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Highly nonlinear dynamics of third-harmonic generation by focused beams
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Beams that experience third-harmonic generatibHG) also experience Kerr effects. With Kerr effects,
beams do not take simple Gaussian shapes, but exhibit nonlinear dynamics. These nonlinear dynamics have an
effect on the THG accumulated by focusing and then diverging beams. We formulate a self-consistent and
complete set of nonlinear Sclinger equations for a pair of coupled beams—a fundamental and its third-
harmonic. Numerical simulations show that the Kerr nonlinearities allow some third harmonic to propagate to
the far-field even for zero or negative phase mismatch. This is because the nonlinear dynamics break the
beams’ reflection symmetry about the focal plane and therefore increases far-field THG by changing some of
the interference from destructive to constructive. THG conversion efficiencies are computed as functions of
several beam parameters.
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I. INTRODUCTION the details show it to depend on the beam’s phase and shape

. . . everywhere along its path. However, the fdstectronig
. we gtudy the dynamics of tvv_oT(_:olor be?‘ms ina nonllnearnonlinear response of optical materials that yields THG also
isotropic medium. We take the initial conditions to be a on

. . ) ) - 3) e'generates Kerr effectself- and cross-phase modulatipns
color beam with Gaussian profile. With a cubig ) NoN- " Therefore, one should include Kerr and perhaps also Raman
linearity, which is the lowest order possible in an isotropicgffects when modeling THG. These can have quite drastic
medium, the possible nonlinearities are third-harmonic gengffects on a bearf4]. Although it was recognized as early as
eration(THG), Kerr, and Raman. Any other nonlinearity re- 1973 that Kerr effects could influence TH&], and although
quires either a different susceptibilitysecond-harmonics, Kerr, THG, and dispersion have been examined in studies
high-harmonick or more than two slowly-varying envelopes without transverse spatial dynamid$,7], the results of
(sum and difference frequency generajiorhis is one of the transverse nonlinear dynamics on THG have not heretofore
simplest nonlinear optics problems, and is for that reasomeen studied in quantitative detail.
important; it has an application to THG microscoy. We have derived a set of coupled nonlinear Sdhrger
The usual model of THG takes the fundamental beam t¢NLS) equations for two slowly-varying envelopes, with the
be Gaussian, an@consistently, or as an approximatjdms relevant nonlinearities treated rigorously and consistently
THG as the sole nonlinearify2,3]. This model has an exact [8]. Because of the microscopy application, we are interested
analytic solution in which the third-harmoni¢TH) beam in very tightly focused beams and pulses, with large momen-
takes a Gaussian profile. For a phase mismatch that is zero trm and frequency spreads. The NLS equations are thus
negative, the energy in the TH peaks at the focus of theiven to all orders in dispersion and diffraction; numerical
fundamental beam, and, after the focus, destructive interfelsimulations are carried out with a method that is accurate to
ence causeall the TH to be reabsorbed by the fundamental.all orders relevant for the gri®—11]. We express the field as
The latter is often said to be due to the Guoy sfi#ff, the a fundamentalA,(x,t), centered about a carrier wave at
phase shift ofr that a Gaussian beam experiences in goingrequencyw,, and a TH,A3,(x,t), centered about a carrier
from a far-field, through a focus, to a far-field. But, in fact, wave at frequency @,:
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In the NLS equationgl), ALE&§+ (95 is the transverse Laplacian{w) is the index of refraction at frequenay, and
B(w)=n(w)wl/c is the wavenumber. The first summation terms on the right-hand sides oflE@se dispersion, the second
summation is diffraction, the third summation is cross-dispersion/diffraction. The nonlinear polarization includes THG, Kerr,
and Raman effect§3,7,19. Self-steepening tern{4.3,14, of the formd(|A|?A)/at and self-frequency shifting terms of the
form (9|A|?/9t)A are contained in the first-order time derivatives of the nonlinear polarizafgtws,t) andP,(x,t) in Egs.
(1). The NLS equationgl) show that self-steepening terms and self-frequency shifting terms are just the first terms of a family
of higher order nonlinear terms.

