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Gap-acoustic solitons (GASs) are stable pulses that exist in nonlinear Bragg waveguides. They are a math-
ematical generalization of gap solitons, in which the model includes the dependence of the refractive index on
the material density. We derive unified dynamical equations for gap solitons along with Brillouin scattering,
which also results from the dependence of the refractive index on the material density. We find accurate values
of the coefficients for fused silica. The analysis of the GAS conserved quantities—Hamiltonian, momentum,
photon energy (or number of photons), and material mass—shows dramatic differences compared to the model
neglecting the dependence of the refractive index on the material density. In particular, subsonic GASs in fused
silica have far more momentum at low velocities than at high velocities. The dependence of the GAS momen-
tum on velocity due to acoustic effects is dramatic up to approximately 1% of the speed of light. These
momentum-connected effects mean that instability of a slow GAS may make it suddenly accelerate to high
speeds, and also that an unstable high-speed GAS can abruptly decelerate to close to zero velocity. The pre-

dictions are confirmed by a direct numerical simulation. © 2010 Optical Society of America
OCIS codes: 060.4370, 060.3735, 230.1040, 190.5530, 290.5830, 190.3100.

1. INTRODUCTION

A gap-acoustic soliton (GAS) is an optical and acoustic
structure that can exist in an optical waveguide with a
Bragg grating. The GAS is a generalization of the gap
soliton [1-4], but includes the dependence of the refrac-
tive index on the density of the material. Physically, this
dependence is always present, but is not always included
in the mathematical description. The correct interaction
between sound and light not only provides generalized
soliton solutions, but also allows an accurate description
of other interactions between light and sound.

The first gap soliton paper did not use the phrase “gap
soliton,” but rather referred to the equations as the mas-
sive Thirring model (MTM) [1]. The solutions were soli-
tons in the strictest sense—the system was shown to be
integrable by the inverse scattering method [2,3]. The
soliton frequencies are in the gap between the frequencies
of the two continuous wave (cw) solutions. However, the
soliton frequencies are not all between the maximum of
the lower cw band and the minimum of the upper cw
band. For this reason, some authors prefer the term
“Bragg soliton” (see, e.g., [4]).

Independently of the mathematical discovery of gap
solitons, a qualitative description and prediction of the
still theoretical optical gap solitons was made in [5]. Ex-
act analytical forms for optical gap solitons were found for
a nonlinearity with self-phase modulation in addition to
cross-phase modulation. Reference [6] found the solutions
in the exact middle of the bandgap, and [7] found the full
family of gap soliton solutions. This is not a completely in-
tegrable system, and the pulses are solitons in the
broader sense but not in the narrower sense; so they are
not guaranteed to have the stability MTM solitons.
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All GASs (as well as all optical gap solitons) are a form
of slow (or stopped) light, in the sense that the soliton ve-
locity is slower than the group velocity of light in the me-
dium. Optical gap solitons have been realized experimen-
tally with velocities as low as 23% of the group velocity (or
16% of the speed of light in vacuum) [8]. This may be com-
pared and contrasted with light that is slow in the sense
that the group velocity is significantly less than the phase
velocity in the medium, generally due to a steep slope of
the index of refraction with respect to the frequency in the
vicinity or a resonance [9-15].

The stability of gap solitons beyond the completely in-
tegrable MTM limit (optical gap solitons have nonzero
self-phase modulation, and so are not MTM) was not im-
mediately clear. Reference [6] showed one direct numeri-
cal simulation of a gap soliton collision in which the indi-
vidual gap solitons were stable, and the solitons emerged
from a collision intact but perturbed. Reference [16] per-
formed variational model calculations of optical gap soli-
tons, which showed some regions where excited modes ex-
ist and other regions with instabilities. References
[17-19] rigorously showed that optical gap solitons are
stable in the top half of the bandgap and unstable in most
of the bottom half of the bandgap. Reference [20] general-
ized the optical gap soliton equations to a model that in-
cludes the dependence of the index of refraction on the
density of the material and the phonon-photon interac-
tions that result from it; that is, the effect of light on low
wave number acoustic waves [21], and vice versa, was in-
cluded in the model, and generalized “gap-acoustic soli-
ton” solutions were found [20]. The GASs are similar to
optical gap solitons, but they exhibit many intriguing
novel dynamical properties, especially when the soliton

© 2010 Optical Society of America



1052 J. Opt. Soc. Am. B/Vol. 27, No. 5/May 2010

velocities are small. A subset of the GAS model, without
self-phase modulation, was studied in [22]. Reference [23]
found solitons in a system with two short-wavelength
light fields interacting with a long-wavelength electro-
magnetic field; the interaction there is different from that
in [20] or in this work, but there are family resemblances.
Reference [24] looked at the interaction of light beams,
i.e., propagation in space rather than in time, with sound
waves via electrostriction.

The dependence of the index of refraction on the den-
sity of the material is physically universal. Light inter-
acts with sound waves because the energy density of light
is proportional to the refractive index [25] which, in turn,
depends on the density. The interaction between light and
high wave number acoustic waves—approximately twice
the wave numbers of light—is called Brillouin scattering
[26], and the interaction between light and low wave
number acoustic waves is generally referred to as elec-
trostriction [27]. Notwithstanding different nomencla-
tures, the two effects have the same physical source. Bril-
louin scattering can cause light in a medium to create its
own Bragg reflector, and if the input light is a pulse then
the outgoing reflected pulse can be shortened by this ef-
fect [27-31].

Phonon viscosity can be caused by elastic anharmonic-
ity, Rayleigh scattering, vibrational relaxation, and impu-
rities in the medium [32]; it scales approximately as the
square of the wave number. It gives rise to damping of
acoustic waves and results in a finite frequency spread for
Brillouin scattering. Phonon viscosity has been consid-
ered in some detail for propagation of trains of optical
solitons and non-solitonic pulses in media without a
Bragg lattice [33,34].

This work builds on top of [20], expanding on the physi-
cally most important realization the fused silica. We also
generalize the model [20] to cover high wave number
(Brillouin) acoustic wave interactions as well as low wave
number (electrostrictive) acoustic waves, including the
derivation of the governing equations for both acoustic
waves in a unified manner.

The outline of this paper is as follows. Section 2 gives
the governing equations for the relevant electromagnetic
and acoustic fields, along with the values of the coeffi-
cients for the case of fused silica. The derivation of the
governing equations is given in the Appendix A. Section 3
details the general properties of this system. Section 4
gives the soliton solutions and outlines the stability prop-
erties. Section 5 takes a closer look at the conserved and
quasi-conserved quantities of the system. Section 6 pre-
dicts abrupt acceleration and sudden deceleration to zero
velocity, based on the conserved quantities, and confirms
the predictions with direct numerical simulations. Section
7 contains summary and conclusion.

