive, d
persive, and nonlinear length scales can easily change
factors of a hundred or more@12,14#, we allow the propaga-
tion step to vary such that it remains an order of magnitu
less that the smallest relevent scale.

The effects that we are interested in are larger and cle
when the fundamental and TH are not too far from be
phase matched,Dk[3b(v0)2b(3v0)'0, or n(v0)
'n(3v0). Optical materials may be doped to obtain desir
properties@12,21#. We consider silica doped with neodynium
to obtain an approximate phase matching between the fu
mentall51.5 mm and THl50.5 mm. To model the fre-
quency dependent index of refraction, we use the Sellm
relation for fused silica@22#, but add one additional reso
nance atlNd50.59mm, which is neodynium’s largest reso
nance in the vicinity of our TH. For this, phase matching
achieved at the Sellmeier coefficientBNd'0.0138, which
corresponds to a few percent doping of the material. Ph
mismatch is varied by changing the dopant concentration~in
this model, the Sellmeier coefficientBNd). We take the con-
ventional nonlinear coefficients for pure silica@12#, as given
above.

We simulated the propagation of both pulses and conti
ous beams, over a range of light intensities, phase-mism
values, and focusing strengths. The effects of the nonlin
ity are clearly visible in Fig. 1, which shows the evolution
beams with varying intensity. For all simulations, we to
initial conditions with zero power in the TH, and the fund
mental in the form of a Gaussian with some radial pha
factor A1(x,t;z50)5A1exp@2(ic112 ln 2/W1

2)(x21y2)#.
The radial phase factorc1 can be related to the wave fron
radius of curvatureR1 via the magnitude of the wavevecto
b(v)5n(v)v/c according to the formula R1
50.5b(v)/c1. Because the fundamental focuses very
tensely, while only a relatively small part of it is converted
TH, we illustrate thepeak intensityof the fundamental beam
and thepowerof the TH beam. In Fig. 1, the input beam ha
an initial full width at half maximum of 50mm, a radial
phase factorc155.03109/m2 that brings the beam to a focu
in 0.6 mm, and the material is phase matched~the reciprocal
of the phase mismatch is more than an order of magnit
greater than the simulation distance!. The fact that thenor-
malizedTH power varies with fundamental input intensi
shows that the beams experience nonlinear dynamics, ch
ing shape as the intensity changes. In Fig. 1, the initial w
front radii of curvature are small and their effect on the p
sition of the focus overshadow the intensity dependence.
can see that the beams approach the linear limit at low
9-3
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FIG. 1. Peak intensity of the fundament
(l151.5 mm) beam, and power of the third har
monic (l350.5 mm) normalized by the cube o
the input power. The initial conditions have
range of intensities~1.01, 4.05, 16.2, 36.4, 64.7
101, 122, and 145 kW, corresponding to circle
points in the appropriate curve in Fig. 2!, but an
identical beam width, a full width at half maxi
mum of 50mm, radial phase factor,c155.0
3109/m2

„i.e., transverse phase exp@2ic1(x
2
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tensities, as these curves start to almost overlap. Figu
shows the normalizedfar-field TH power as a function of
input power, for the data in Fig. 1 and for another set of ru
with weaker focusing.

For a qualitative explanation of these figures, we first c
trast our results with the model in which THG is the on
nonlinearity@2,3#. Here, in the case with phase matching, t
TH power PTH(z)5(3/2)(2p/nc)2(v/c)4(pW1

2)3x (3)2I v
3 /

@11(z2zfocus)
2/z1

2# reaches a maximum at the focus of t
fundamental and then drops off as the inverse square ofz/z1,
wherez15pW1

2/l0 is the Rayleigh range of the fundament
and the TH beam, andW1 is the width of the fundamental a
its focus. Our simulations show that at high intensities,
Kerr effect causes the beams to lose reflection symm

FIG. 2. Far-field third-harmonic beam power, normalized by
cube of the input power, vs input power. The medium has TH ph
matching. Two curves are shown, one the far-field results from
1, and another with a smaller radial phase factor, that brings
beam to a focus in about 1.2 mm.
01380
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about the focal plane. With this asymmetry, THG from t
incoming and outgoing beams does not fully interfere d
structively, and allows some TH to propagate to the far-fie
The lower-intensity curves in Fig. 1 do not quite drop off
the inverse square of distance because the numerical sim
tions did not start out from minus infinity, but began wi
merely a large~finite! beam width. The reflection asymmetr
in Fig. 1 is due partly to the nonlinearities and partly
starting with a finite initial beam width. As long as th
amount of energy in the TH is relatively small, the nonline
dynamic effects will remain in the fundamental beam, a
the TH peak intensities and beam powers may scale up
down by a uniform factor, but will be otherwise unaffecte

e
.
e

FIG. 3. Peak intensity of the fundamental beam, and powe
the third harmonic. The curves represent beams with ident
power, width, and radial phase factor, while the phase misma
goes from212.9 to 51.8 mm21 ~corresponding to circled points in
the appropriate curve in Fig. 4!. The middle plot shows the TH
increasing with phase mismatch, and the bottom plot shows
decreasing with phase mismatch.
9-4
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Clearly, there is significant variation with the fundamen
input power. Moreover, this variation is quite different f
different focusing conditions.