The nonlinear polarization is taken to be of the form

Pw(x1t) = 3X8|G(‘( - (Do; —Wo, w013w0)eXp{_ I [3ﬂ((1)0) - B(st)]Z}Aw(X1t)* 2A3w(xit)
+ 33X — wo; o, — o, wo) | AL (X, 1)|?A,(X,1) + 6x( — wg;3wg, — 3wg, wp)| Az, (X,1) [2A, (X, 1)

+Aw(x,t)f [3x™U — wg; wg, — wg,w;S)| Ay (X, t—S) |2+ 3™ — wg; 0y, — B3we,3w0;S)|Ag,(X,t—S)|?]ds

0

+A3a,(x,t)f exp( — 2i wS)3x™ — wg;3wg, — wg, — 3w S)A,(X,t—S) Az, (X,t—S)*ds, (2a)
0

P3,,(X,1) = Xx**( = Bwo; wg, g, wo) eXP{i[ 3B(wp) — B(Bwo) 1Z1A,(X, 1)+ BX Y — Bwg; wo, — 0,3w) | A, (X, 1) ?Ag,(X,t)

+3x%°(—3wg;3wg, — 3w,3w0) | Az, (X,1)|?Az, (X, 1) +A3w(x,t)J [Bx™(—3wg;wg, — wg,300;S)
0

XA, (X,t—8) |2+ 3x™N —3wq;3wg, — 3wg,3we;S) |As, (X,t—S)|?]ds+ Aw(x,t)J’ exp(2i wgS)
0

X Bx™N ~Bwg;wg, — 0,303 Ay (X, t = 8)* A, (Xt —S)ds. (2b)

This breaks up the nonlinear response into an electidas) part and a nuclegslow) part. It also assumes that the electronic

part of the response may be considered frequency-independent on the scale of the pulse bandwidths; it does not make this
assumption for the nuclear part of the response. For the calculations, we take a more specific nonlinear polarization, essentially
the standard model of the third-order susceptibility of fused sjlicg15—17 plus a generalization:

P, (x,1) =exp{—i[3B(wo) — B(3wo) 1z} x THCA ,(X,1)* 2Ag,(X,1) + XU A, (X,1)|>+ 2| Az, (X,1)|2) A, (X, 1)
+A,(X,t) f XUS) (AL (Xt 9|2+ [Agu(x,—9)|2)dst Agy(x.1) f “expl— 21 wS) X S) A, (x,1—$)
0 0

X Az, (X,t—s)*ds, (33
1
Pgw(X,t) = eXp{i [33((‘)0) - B(SwO)]Z}ngHGAw(X!t)3+Xele(‘(2|Aw(X1t)|2+ |A3w(X,t)|2)A3w(X,t)

T Agy(X.1) f XS (AL (K= )P+ Agu(x,t— )P ds+ Ay () f  exp(2i wgs) Y™ (s)
0 0
XA, (X,t—8)* Az, (X,t—s)ds. (3b)
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Here the THG coefficient is decoupled from the other elecHere F and F ! are Fourier and inverse Fourier transforms
tronic susceptibilities; this is outside the usual model for purgn x,y t, k, = « /kX2+ kZ is the transverse momentum, aads
fused silica in which the electronic contribution is consideredfrequency The Iingar dispersion effects are contained in
instantaneous and the nuclear contribution takes the for 0 R P : ;
arising from a single damped harmonic oscillator, %(w)—n(w)w/c, diffraction is contained 'm.' The offsets

by wg and 3wq are due to the fact that the fields are slowly

. _ el _ . ;
x(titg, ta,ta) = xTB(t—tg) 8(ty —tp) 8(tr—ta) varying envelopes about carrier waves at those frequencies;
X"t — 1) S(t—ty) S(ty—ta), when t_hese appead is the frequency re_Ia_ltive to thg offse.t.
ith elec._ nuchres ,  There is no need to compute the coefficients for dispersion,
wit X7 =N(1~ framad, X (t)_anRama'(Tll diffraction, self-steepeninggtc, explicitly because they are