2. GOVERNING EQUATIONS AND
PHYSICAL PARAMETERS

GASSs exist in a nonlinear optical waveguide with a Bragg
grating along the axis of the fiber or in a bulk medium if
the propagating beams are wide enough so that there are
no complex transverse dynamics. Let us take the Bragg
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grating as uniform, with period \p,se, and amplitude of
the variation in the index of refraction An,

n(z) = n(w, W) + An cos(2mz/\pyagg) » (1)

where the baseline refractive index implicitly allows the
dependence on the frequency of light (w) and on the den-
sity of the material [W(z,#)]. Light will be in resonance
with the grating if it has a wavelength in the medium
twice as long as the Bragg wavelength. At light frequen-
cies in resonance with the Bragg grating, forward-moving
light will be reflected backward, and backward-moving
light will be reflected forward. The result will be a band-
gap in the frequency at plus and minus the resonant wave
number. The electric field can then be described by two
slowly varying envelopes (SVEs) about carrier waves at
the same frequency and plus or minus the corresponding
resonant wave number. Light interacts with phonons due
to the dependence of the refractive index on the density of
the medium, which is universal, even though the interac-
tion may sometimes be omitted from models of the sys-
tem. Phonons can interact with the two SVEs if their
wave numbers are twice the wave number of light (or,
equivalently, the phonon wavelengths are half the wave-
length of the light’s carrier wave). Additionally, phonons
can interact with light if their wave numbers are close to
zero, with a distance scale similar to the distance scales of
the envelopes of the light intensity. We consider only low-
and high-frequency longitudinal acoustic modes, even
though, in general, additional modes are supported. A
waveguide has at least three acoustic modes: one longitu-
dinal (also called compression or dilation) mode and two
transverse (shear) modes. If the fiber is thick, there may
be additional transverse acoustic modes, and thus be an
acoustically multi-mode fiber [35,36]. We assume that one
of the acoustic modes is the most important and neglect
the others, because the analysis should begin with the
most basic acoustic effects and defer to study of multi-
mode and other higher-order effects. For ¢rains of pulses,
acoustic waves traveling in a direction normal to the fiber
axis, and reflecting off the fiber circumference, have been
invoked to account for inter-pulse interactions in commu-
nication fibers [21,34]. This multi-mode effect may be ne-
glected here because it is a higher-order perturbation,
and it may not be relevant at all for the individual pulses
that we deal with. Figure 1 is a schematic illustration of a
fiber waveguide with a periodically varying refractive in-
dex with light and sound waves propagating within it. A
Bragg grating can be produced by doping the waveguide
with ions and imprinting a periodic variation in the index
of refraction with ultraviolet light [28].

The derivation of the equations for this system is given
in the Appendix A. The electric field and the material den-
sity (phonon field) in terms of nontrivial SVEs,

E(z,t) = u(z,t)expli(kgz — wot)] + v(z,t)exp[ - i(koz + wot)]
+u(z,t)exp[-i(kyz — wot)] + v(z,t)"expli(koz
+ wot)], (2a)
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Fig. 1. Schematic illustration of a fiber with a periodically vary-
ing refractive index. Light and sound waves propagate in the fi-
ber. Photons are shown as wavy lines with arrows indicating the
direction of motion; the low-frequency phonons are shown as a
solid line with double-sided arrows, and high-frequency phonons
are shown as dashed lines with arrows.

W(Z’t) = wO(Z’t) + wu(z,t)exp[ZLko(z - ﬁst)] + wv(zyt)exp[
- 2lk0(2 + Bst)] + wu(z,t)*exp[— 2lk0(2 - Bst)]
+w,(z,8)"exp[2ik(z + Bit)], (2b)

obey the dynamical equations,

21m(wo/c)?
0 =ikju, +iu, + kv + ———3xI(|ul? + 2v)u + x.s[wou
0
+ exp(- 2iko Bt )w, v + exp(2iky Bt )w,v], (3a)
2m(wylc)?
0=ikv, —iv, + ku + 3xBQlul? + [v)v + xoslwov
0
+ exp(2ikyBt)w,u + exp(- 2ik, LBt )w,ul, (3b)
0= Wott — B?wo,zz - 1-‘I'UO,tzz + )\es(|u|2 + |v|2)22’ (30)

kO)\es
O=iw, +iBw,  + i(Zng)wu + ——exp(2ikyBst)uv”,
S

(3d)

0)\es

0=iw,,—iBw, .+ i(2kw, + exp(2ikoBit)uv,

S

(3e)

where the values of the coefficients in terms of basic
physical quantities are

n=n(w,W) + An cos(2kyz), (4a)
k(w,W) =n(w,W)wlc, (4b)
ko= Fk(wy, Wo), (4¢)

J
= Vg = (0, W)l s (4d)

Xs = 3)((3)((00;(00,— wo, W), (4e)
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Xx= 6)((3)((00;(00,— wg, ), (4f)
woAn
=, 4
K=" (4g)
wq an
=——, 4h
Xes=" " (4h)
n(wg) dn

Nes = on Vow (41)
The more basic underlying physical properties—the re-
fractive index n(w), the magnitude of the periodic varia-
tion of the refractive index An (for the Bragg grating), the
Kerr nonlinearity x®(w;w,-w,®), the material density
W, the slope of the refractive index with density dn/JdW,
the speed of sound in the waveguide SB;, and the phonon
viscosity in the waveguide I'—must in the end be found
experimentally.

Some of the physics can be more clearly illustrated by
defining two new variables that are combinations of
forward- and backward-moving waves,

KBrill = Xes[exp(_ ZLkOBst)wu + exp(ZikOBst)w:], (53)

‘CBrill = Xes[exp(_ Zikoﬁst)wu - exp(2LkOIBst)w:] . (5b)
Using the variables (5), the dynamical equations (3) are

21m(wo/c)?
0 =ikju, + iu, + (K + Kppn)v + 3x D (ul? + 2v)P)u

0
+ XesWold (63)
27m(wy/c)?
0 =ik, — iv, + (k + kpyn) ' + ————3xD(2Jul? + [v*)v
0
* XesWoV, (Gb)
0= Wot — ngo,zz - l—‘wO,tzz + )\es(‘u|2 + |v|2)zz’ (60)

Jd J
0=- <_ + 2k§l"> KBrill + .Bs<_ 2ikg + _>E13ri11, (6d)
ot 0z

9 J
0=- (a_t + 2k3F>£Brin + :83<_ 2iko - E) KBrill

. Xes)\es
+ 2zkoﬁs<—2) u'v. (6e)
B;
This form eliminates explicit time-dependencies and is
more suitable for a direct numerical simulation of the par-
tial differential equations. Moreover, it shows more di-
rectly how the Brillouin phonons can act as Bragg scat-
terers.