In another series of simulations, phase-mismatch is
ied. Figure 3 shows the peak intensity of the fundamen
and TH beam powers with an initial full width at half max
mum of 50mm, a radial phase factorc155.03109/m2, and
phase mismatch from212.9 to 51.8 mm21. Because the TH
power first increases and then decreases with phase
match, we show the former range on one plot and the la
on another. Clearly, there is a residual far-field TH and
power depends on phase mismatch. Figure 4 shows the

FIG. 4. Far-field conversion efficiency vs phase mismatch. T
curves are shown, one the far-field results from Fig. 3, and ano
with smaller radial phase factor, that brings the beam to a focu
about 1.2 mm. Initial intensities are held constant.
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field TH conversion efficiency as a function of phase m
match, for the runs in Fig. 3 and another set of runs w
weaker focusing,c152.53109/m2. As in the linear model
@2#, THG by a focusing beam is maximized around a cert
phase mismatch; but the nonlinear dynamics complicate
results considerably.

In a further series of simulations, the intensity and pha
mismatch were held constant, and the radial phase fa
varied. This mixes up a few physical effects, since init
conditions with small radial phase factors cannot be con
ered as starting from the far-field. Figure 5 has an extrem
small phase mismatch (Dk50.067 mm21), and radial phase

o
er
in

FIG. 6. Far-field conversion efficiency vs radial phase fact
Two curves are shown, one the far-field results from Fig. 5~phase-
matching!, and another in a medium with positive phas
mismatching.
f
n
l
s
g

s

FIG. 5. Peak intensity of the
fundamental beam, and power o
the third-harmonic vs propagatio
distance for different fundamenta
radial curvatures. The curve
show beams with phase matchin
and initially identical power and
width; the initial radial phase fac-
tors go from zero~starting at a fo-
cus! up to 5.03109/m2, by incre-
ments of 0.53109/m2 ~the curves
here correspond to circled point
in the appropriate curve in Fig. 6!.
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FIG. 7. Peak fundamental intensity and thir
harmonic power vs positionz, for various values
of xTHG. The third-harmonic power scales wit
uxTHGu2 when the third-harmonic intensity is
small.
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factors which vary from zero~i.e., starting at a focus! up to
c155.03109/m2. The horizontal axis is on a log scale
help visually distinguish the superimposed simulations. T
peak fundamental intensity varies, but, over the range s
ied, the peak TH power is rather insensitive to the wave fr
radius of curvature of the fundamental, but the far-field T
power does vary considerably. Figure 6 shows the far-fi
TH power as a function of the radial phase factor, for t
runs in Fig. 5, and also for a series of runs with significa
positive and negative phase mismatch. In increasing~de-
creasing! the tightness of the focusing, the nonlinear a
diffraction lengths both decrease~increase!; the complexity
of the results for far-field THG reflect the complexity of th
nonlinear dynamics of the beam.

Figure 7 shows the dependence of the third-harmo
power on the when the THG susceptibilityxTHG is varied.
The curve labeledxTHG5xelec corresponds to the same co
ditions used in Fig. 3 but withDk50.067 mm21 ~i.e., almost
phase matched!. The third-harmonic power scales wit
uxTHGu2 when the third-harmonic intensity is small since th
the nonlinear dynamics of the fundamental is unaffected
TH and the generation of TH field is proportional toxTHG.
The values ofxTHG used in the calculations shown in Fig.
are factors of 1.0, 1/3.9, and 1/1.5 times the value used in
previous figures, where the latter two factors correspond
the measured values ofxTHG reported in Refs.@18–20#.

Numerical simulations showed the dynamics of pulses
differ from those of continuous waves in essentially tw
ways. First, the group velocities of the fundamental and
will, except for special cases, not be the same. A TH pu
will thus generally walk off from a fundamental pulse. Th
tends to reduce destructive interference; it also limits
effective distance over which the pulses interact. Compa
to beams, TH pulses tend to carry off a larger part of
fundamental pulse energy. Secondly, the dynamics of pu
~311 dimensional! are qualitatively different to those of con
tinuous beams~211 dimensional!. For strongly focused bu
01380
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not very short pulses, these differences tend to be mino
thorough analysis of focused pulses in this system is q
involved, and will be pursued elsewhere. Thus, the deta
results for continuous-wave beams apply to pulses for wh
group-velocity differences are relatively small or for puls
that are relatively long.

III. CONCLUSIONS

In a nonlinear medium, intense beams or pulses of fin
diameter which converge to a focus and then diverge m
exhibit nonlinear dynamics that significantly affect propag
tion dynamics. These nonlinear effects break the beam’s
flection symmetry about the focal plane. The greater the
tensity, the bigger the difference between incoming a
outgoing beams. THG with such an input beam or pu
produces TH in the far-field when the phase-mismatch
tween the fundamental and its third-harmonic is zero
negative~and small!. We have quantitatively demonstrate
this for several cases. When phase-mismatch is posi
where some far-field TH power is possible in the essentia
linear case, the nonlinear beam dynamics complicate the
cumulation of TH power. The nonzero far-field THG for ze
or negative phase mismatch—a qualitatively new effect
homogeneous media—is affected by, and thus contains in
mation about, the medium in the region of the beam foc
For an inhomogeneous medium, and for THG microsco
these effects should be understood, either to be utilized
better avoided.
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