2y _—1 -2 H _ |
+ )7 T, expCUn)sintin), ny=n(w)Cna/(2m), Nz contained implicitly in the linear dispersigh(w). Since we

=2.8x10 2 m?/W, framai=0.18, 7,=12.2fs, and r, : . . N . .

’ ) ’ R simulate focusing and collapse, during which diffractive, dis-
=32.0 fs. If the electronic THG susceptibility differs from : . :
the other electronic susceptibilities, the electronic contribuP€SVe: and nonlinear length scales can easily change by

tion to the susceptibility is not instantaneous compared to aﬁaCtors of a hundred or mo{a2,14, we allow the propaga-

scales. Direct experimental measurements of the THG su%'—On step fo vary such that it remains an order of magnitude

ceptibilities are availablEL8—20. The more recent measure- 1€5S that the smallest relevent scale.
ment of the THG coefficieny™C [19] is smaller than the The effects that we are interested in are larger and clearer

electronic contribution to self-phase modulat[d8] &by when the fundamental and TH are not too far from being
a factor of almost 4; older measuremef@§] give a THG ~ Phase matched,Ak=35(wo) = B(3wo)~0, or n(wo)
coefficient smaller than the electronic part of the self-phasé=N(3wo). Optical materials may be doped to obtain desired
modulation by a factor of about 1.5. In the absence of direcPropertied12,21. We consider silica doped with neodynium
experimental measurements of all the nonlinear polarizatioto obtain an approximate phase matching between the funda-
coefficients for doped silica, we use the simplest cg5¢>  mentalA=1.5um and THA=0.5 um. To model the fre-

= x*®¢in numerical simulations, but discuss how the resultsquency dependent index of refraction, we use the Sellmeier
scale for different values of the THG coefficient. Vector ef-relation for fused silicg22], but add one additional reso-
fects are neglected. Interband Raman scattering is negligiblance at yg=0.59 um, which is neodynium’s largest reso-

at the carrier frequenciebecause of the fast relative phase nance in the vicinity of our TH. For this, phase matching is
oscillation; but in the pulse simulations, inter-band Ramar@chieved at the Sellmeier coefficieB4~0.0138, which
scattering is possible between the lower frequencies withigorresponds to a few percent doping of the material. Phase
the higher frequency band, and the higher frequencies withifismatch is varied by changing the dopant concentrafion
the lower frequency band. this model, the Sellmeier coefficieBly). We take the con-

ventional nonlinear coefficients for pure siligb2], as given
IIl. NUMERICAL SIMULATIONS above.

A numerical NLS propagation scheme may be said to be We simulated the propagaﬁon pf both _pulses and cpntinu—
accurate to all orders of dispersion and diffraction if it is ©US beams, over a range of light intensities, phase-mismatch
accurate to as many orders as there are grid points. Accurac lues, and foc_u_smg_stre_:ngths. The effects of the no_nlmear-
up to all available orders requires the index of refraction ovely are clearly visible in Fig. 1, which shows the evolution of
the entire numerically represented frequency range. In thB€ams with varying intensity. For all simulations, we took
split-step fast Fourier transform scheme, linear propagatiofiitial conditions with zero power in the TH, and the funda-
is carried out in momentum space; the algorithm may pdnental in the form of a Gauss!an with sor2ne radial phase
made accurate to all orders by putting the frequency deperfactor — Ay(x,t;z=0)=Aexy —(ic;+2In 2W5) (x*+y?)].
dent index of refraction directly into the formulas for the The radial phase factar; can be related to the wave front