Let us examine some typical physical coefficients. The
most common waveguide material is fused silica. For sim-
plicity, we take the values of the medium in bulk since
waveguiding effects are non-universal and the bulk val-
ues are suitable as a baseline. Consider light at a wave-
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length of A\;=0.8 or 1.55 um. The refractive index in the
region between those wavelengths is close to n=1.45. The
nonlinear coefficients can be found in Fig. 2 of [37], which
plots the Kerr nonlinear coefficient of the intensity n}, de-
fined by n(I)=n(I=0)+nLI, where I=(2m) n(w)c|E(w)? is
the intensity, n5(0.8 um)=2.8X1071% cm?®/W, and
nk(1.55 um)=2.65% 10716 ecm?/W. To obtain the self- and
cross-phase modulation coefficients, we first want to ex-
press this in terms of the third-order susceptibility. Using
Gaussian units, the nonlinear polarization is

Py(x,t) = f f J X

X (t ;tl, t27t3)E(x7t1)E(x, tQ)E(x7 tS)dtldthtS .

For an electric field at a frequency of approximately wy,
E(x,t)=u(x,t)exp(ikgz —iwgt) +c.c., where u(x,t) is a SVE,
the nonlinear polarization is Py (x,t)=3x"®(wg;wy,
—wg,wo)|ulx,t)Pu(x,t), or in the frequency space,
Prere(®) =3x®(wg; 0y, — w0, wo) |E(wo)|*E(wp). The self- and
cross-phase modulation coefficients come from the third-
order susceptibility [Eqs. (4e) and (4f)], which, for the val-
ues above, is x®(wg;wg,—wg,wo) =(1272) 1n(w)2en; at
0.8 um, ¥¥=15%x10""cm s%/g, and at 1.55 um, x®
=1.4X1071* cm s2. The self- and cross-phase modulation
coefficients are then y;(0.8 um)=4.5X10"1* cm s2/g and
x:(0.8 um)=9.0x10"% cm s%/g, or  x.(1.55 um)=4.2
X107 cm s2/g and x,(1.55 um)=8.4x 10" cm s?/g. Al-
ternatively, the units may be expressed as cm s?/g
=(cm/statvolt)?=[(10* m/s)/c]?(m/V)2. It may also be
helpful to express the self-phase modulation coefficient di-
rectly in terms of the measured nonlinear coefficient in
[37]: [27T(w0/c)2/k0])(8=nén(w0)w0/(27'r). Reference [32]
measures the optical and mechanical properties of bulk
fused silica. Values which we can use as a typical baseline
are the material density W=2.2 g/cm?, the refractive in-
dex versus density on/dW=0.2 cm®/g, and the speed of
sound B,=5.9 km/s. The phonon viscosity I" is a function
of the Brillouin linewidth (Avg) and the wavelength (\p)
at which it is measured. Equating the decay time of the
Brillouin phonons rg=(7Avg)~! [28] with the decay dis-
tance from Egs. (8), 75=(2k31)71, gives I'=(8m) '\4vp. For
vp=~50 MHz measured at A\3=0.5893 um [32], the phonon
viscosity is ['=6.9X 10~ m2/s. Lastly, the strength of the
Bragg grating imprinted onto the waveguide, An, cannot
be said to have any typical value, but can take vastly dif-
ferent values in different waveguides.

Waveguides can have significantly different optical and
acoustic properties than the bulk [35,36,38—45]. This is
partly due to variations in the transverse cross-section of
the light intensity and partly due to the composite nature
of fibers—interfaces between the core and cladding are es-
pecially sensitive to opto-mechanical affects and can also
absorb acoustic energy. For example, [39,40] measured
the contribution of electrostriction to the Kerr effect for
linear light in an optical fiber at low frequencies
(XesNes/ /3?). This factor is obtained by eliminating the time
derivatives in Eq. (3¢) and substituting the acoustic defor-
mation w(2) = (\s/ B2)(Ju|?+|v|?) back into the light propa-
gation [Eqs. (3a) and (3b)]. Reference [39] found electros-
triction to be equal to 19% of the fast (mainly electronic)
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contribution to the Kerr effect [27(wy/c)?/kolxs [39], or
16% of the total Kerr effect, and [40] found different val-
ues for different fibers, using unpolarized light, including
electrostrictive Kerr contributions a few times larger. By
comparison, for bulk fused silica and linear polarized
light at the wavelength of A\y=0.8 um, using the (typical)
material coefficients above, the electrostrictive contribu-
tion to the Kerr coefficient is xeshe/82~0.46 X 1078 s?/g,
and the fast contribution to the Kerr coefficient is
[2m(wy/c)?/kglxs=1.53x 1078 s2/g, giving an electrostric-
tive contribution of 30% of the fast nonlinearity or 23% of
the total Kerr effect. At the wavelength of \g=1.55 um,
Xes)\es/ﬁfzo.24>< 108 s?/g, and the fast contribution to
the Kerr coefficient is [27(wq/c)?/kg]x,=0.75x 1078 s2/g,
giving an electrostrictive contribution of 32% of the fast
nonlinearity or 24% of the total Kerr effect. In this in-
stance, the expected contribution of electrostriction to-
ward the Kerr effect at low frequencies in bulk fused
silica is not so far from—in fact, surprisingly close to—the
values measured in fibers. This is a confirmation of the
qualitative and quantitative accuracies of the model
herein.

3. LAGRANGIAN, HAMILTONIAN, AND
CONSERVED QUANTITIES

The Bragg—Brillouin—Kerr system (3) can be written in
terms of a Lagrangian density in the limit in which pho-
non viscosity vanishes, I'=0,

i i i
L= §k6(u*ut —uu;) + gk(’)(v*vt - vvy) + E(u*uz - uu})

2m(wo/c)? | xs

i
- —*v, —vv)) + ku'v + K'uv* + —(|ul*
S, v} | 5
Xes
+ o) + xalulPo? | + =7 = Bord) + Xes(ul* + [v[)r,
2N s
Xesﬁs i - 5 .
+ Y 5[(wuwu,t - wuw;,t) + (w:wv,t - wvwz,t)]
0/Nes
9 .
XesBs . .
+ RN 5[(wuwu,z - wuwu,z) - (wvwv,z - wva,z)]
0/'es

*+ Xes exp(_ Zlkoﬁst)(u*ku + uv*wv) *+ Xes exp(zlkoﬁst)

XU vw, + uvw,). (7a)

Here we have introduced a potential for the slowly vary-
ing phonon field,

r(z,t)Ef wo(z',t)dz’, (7b)

0

where z, is an arbitrary constant. A Hamiltonian H can be
derived from this Lagrangian. It is a conserved quantity,
and three additional conserved quantities exist; the con-
served quantities are the Hamiltonian H, momentum P,
photon energy N (also called the number of photons), and
material mass M,
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Fig. 2. (Color online) Quiescent (zero velocity, 8=0) GAS, with
frequency in the middle of the bandgap, @ = 7/2. The physical pa-
rameters are typical of bulk fused silica, and the Bragg coeffi-
cient is k=90 cm~!. The top part of the figure shows the ampli-
tude of the envelope u of the forward-moving electromagnetic
wave, the middle part shows the envelope v of the backward-
moving wave, and the bottom part shows the acoustic field (ma-
terial density). Solid lines are for the magnitudes of the ampli-
tudes, dashed lines for the real parts, and dotted lines are for the

imaginary parts.