propagator$8], i.e., radius of curvatureR; via the magnitude of the wavevector
. A 3 7 B(w)=n(w)w/c according to the formula R;
—iaA D) =FH{[VB(wo+ w)" k] =0.58(w)/c,. Because the fundamental focuses very in-
— Bwo) JFA, (X, D)} tensely, while only a relatively small part of it is converted to
TH, we illustrate thegeak intensityf the fundamental beam
| 2m(wot w)?/c? and thepowerof the TH beam. In Fig. 1, the input beam has
+F JBo +w)2—k2]:{Pw(X’t)} , an initial full width at half maximum of 5Qum, a radial
0 i

phase factoc, =5.0x 10°/m? that brings the beam to a focus
(48  in 0.6 mm, and the material is phase matckibe reciprocal

of the phase mismatch is more than an order of magnitude

greater than the simulation distanc&he fact that thenor-

—10,A3,(X,1)=F Y[ VB(Bwo+ w)?—k*

— B(Bwo) 1 F{Az,(x,1)}} malizedTH power varies Wi_th fundam_ental input i_ntensity
shows that the beams experience nonlinear dynamics, chang-
1 27m(3wo+ w)?/c? ing shape as the intensity changes. In Fig. 1, the initial wave
\/,8(3(» +w)2_k2f{P3w(X,t)} - front radii of curvature are small and their effect on the po-
0 L

sition of the focus overshadow the intensity dependence. One
(4b) can see that the beams approach the linear limit at low in-
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FIG. 1. Peak intensity of the fundamental
(A1=1.5 um) beam, and power of the third har-
monic (\3=0.5 um) normalized by the cube of
the input power. The initial conditions have a

peak fundamental
intensity [GW/cmz]

Kol range of intensitie$1.01, 4.05, 16.2, 36.4, 64.7,
= . 101, 122, and 145 kW, corresponding to circled
= 10 fundamental beam power =145 kW = 36.4 kW 1.01 kW pomt; in the appr.oprlate Curvg in Fig), dut an.
2 N 122 kW 16.2 kW identical beam width, a full width at half maxi-
3 10 °F 101 kW 4.05 kW E mum of 50um, radial phase factorc;=5.0
= | i X10°/m? (i.e., transverse phase éxfic,(x°
2 107" 3 +y3)]), and all are phase matched.

ol Y — ]

[

IQ 10_15 1 1 1 1 1

- 0 0.5

1 15 2 2.5 3
propagation distance z [mm]

tensities, as these curves start to almost overlap. Figure &out the focal plane. With this asymmetry, THG from the
shows the normalizefar-field TH power as a function of incoming and outgoing beams does not fully interfere de-
input power, for the data in Fig. 1 and for another set of runsstructively, and allows some TH to propagate to the far-field.
with weaker focusing. The lower-intensity curves in Fig. 1 do not quite drop off as

For a qualitative explanation of these figures, we first conthe inverse square of distance because the numerical simula-
trast our results with the model in which THG is the only tions did not start out from minus infinity, but began with
nonlinearity[2,3]. Here, in the case with phase matching, themerely a largéfinite) beam width. The reflection asymmetry
TH power Pry(2)=(3/2)(27/nc)?(w/c)*(wW3)3x213/  in Fig. 1 is due partly to the nonlinearities and partly to
[1+(Z_Zfocus)2/2§.] reaches a maximum at the focus of the starting with a finite initial beam width. As long as the
fundamental and then drops off as the inverse squarézef ~ amount of energy in the TH is relatively small, the nonlinear
wherez, = mW?/\ is the Rayleigh range of the fundamental dynamic effects will remain in the fundamental beam, and
andthe TH beam, andlV, is the width of the fundamental at the TH peak intensities and beam powers may scale up or
its focus. Our simulations show that at high intensities, thedoWn by a uniform factor, but will be otherwise unaffected.
Kerr effect causes the beams to lose reflection symmetry