M=Aj wodz, (8a)
n(wo)2 *
N= Af (ul? + vz, (8b)
4 .
n(a)O)2 - « . 4 Xes
P=- —(W'u, —uu, +v'v, —vv,) + ——r,r
477(,00 . 2 )\esk(/)
Bidky i

+ %—E(KBrill,zKBrill ~ KBrill zKBrill + ~Brill & Brill
OXes)\es

= Loy Leein) (d2, (8c)
n(w0)2 J\‘” ( * s ¥ *) (

= - —(w'u, —uu’ —v'v, +vv’) - (k
dmogky ) .| 2 z z z z

2/77'((‘)0/0)2 Xs

+ Kpan) U — (K + kppip) w0” = ———— | —(Ju|* + v]*)
ko | 2

X@S
+xx|u|2|v|2} r 2

(7 + B2r2) = xes (|l + [v[P)r,
es

2 .
_ 2k—§( KBrill 2 LBeitt = KBritt 2 LBrill — KBrill CBrill.2
OXes)\es

+ KpinLBrinz) (A2 (8d)

Here A is the area of the transverse cross-section of the
guided mode. Actually, the most general conserved quan-
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tity corresponding to the invariance of the system with re-
spect to an additive constant in r(z,t) is not as in Eq. (8a),
but [”, r.dz (with a multiplicative and an additive con-
stant). Because the reference density wg in our model
goes to zero at plus and minus infinities, we can define M
as in Eq. (8a) without fear of divergence on an infinite do-
main. Note that H in Eq. (8d) is not all the physical en-
ergy in the system, but excludes a constant (IV, the energy
in the electromagnetic field) that does not affect the dy-
namics. If phonon viscosity is nonzero, the acoustic fields
decay. The photon energy (or number of photons) N and
the mass M remain constants of motion in the presence of
phonon viscosity, but the momentum P and Hamiltonian
H decay.

4. GAP-ACOUSTIC SOLITONS

If the Brillouin fields (w, ,w,) and phonon viscosity (I') in
Eqgs. (3) are neglected, there is a family of GAS solutions
[20],

u(z,t) =\ k(1 + Bky)a sin Q sech({ sin @ — ;Q)exp[iﬁ(g)

—ircos Q], (9a)
v(z,t) = = KA1 - Bky)a sin @ sech({ sin @

+ ;Q) exp[i6({) —iT cos Q], (9b)

Nes  YIxl(4]al?sin’ Q

wiz) = B2 - B?cosh(2 sin @) +cos Q’ ©0)
where
2 m(wyfc)?
00) = Bl Y (4laf)| ———x,
0
Xes)\es 1 .
+ o |tan” [tanh(¢ sin Qtan(@/2))
(10a)
27(wplc)? ’ Yohow |12
a= (k—O{Xx + xsP[1 + (BR)TH + ZYZW) ,
(10b)
7= y«l(t/k — BRez), (10c)
{=«lz - Bt), (10d)
y=1[1-(Bko)*T"?, (10e)

and « must be real-valued. In the quiescent limit (8=0),
these are also solutions for nonzero phonon viscosity (I
>0). The solitons (9) and (10) have two essential intrinsic
parameters: @ and B. The soliton parameter € resembles
a similar parameter in the family of the ordinary gap soli-
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tons; it takes values 0 <@ < 7 and determines the soliton
width [full width at half-maximum equals cosh™!(2
+cos @)/(y|x|sin @)], the peak intensity, and the fre-
quency [in the rest frame, (y|«|/k{)cos @]. The frequency
in the frame moving with the soliton is not generally
equal to (|«|/kg)cos @ because the group velocity in a me-
dium is not equal to the speed of light in vacuum (kgc
#1). The soliton velocity B may take any value up to the
group velocity of light in the medium (|8|<1/k;), except
for a range of slightly supersonic gap solitons (/g
E[Bs, Ber)), where

gL XK B
=4 —
G2k K X5 2

\/( Xe + X 3)2 Ro  2Xeshes! (R))?
(e = xs)2(kp)? 2 2m(wplc)®  Xe—Xs

(11)

At the typical coefficients given above for bulk fused
silica, the critical velocities at the two frequencies are
Ber(0.8 um)=6.46 km/s=1.103; and Ber(1.55 um)
=6.50 km/s. Bright supersonic as well as subsonic soli-
tons exist if the critical velocity S, is less than the speed
of light in the medium, which will hold in all but very ex-
otic circumstances. (The equations suggest the existence
of a dark soliton [46] in the supersonic region B, <B< B,
but we choose to limit this paper to bright solitons.)

The GASs (9) and (10) reduce to standard gap solitons
[7] in the limit of zero electrostriction (y,s=\,;=0). There
are resemblances to solitons in the Zakharov system
[47-52], in that both contain dispersive equations coupled
to a non-dispersive equation, interaction with the non-
dispersive field changes the amplitude of the soliton, and
the non-dispersive field takes a profile the same shape as
the soliton intensity; furthermore, like GASs, Zakharov
solitons have different dynamics above and below the ve-
locity of the non-dispersive field, with instabilities for the
faster solitons. Below the speed of sound, the accompany-
ing phonon pulse is a compression, and above the speed of
sound the phonon pulse is a rarefaction. The amplitude of
the acoustic pulse goes to zero when the soliton velocity
approaches the speed of sound B, from below; the ampli-
tude of the acoustic pulse goes to infinity when the soliton
velocity approaches the critical velocity B, from above.
Physically, at slightly above the critical velocity, lineariza-
tion of the refractive index against the material density
will not be a valid approximation, and physical GASs will
not exist in that range without modification.

Figure 2 shows a quiescent GAS with a soliton param-
eter @=m/2, material properties typical of fused silica,
and a wavelength of 0.8 um. Figure 3 shows a similar
GAS, but with velocity ten times the speed of sound. Fig-
ure 4 shows a GAS with velocity equal to half the group
velocity of light in the medium.

Note that there are no purely optical solitons without
an acoustic component; purely acoustic pulses are pos-
sible. In the case of zero phonon viscosity I'=0, these have
the form u=v=0, while the phonon field w is a combina-
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Fig. 3. (Color online) GAS with velocity ten times the speed of
sound B=10B,=59 km/s, and frequency in the middle of the
bandgap, @=7/2. The physical parameters are typical of bulk
fused silica, and the Bragg coefficient is k=90 cm™'. The first part
of the figure shows the amplitude of the envelope u of the
forward-moving electromagnetic wave, the middle part shows
the envelope v of the backward-moving wave, and the bottom
part shows the acoustic field (material density). Solid lines are
for the magnitudes of the amplitudes, dashed lines for the real
parts, and dotted lines are for the imaginary parts.

tion of two arbitrary functions, w(z,¢)=w,(z-B) and
w_(z+Bst), which represent forward- and backward-
moving acoustic waves.

5. GAS ENERGY, MOMENTUM, PHOTONS,
AND MASS

A lot of physics can be inferred from the conserved (or
quasi-conserved for finite I') quantities M,N,P,H for a
GAS. The soliton’s mass, photon energy (or number of

x10™*
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v [statvolt/cm]

_o} 4

3;
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IS

6 4
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Fig. 4. (Color online) GAS with velocity half the group velocity
of light in the medium B=0.5/k}=1.03 X 108 m/s, and frequency
in the middle of the bandgap, @ =7/2. The physical parameters
are typical of bulk fused silica, and the Bragg coefficient is «
=90 cm™'. The top part of the figure shows the amplitude of the
envelope u of the forward-moving electromagnetic wave, the
middle part shows the envelope v of the backward-moving wave,
and the bottom part shows the acoustic field (material density).
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photons), momentum, and energy are obtained by substi-
tuting the soliton formulas (9) and (10) into Eqs. (8) to ob-
tain

Nes
MGAS—IBS 7 SA4la*Q, (12a)
n(wy)? )
Ngas= A4|C¥| Q, (12Db)
n(wo)2 , ol .
Pgas= 2 A(Bkg)vIk|(4]af?)| sin @
7T(.UO
271-(w0/c)2 A'eSXeS
2
+ (4]af )72( Xt oy )(sm Q
eSXeS/(k )
-Qcos Q)+ (4|a|2)w(sm Q- Q cos Q)}
(12¢)
n(a)o) 9 9
Hgas= TA7|K|(4\01| )] sin @ + ¥ “(sin @ - @ cos Q)
2m(wy/c)*
= o —————{xsV[1 - 4(Bk()* - (Bko)*] + x: ¥ 2}

ko

X(sin @ — @ cos Q) + |a|2

Xes)\es |: - ZB.E + 6B2
Bi-B B-P

+ 4(,8k(’))2y2] (sin@-Q cos Q) (. (12d)

Recall that A is the area of the transverse modes of the
fields in the waveguide; set it to unity for M, N, P, H per
unit area. There is an implicit dependence on the GAS ve-
locity B via the GAS amplitude factor . Note that the de-
pendence on the parameter @ is quite simple. In Eq. (12¢)
for the soliton momentum, the first two terms on the right
hand side are the momentum carried by light, and the
third term is the momentum in the acoustic field.
Figures 5-8 show the conserved quantities over the full
range of soliton velocities B for a specific soliton param-
eter @=m/2, for which the solitons are in the middle of
the bandgap. The coefficients are those of bulk fused
silica, as detailed in Section 2. Each of Figs. 5-8 shows
what the dependence on velocity would be without elec-
trostriction (dependence of the refractive index n on the
density w) and then the conserved quantities for the soli-
tons using the physically correct (nonzero) dn/dW. The de-
pendence of the conserved quantities on @ is much sim-
pler than the dependence on B, with different values of @
generally making for moderate quantitative but not quali-
tative differences in the plots versus soliton velocity. The
mass M and photon energy (or number of photons) N in-
crease linearly with the soliton parameter @; the momen-
tum P and Hamiltonian H are the sum of two functions of
B, each multiplied by either sin @ or (sin @ - @ cos Q).
Figures 5 and 6 plot the mass and number of photons (per
cross-sectional area) in bulk silica. The photon energy per
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Fig. 5. (Color online) Mass, or integrated material density

variation, per cross-sectional area (M) of GASs in bulk silica with
physical parameters as given in the text. The velocities (8) range
from zero up to the group velocity of light, and the frequencies
are in the middle of the bandgap, @==/2. (a) shows what the
mass would be, were there no dependence of the refractive index
on the material density. (b) Soliton mass with physical values of
the electrostrictive constants.

cross-sectional area N is positive definite, but the mate-
rial mass M is positive for subsonic GASs and negative for
supersonic GASs. Below the speed of sound B<p;
=5.9 km/s, M, P, and H increase, while N decreases. The
conserved quantities approach finite values as the soliton
velocity approaches the speed of sound from below. Bright
solitons do not exist between the speed of sound and the
critical velocity B.=6.46 km/s=1.108,. The conserved
quantities are infinite at just above the critical velocity
(i.e., as the soliton approaches the critical velocity from
above). Above the critical velocity (8> f.), the soliton
mass M is negative, and it decreases in magnitude (in-
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Fig. 6. (Color online) Photon energy (or number of photons) per
cross-sectional area (N) of GASs in bulk silica at light wave-
length of 0.8 um. The velocities (8) range from zero up to the
group velocity of light, and the frequencies are in the middle of
the bandgap, @ =7/2. (a) Photon energy N, if there were no de-
pendence of the refractive index on the material density. (b) The
soliton’s photon energy N, with dn/dW=0.2 cm?/g.
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Fig. 7. (Color online) Momentum per cross-sectional area (P) of
GASs in bulk silica at wavelength of 0.8 um. The velocities (B)
range from zero up to the group velocity of light, and the frequen-
cies are in the middle of the bandgap, @ =7/2. (a) Momentum, if
there were there no dependence of the refractive index on the
material density. (b) Soliton momentum with physical values of
the electrostrictive constants. (¢) Momentum in the light (solid
line) and sound (dashed line) separately.

creases in value) as a function of velocity. Above the criti-
cal velocity, the photon energy (also called the number of
photons) N in the soliton decreases with velocity. The mo-
mentum of supersonic GASs first decreases with veloci-
ties above the critical velocity due to the change in mass
of the soliton. Then, near B=9.34X10%° m/s=158p3,
=v,/221, the momentum increases, when the momentum
in the photons is more than the momentum in the
phonons. At even higher velocities, 8=1.68X10° m/s
=0.81vg, the momentum decreases again because the
positive self-phase modulation decreases the intensity of
the GAS. The Hamiltonian of supersonic GASs first de-
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Fig. 8. (Color online) Hamiltonian per cross-sectional area (H)
of GASs in bulk silica with the typical physical parameters as
given in the text. The velocities (8) range from zero up to the
group velocity of light, and the frequencies are in the middle of
the bandgap, @ =7/2. (a) Hamiltonian, if there were no depen-
dence of the refractive index on the material density. (b) The soli-
ton’s Hamiltonian energy with nonzero values of the electrostric-
tive constants, x,; and \.
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creases quickly, then flattens out, and at close to the
group velocity there is a moderate increase and then a
sharp drop.

6. SUDDEN ACCELERATION AND
DECELERATION

Some predictions about GAS dynamics can be made based
on the quasi-conserved quantities, given in Egs. (8) and
illustrated in Figs. 5—8. The momentum Pg,g is especially
critical. If a soliton experiences a supersonic instability—
the instability of the GAS when the velocity is larger than
the speed of sound (see [20])—the system following the in-
stability cannot have more Hamiltonian, momentum, or
photon energy than the original soliton. Because some of
the faster-moving solitons have less momentum than the
slower-moving solitons (and not significantly less Hamil-
tonian either), a slow-moving soliton may decay into a
fast-moving soliton. And if a fast-moving soliton experi-
ences an instability, the large momenta contained in slow
but non-quiescent solitons may keep the soliton from de-
caying by slowing down to anything more than velocity at
virtually zero.