T T T 5 (;5 10k 4
g6
9 2 %
— radial phase factor ¢, = 5.0 x 10° m™ <2
10 ! ] g2
£ \ =0 8
"ig o 2 10* - - - -
c,=25x10°'mMm™ 4 ;¢ £ N e S
H 1 g 0% g e s ] oz | o ] — —12.9
= 2 | -~ -317
F] 3 10°f 3.30
2 ;‘ phase-mismatch 6.53 6.53
£ E g Ak [mm™ = -12.9 330 162 — 162
§ 0 05 1 15 2 25 3
<] 10* . : : . .
;10-‘4_ 4 E 2 e e e T Rty TR Tty S TS Tt
= = 10° - > b T q95
T 2 - - 292
° g 10°f o 356 H
= ; 424 20.2 ~ 421
8 E g2 Ak[mm™"] =518 35.6 195 — 518l
0 05 1 15 2 25 3
propagation distance z [mm]
10° o 0 ; ;
input power (in fundamental beam) [W] FIG. 3. Peak intensity of the fundamental beam, and power of

the third harmonic. The curves represent beams with identical
FIG. 2. Far-field third-harmonic beam power, normalized by thepower, width, and radial phase factor, while the phase mismatch
cube of the input power, vs input power. The medium has TH phasgoes from—12.9 to 51.8 mm* (corresponding to circled points in
matching. Two curves are shown, one the far-field results from Figthe appropriate curve in Fig.)4The middle plot shows the TH
1, and another with a smaller radial phase factor, that brings théncreasing with phase mismatch, and the bottom plot shows TH
beam to a focus in about 1.2 mm. decreasing with phase mismatch.
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Ak =0.067 mm™"

TH conversion efficiency

radial phase factor c ,=2.5x 10° m2

third-harmonic conversion efficiency

Ak = -4.78 mm™

-10 0 10 20 30 40 50 60 0
phase-mismatch Ak = 3 k . ks [mm™]

L L L L L L L L L
0.5 1 15 2 25 3 35 4 45 5

Radial phase factor ¢, [10° m™]

FIG. 4. Far-field conversion efficiency vs phase mismatch. TWO - £ g Far-field conversion efficiency vs radial phase factor.

curves are shown, one the far-field results from Fig. 3, and anothef,,\ .. ,rves are shown. one the far-field results from Figplase-
with smaller radial phase factor, that brings the beam to a focus i'?natching and anoth’er in a medium with positive phase-

about 1.2 mm. Initial intensities are held constant. mismatching.

Clearly, there is significant variation with the fundamentalfield TH conversion efficiency as a function of phase mis-
input power. Moreover, this variation is quite different for match, for the runs in Fig. 3 and another set of runs with
different focusing conditions. weaker focusinge;=2.5x10°/m?. As in the linear model

In another series of simulations, phase-mismatch is var2], THG by a focusing beam is maximized around a certain
ied. Figure 3 shows the peak intensity of the fundamentaphase mismatch; but the nonlinear dynamics complicate the
and TH beam powers with an initial full width at half maxi- results considerably.
mum of 50,.m, a radial phase factar;=5.0x 10°/m?, and In a further series of simulations, the intensity and phase
phase mismatch from 12.9 to 51.8 mm?. Because the TH mismatch were held constant, and the radial phase factor
power first increases and then decreases with phase migaried. This mixes up a few physical effects, since initial
match, we show the former range on one plot and the latteconditions with small radial phase factors cannot be consid-
on another. Clearly, there is a residual far-field TH and itsered as starting from the far-field. Figure 5 has an extremely
power depends on phase mismatch. Figure 4 shows the fagmall phase mismatciAk=0.067 mm 1), and radial phase

propagation distance z [mm]
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T 0 9 2
8_ = 4.0><109/m2 fundamental beam, and power of
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1 radial curvatures. The curves
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peak fundamental
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FIG. 7. Peak fundamental intensity and third-
harmonic power vs position for various values
of x™C. The third-harmonic power scales with