The supersonic instability leading to the abrupt accel-
eration of a GAS can be seen in Figs. 9-12. Both simula-
tions assume that the medium is fused silica, with a cen-
tral wavelength of 0.8 um, and a Bragg scattering
coefficient of xk=90/cm (which is relatively large, making
the GASs shorter and more intense). The first simulation
is for a GAS with @ =7/3 and an initial velocity ten times
the speed of sound, 8=108,. The instability takes hold,
and the result is a GAS with the same @ and velocity 8
=1.2X10" m/s=16008,=0.046v,. A density variation is
left behind when the new fast-moving GAS runs away.
You can also observe high-frequency acoustic waves w,,
w, developing initially before the GAS accelerates, then
getting left behind, and also visible is a tail (or wake) of
high-frequency acoustic waves following the fast-moving
soliton. In the second simulation displayed, the initial
conditions are the same, except that the @-value of the

02 015 o4 -0.05 0/ 005/

01 015 g2 0
Z[em]

Fig. 9. (Color online) GAS in fused silica with initial velocity ten

times the speed of sound, 8=108,, and @=m/3. Following real-

ization of the supersonic instability, a much faster GAS (B

=1600p,) is produced, and a slowly decaying density variation re-

mains behind.
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Fig. 10. (Color online) High-frequency acoustic (Brillouin)
waves interacting with light in the run depicted in Fig. 9. The
Brillouin waves are initially zero and grow due to excitation by
the light. When the GAS suddenly speeds up, some Brillouin
waves are left behind, and the now faster-moving soliton pro-
duces its own wake.

initial GAS is 7/2. After the instability, some light is
emitted left and right to dispersive (non-soliton) radia-
tion, and the remaining light reforms a GAS with @
=0.257 and @, and velocity B=1.2X107 m/s=20008,
=0.058v,.

The supersonic instability leading to the sudden decel-
eration of a GAS to zero velocity can be seen in Figs. 13
and 14. As above, the medium is fused silica, the central
wavelength is 0.8 um, and the Bragg coefficient is «
=90/cm. The initial soliton has @==/3 and velocity B
=6.9%x10° m/s=v,/300=1174;. The instability takes hold
and stops the soliton. There are 5 orders of magnitude be-
tween the speed of sound and the speed of light, so the
light oscillates many times within the interaction region
while the low wave number acoustic wave develops and
expands outward relatively slowly. The high wave num-

o =N

JuP+vE [sV¥em?)
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wiglem?)

z : t[ns]

04 03 02 .
' 01 02 03 g4 0
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Fig. 11. (Color online) GAS in fused silica with initial velocity
ten times the speed of sound, 8=108,, and @ =7/2. After the su-
personic instability, about half of the light escapes as a dispersive
(non-soliton) radiation, and the remaining light reforms a much
faster GAS (velocity 8=20008,) with @=0.257. A slowly decaying
low-frequency density variation is left behind.
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Fig. 12. (Color online) The high-frequency acoustic (Brillouin)
waves interacting with the light in the run depicted in Fig. 11. As
in the prior simulation, the Brillouin waves are initially zero and
grow due to excitation by the light. When the GAS suddenly
speeds up, some Brillouin waves are left behind, and the now
faster-moving soliton produces its own wake.

ber (Brillouin) phonons (w,,w,) also develop, but play a
very minor role in this instance.

7. CONCLUSIONS

We derived a set of propagation equations to describe
light in a nonlinear fiber with a Bragg grating, coupled by
electrostriction to low-frequency (sound) and high-
frequency (ultrasonic) acoustic waves. Forward- and
backward-moving light in the vicinity of the bandgap can
interact with acoustic waves of low wave numbers—in
which case the interaction is generally referred to as
electrostriction—or high wave numbers, twice the wave
number of light—in which case the interaction is called
Brillouin scattering.

There is a localized structure in this system, a gap-
acoustic soliton (GAS), for the case when Brillouin scat-
tering may be neglected and when phonon viscosity is
zero. GASs exist in the same bandgap as standard gap

ui2+IvE [sViiem?]
=N

7

0.0 04 0

0

Z[em]
Fig. 13. (Color online) GAS in fused silica with initial velocity of
B=6.9x10°m/s=v,/300 and @=m/3. Following realization of
the supersonic instability, the GAS comes to a stop while emit-
ting acoustic waves to the left and to the right.
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Fig. 14. (Color online) High-frequency acoustic (Brillouin)
waves interacting with light in the run depicted in Fig. 13.

solitons (without electrostriction). GASs exist at velocities
from zero up to the group velocity of light in the medium,
except for a velocity gap from the speed of sound, just be-
low which the phonon component of the GAS approaches
zero, up to a critical velocity (which is about 10% higher
than the speed of sound for the case of fused silica), just
above which the acoustic component of the GAS is asymp-
totically large.

Electrostriction introduces a “supersonic” instability
for GASs moving faster than the speed of sound [20]. In
most cases, the result of the supersonic instability was
the re-formation of a new GAS at a different velocity. By
analyzing the GASs’ conserved quantities—especially the
momentum, which due to the acoustic parts of the soliton
is much higher at many low velocities than at many high
velocities. We predicted that the post-instability GASs
may in some cases have velocities much higher than that
of the original soliton. In other cases, the resulting soliton
may have velocity almost equal to zero. These predictions
of the abrupt acceleration and drastic deceleration are
confirmed by a direct numerical simulation of the system.

For a waveguide of fused silica (i.e., glass), the momen-
tum and acoustic effects dominate the solitons’ behavior
when the velocity is less than approximately 0.5% of the
group velocity of light. The usual gap soliton model, in
which the dependence of the refractive index on the ma-
terial density is neglected, may be accurate when the soli-
tons are moving at more than 1% of the speed of light, but
at slower velocities the GAS model is essential.

APPENDIX A: PROPAGATION EQUATIONS
FOR LIGHT AND SOUND

Light propagation is governed by the Maxwell’s equa-
tions, and sound propagation in glass can be described by
the wave equation with a viscosity term. Light and sound
interact via electrostriction. For optical gap solitons, light
is centered at one frequency, but the direction can be ei-
ther forward or backward; the electromagnetic field’s dy-
namics can then be described by two separate equations:
one for the forward-moving light and one for the
backward-moving light. The acoustic fields that interact
with this light can be of high or low wave number. The
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high wave number acoustic fields can be either forward-
or backward-moving. The low wave number acoustic field
is centered at wave number zero. The acoustic field for
this system can then be broken down into three equa-
tions: two for the high wave number phonons and one for
the low wave number phonons.

1. Electromagnetic Field Equations with Phonon
Perturbations

Starting from the Maxwell’s equations, we can consider
an isotropic medium without free charges, currents, or
magnetic polarization. Bragg and Brillouin scattering
from acoustic waves will be included as extensions of this.
The electromagnetic field and the linear and nonlinear
polarization of the medium obey

V- (E + 477P1inear + 47TPNL) = 0, (Ala)
V-B=0, (A1b)
10
VXE=--—B, (Alc)
c ot
10
VXB=- _a_t(E + 47Pipear + 47PNL) - (A1d)
c

The dependence of polarization P=Pj; ... +Px;, on the
electromagnetic field E,B is taken to have a part which is
linear in the electromagnetic field, with an additional de-
pendence on the density of the material,

E +47P}0 = D = n%(w,w)E, (A2a)

where the expression on the right hand side, relating the
electric displacement to electric field via a frequency-
dependent index of refraction, holds in the frequency
space as well as in real space for monochromatic fields.
We have indicated a dependence of the refractive index n
on the density of the material w. Part of the polarization
arises from a third-order Kerr nonlinearity,

Py.= Y E-E)E. (A2Db)
Fourier transforming the time dimension to the frequency
space, and assuming isotropy, Coulomb’s [Eq. (Ala)] and

Ampere’s [Eq. (Ald)] laws are

0=n%(w)V -E(x,0) +47V -Py.(x,0), (A3a)

w
0=V X B(x,0) +i—[n%(0)E(X,0) + 47Px(X, w)].
c
(A3b)
Taking the curl of both sides of Faraday’s law [Eq. (Alc)],

and inserting the above expressions, gives—after some al-
gebraic manipulation—the wave equation,
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n?(w)w? d7e?
0=| V?+ ——5— |E(x,0) + —5Pyi(x,0)
c c
4
+ 5 \% [V . PNL(X, w)] (A4a)
n*(w)

A Fourier transform in the spatial dimensions gives the
wave equation in momentum space,

n?(w)w? 47’
0=|k>- 2 |Edk0) - ——) Puk,0)

CZ

- K[k Py k, w)]} . (Adb)

n?(w)w?

If the nonlinear polarization is transverse, which is the
case for the Kerr nonlinearity (A2b), and the electric field
is transverse, the last terms on the right-hand sides of
Egs. (A4) vanish. The basic optical gap soliton has one
(nontrivial) spatial dimension, and for light of one polar-
ization, we reduce the mathematical model to

|: &P n2(w)w2:|
=|—+——— |E(z,0) +

922 c2

d7re?

PNL(Z’ (1)), (A5a)

(,‘2

or, equivalently,

2 02

n%(w)w? d7e?
0=|r2- . E(k,0) - Pri(k,w). (A5b)

Considering the wave equations (A5) in the vicinity of fre-
quency wg and wave number k(, completing the square for
the quadratic equation, Taylor expanding in the small
terms, and truncating we find

n%(wy + 6w)(wy + dw)?

02

0= [(ko+ k)2 -

4:77((1)0 + 5‘0)2PNL(kO + 5k,w0 + 5&))
- ) E(ko + 5]@,(1}0
4 E(k0+5k,(x)0+5w)

+ dw), (A6a)

0= l (ko + Ok)
n(wy + w)(wy + w) \/1 4 @ B
" ¢ * [n(wy+ w)]* E (ko
+ 6k, + Sw) (A6b)

n(wy + w)(wg + w)
=% (kog+ Ok)E(ky+ Sk, wy + Sw) + ———
c

27m(wg + w)
————Py1(ko + kw0 + Sw) + -+ (A60)
n(wy + w)c
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n(wo) wg

= T SkE (ko + ok, wy + dw) + ( T k())E

d (n(o)o 2mwy/c
oF + Pri(kg+ Sk, wg+ Sw) + -+ .

n(wo)
(A6d)

Now, Fourier transforming back to real space, and includ-
ing a non-uniformity in the index of refraction, partly
fixed [i.e., arising from An(z)] and partly as a function of
the material density [i.e., arising from (d/dW)n(z,t)], we
obtain

d d n(w()yza W)(U()
0=ik)g—EQEt)ti—E+|——————Fk|E
Jat dz c
21m(wy/c)?
+———Pni(2,0) + - (A7a)
ko
Jd Jd (O [O) on
=ikg—E@z,t)ti—E+| —An(z) + ——=W |E
ot 0z c c oW
27m(we/c)?
+ k—PNL(z,t) + o (A7b)
0

where ko=+n(wp)wo/c is the phase velocity and k|
=(d/dw)[n(w)w/ c]w=w0 is the reciprocal of the group veloc-
ity (vy). Where arguments of the index of refraction are
not given explicitly, they are based on an average value at
a baseline material density W. The result will be an equa-
tion for a SVE about a carrier wave with wave vector
(k() ) (1)0) .

Equations (A7) apply to any quasi-monochromatic elec-
tromagnetic field with any nonlinearity. For the optical
gap soliton, there is one frequency of light in the system,
and light may be traveling forward or backward. The elec-
tric field £ may then be written as two SVEs about carrier
waves with frequencies w=wy and wave numbers k= +£k,
==+n(wp)wy/c. The acoustic fields that may interact with
these light fields are those centered at wave numbers &
=0 and +2k. If the speed of sound, which we refer to as
Bs, is constant, then the frequencies of the acoustic waves
are simply the speed of sound (B;) times the wave num-
bers. We also allow the index of refraction to have a small
component at half the wavelength of light, which will act
as a Bragg scatterer,

E(z,t) = u(z,t)expli(koz — wot)] + v(z,t)exp[ - i(koz + wot)]
+u(z,t) exp[-i(kyz — wot)] + v(z,t) expli(koz
+ wgt)], (A8a)

W(Z9t) = wu(Z’t)eXp[ZikO(z - Bst)] + wv(Z,t)eXp[_ 2lk0(2
+ Bst)] + w,(2,t) exp[ - 2iko(z - Bit)]
+ w,(z,8) exp[2iky(z + Bit)] + w(z,t), (A8b)

An(z) = An cos(2kqz). (A8c)

Putting the fields in terms of SVEs [Eqgs. (A8)] into the
general dynamical equations for light [Eq. (A7b)], while
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taking the nonlinearity to be Kerr [Eq. (A2b)], and sepa-
rating the different frequency and wave number compo-
nents gives

27m(w/c)?
0 =ikju, +iu, + kv + ————3x D (|ul? + 2lv[P)u + xos[wou
0
+ exp(- 2iko Bt )w, v + exp(2iky Bt )w,v], (A9a)
27(wyfc)?
0 =ikjv, —iv, + K'u + ————3xP2|ul? + |v[Hv + xos[wov
0
+exp(2ikoBit)w,u + exp(— 2iko Lt )w,u], (A9Db)
where
[OX) An (O on
=—— y=——. A10
RS9 Xes= (A10)

This assumes that the speed of sound S; is small enough
so that the frequencies 2kyB3, are within the frequency
spread of the SVEs u and v. These are the equations for
the dynamics of the SVEs of light.

2. Acoustic Wave Equations with Electrostrictive
Perturbations

To complete the dynamical system, we need equations for
the dynamics of the density of the material, i.e., acoustic
waves. In silica glass, the speed of sound has a very weak
dependence on the wave number or frequency, and acous-
tic waves are also subject to viscosity [32]. The depen-
dence of the index of refraction on the density of the ma-
terial creates electrostriction, a force (pressure gradient)
attracting the material to regions of a higher light inten-
sity. The evolution equation for the density is [27,53]

0 aZW( t) - BAVEW v A”W(E( £)?)