TH power [W]
o

1 |x™C€|2 when the third-harmonic intensity is
107

0 small.
E E 103 T T T T T
ﬁw 2
g~ 10 F 3
855 10" k
88 _ o
2500
;-‘; 10™ ) \ . .
F2e o 05 1 1.5 2

z [mm]

factors which vary from zerdi.e., starting at a focysup to  not very short pulses, these differences tend to be minor. A
c,;=5.0x10°/m?. The horizontal axis is on a log scale to thorough analysis of focused pulses in this system is quite
help visually distinguish the superimposed simulations. Thenvolved, and will be pursued elsewhere. Thus, the detailed
peak fundamental intensity varies, but, over the range studesults for continuous-wave beams apply to pulses for which
ied, the peak TH power is rather insensitive to the wave frongroup-velocity differences are relatively small or for pulses
radius of curvature of the fundamental, but the far-field THthat are relatively long.
power does vary considerably. Figure 6 shows the far-field
TH power as a function of the radial phase factor, for the
runs in Fig. 5, and also for a series of runs with significant
positive and negative phase mismatch. In increaguher In a nonlinear medium, intense beams or pulses of finite
creasing the tightness of the focusing, the nonlinear anddiameter which converge to a focus and then diverge may
diffraction lengths both decreasgmcreasg the complexity  exhibit nonlinear dynamics that significantly affect propaga-
of the results for far-field THG reflect the complexity of the tion dynamics. These nonlinear effects break the beam'’s re-
nonlinear dynamics of the beam. flection symmetry about the focal plane. The greater the in-
Figure 7 shows the dependence of the third-harmonitensity, the bigger the difference between incoming and
power on the when the THG susceptibilig/™® is varied.  outgoing beams. THG with such an input beam or pulse
The curve labeleg "= y®* corresponds to the same con- produces TH in the far-field when the phase-mismatch be-
ditions used in Fig. 3 but withk=0.067 mm ! (i.e., almost  tween the fundamental and its third-harmonic is zero or
phase matched The third-harmonic power scales with negative(and small. We have quantitatively demonstrated
|x "M€|2 when the third-harmonic intensity is small since thenthis for several cases. When phase-mismatch is positive,
the nonlinear dynamics of the fundamental is unaffected byhere some far-field TH power is possible in the essentially
TH and the generation of TH field is proportional $3C. linear case, the nonlinear beam dynamics complicate the ac-
The values ofy ™ used in the calculations shown in Fig. 7 cumulation of TH power. The nonzero far-field THG for zero
are factors of 1.0, 1/3.9, and 1/1.5 times the value used in ther negative phase mismatch—a qualitatively new effect for
previous figures, where the latter two factors correspond tthomogeneous media—is affected by, and thus contains infor-
the measured values gf "C reported in Refs[18-20. mation about, the medium in the region of the beam focus.
Numerical simulations showed the dynamics of pulses td-or an inhomogeneous medium, and for THG microscopy,
differ from those of continuous waves in essentially twothese effects should be understood, either to be utilized or
ways. First, the group velocities of the fundamental and THbetter avoided.
will, except for special cases, not be the same. A TH pulse
will thus generally walk off from a fundamental pulse. This
tends to reduce destructive interference; it also limits the
effective distance over which the pulses interact. Compared R. T. gratefully acknowledges financial support form the a
to beams, TH pulses tend to carry off a larger part of theKreitman Foundation.This work was supported in part by a
fundamental pulse energy. Secondly, the dynamics of pulsegant from the Israel Science Foundation for a Center of
(3+1 dimensionglare qualitatively different to those of con- ExcellenceGrant No. 8006/0Band by KBN Research Grant
tinuous beam$2+1 dimensiongl For strongly focused but No. 2003-20062P03B0432h
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