=—Wx,t) - -I'— +— X

at> s Jt 2 T
(Al11)

where W(x,#) is the density of the material, E(x,?) is the
amplitude of the electric field, V2=d%/ 2+ d/ dy%+ >/ >
is the Laplacian, B, is the speed of sound, I" is a phonon
viscosity coefficient, and \,; is an electrostrictive coeffi-
cient. We will focus on single-mode waveguides, in which
any transverse dynamics are trivial. This reduces the sys-
tem to 1+ 1-dimensions,

Nes & ,
r W+ ——(E(z,t)%).
It 02> 2 az2< @07

P 5 &
= EW(ZJ) - BSQW_
(A12)

Since we will be dealing with optical gap solitons, light in
the system is approximately monochromatic and may be
moving forward or backward, as expressed by Eq. (A8a).
Electrostrictive response times are on the order of 10 s
[27]. This is several (~6) orders of magnitude slower than
the temporally fast-varying terms («<u?,v2,u*?,v*?) for
visible or near infrared light, so these may be dropped
from the averaged square field in the phonon equation
(A12),
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0= th - IBZWZZ - FWtzz + )\es[‘u|2 + ‘U|2 +uv” exp(2zkoz)
+u'v exp(- 2ikg2)],,, (A13)

where subscripts denote partial derivatives. Since u(z,t)
and v(z,t) are SVEs, the phonons’ source terms will be
centered at wave numbers k=0, 2k,, and —2k,. Thus light
in the optical gap solitons will interact by electrostriction
only with phonons around those same wave numbers,
consistent with Eq. (A8b). The Fourier transform of the
phonon equation (A13) to the momentum-frequency space
is

0= — W?W(k,w) — i 0k T'W + E2B2W — k2N (F{|u|? + |v[2(k, ©)
— B2\ Fluv Wk - 2kg, w) — B2\, Flu vk + 2k, ).
(A14)

Since u and v are SVEs, F{|u|?+|v|?}(%, ») will only be sig-
nificant in the vicinity of 2 ~0, FHuv*}(k -2k, ») will only
be significant at k= 2k, and Hu*v}(k+ 2k, w) will only be
significant at k= -2k . Substituting the sum of SVEs [Eq.
(A8Db)] into the general phonon equation (A14), and sepa-
rating into the different (and, in the k-space, non-
overlapping) regions,

0 = — Wwy(k,w) — ik Twq + k2 B2wq — k2N Flul? + [v]?}

X(k5w)> (A15a)

0 = (@ = wg)2w,, (b, w) + iT(w — wy)(k — 2ko) 2w, — (&
= 2k0)2B2w, + (k — 2k o)\ Fluv }(k - 2kg, 0 — wp),
(A15b)

0 = (0= wp)2w, (k) + iT(0— wo)(k + 2ko) 2w, — (k
+ 2k0)2ﬁ3?wv + (k + 2k0)2)\es.7:{u*l)}(k + 2k0,w - wo) .
(A15c¢)

Here w,(k,w)=W(k-2ky,0—wg), w,(k,w)=W(k+2k),o
—wg), and wy(k,w)=W(k,w) are SVEs (in contrast to W,
which is not a SVE).

a. Slowly Varying Phonon Field

Taking the phonon equation (Al5a), which is for the re-
gion near the (k,w) origin, or the slowly varying part of
the phonon field, and inverse Fourier transforming it to
real space, we obtain

0= wO,tt - B.zwo,zz - 1_‘wO,tzz + )\es(‘u|2 + ‘U|2)zz~ (A16)

This is the most useful form of the governing equations
for low wave number (long-wavelength) acoustic waves.

b. Brillouin Scattering—High-Frequency Phonons

Now consider Eq. (A15b), the dynamics of the part of the
phonon field with wave numbers close to £=2k,. Complete
the square, expand the root into a Taylor series, assuming
that the nonlinear term is smaller than the linear terms,
and drop higher-order terms to obtain
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0=[w+2i(ky+Ek/2)°T + 0, + 2(ky + k/2) B{1 - (1/2)[ (ko
+RI2)T/ B, w, (k) T (ko + kI2)\ s B: \ Fluv '}k, »
+wy) + . (A17)

Choosing wo=2koB,[1-(1/2)(ko['/B,)?], and dropping the
wave-number-dependence of the damping, higher-order
dispersion, and a self-steepening-like term, we obtain

0={w+2ik2I £ kB,[1-(3/2)
X (kol'/B)*Thw (R, ) F kokesBy Fluv ™}k, 0 + 2koBi[1
—(1/2)(RT/B)?]) + -+ (A18)
Inverse Fourier transforming this to real space,

0=iw,,+i(2kDw, ¥ iB,[1-(3/2)

0)\es

X(kol/B)* W, . + exp{F 2ikoB1 - (1/2)

X (kol'/ By)*TtH(wv™) + - ++ . (A19)

The positive sign corresponds to the equality for the field
w,. The phonon viscosity is generally a small perturba-
tion, so drop terms that are quadratic or higher in it,

O)\es

0=iw,, +iBw,,+i(2k{Dw, + exp(2ikoBt)uv”.

S

(A20a)

The corresponding equation for the Brillouin field moving
in the opposite direction (k=-2k) is

0)\33

0=iw,, - Bw,, +i(2k{Dw, +

exp(2ikyBt)uv”.

S

(A20Db)

3. The Bragg-Brillouin-Kerr System
Collecting the definitions of the SVEs of the electromag-
netic and phonon fields,

E(z,t) =u(z,t)expli(kyz — wgt)] + v(z,t)exp[— i(koz + wot)]
+u(z,t)"exp[-i(kgz — wot)] + v(z,t) expli(kyz

+ (l)ot)], (A2 la)

Wiz,t) =wo(z,t) + w,(2,t)exp[2iko(z — Bit)] + w,(z,t)exp[
= 2iko(z + Bst)] + w,(z,t) exp[— 2iky(z — Bst)]

+ w,(2,t) exp[2iky(z + Bit)], (A21b)

we get the dynamical equations,

27m(wp/c)?
0 = ikju, +iu, + kv + 3x B ([uf?+ 2[v[Pu + xes[wou
0

+ exp(- 2iko Bt )w, v + exp(2iky Bt )w,v], (A22a)

27(wylc)?
0 =ikjv, —iv, + KU + 3xP(2lul? + |v|?)v + xeslwov
0

+ exp(2ikoBt)w,u + exp(— 2iky LBt )w,u], (A22b)
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0= wO,tt - Bzwo,zz - 1_‘wO,tzz + )\es(‘u|2 + ‘U|2)zz,

(A22c¢)

0)\es

0=iw,, +iBw, , + i(2k2Dw, + exp(2ikyB,t)uv”,

S

(A22d)

RoNes
O=iw,,-iBw, .+ i(2kIw, + OTexp(2ik0Bst)u*v.

S

(A22e)
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