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Flat-phase loading of a Bose-Einstein condensate into an optical lattice
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It has been proposed that the adiabatic loading of a Bose-Einstein condéiE@lento an optical lattice
via the Mott-insulator transition can be used to initialize a quantum comfiDtelaksctet al, Phys. Rev. Lett.
81, 3108(1998]. The loading of a BEC into the lattice without causing band excitation is readily achievable;
however, unless one switches on an optical lattice very slowly, the optical lattice causes a phase to accumulate
across the condensate. We show analytically and numerically that a cancellation of this effect is possible by
adjusting the harmonic trap force constant of the magnetic trap appropriately, thereby facilitating quick loading
of an optical lattice for quantum computing purposes. A simple analytical theory is developed for a nonsta-
tionary BEC in a harmonic trap.
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[. INTRODUCTION scales ordinarily required for intraband adiabaticity. The
Experimental advances in manipulating and controllingstrategy is to counterbalance the switching on of the optical
Bose-Einstein condensat®ECs of dilute atomic gases has lattice with an appropriate change in the force constant of the
resulted in a remarkable series of experimgifs One the- trap. This strategy is shown to correct and prevent much of
oretical proposal for quantum computing using atoms as quthe quasimomentum excitation and resulting phase damage
bits is to first load the atoms that are in a BEC into an opticathat arises from the nonadiabatic nature of the switching.
lattice. Then, by varying the intensity of a laser used to form More specifically, the switching on of an optical lattice
an optical lattice the BEC will undergo a quantum phasepotential can divide a BEC into many individual pieces
transition from its BEC-like superfluid state to a Mott- where phase coherence is maintained across the whole con-
insulator staté?2]. This has recently led to a seminal experi- densate. This phase coherence can be seen by instanta-
ment by Bloch and collaboratof8]. neously dropping the lattice and looking at the momentum
In principle, starting with a BEC in a trap and turning on distribution through time-of-flight measurements. However,
an optical lattice of sufficient well depth in a sufficiently because of a spatially dependent change in the density and
adiabatic manner will prepare the Mott-insulator state. Inthus the mean field per well site, one can end up with a
practice, it is easy to turn on the optical lattice adiabaticallyquadratic phase dependence developing along the lattice di-
with respect to band excitatidexcitation from one band to rection if one does not load the lattice adiabatically with
anothey; however, it is substantially more difficult to turn on respect to quasimomentum excitatidds. Elsewherg6], it
the optical lattice adiabatically with respect to quasimomenhas been shown, using optimal control methods, that one can
tum excitation. The second, more stringent form of adiaba€ontrol the phase evolution to obtain a flat phase at some
ticity requires that the optical lattice be switched on slowlyfinal time by time varying the harmonic trap force constant
with respect to mean-field interactions and tunneling dynamef a confining externaltypically magneti¢ trap. Here, we
ics between optical lattice sites, and hence typically requireshow analytically and numerically that a complete cancella-
millisecondg[4]. We will refer to the first form of adiabatic- tion of the phase development is possible by appropriately
ity as “interbandadiabaticity” and the second form asn* adjusting the external trap.
traband adiabaticity.” The intraband adiabaticity condition  This paper will focus solely on one-dimensioriaD) lat-
has been demonstrated in one-dimensional lattices by Orzétes, considering only the dynamics of the BEC along the
et al. [5] and ultimately led to the pioneering experimental lattice, and will ignore effects transverse to the lattice. It
demonstration of the Mott-insulator transitip®]. When not  should be noted that the effects of transverse excitation will
otherwise specified, the ternasliabaticand nonadiabaticin show up on time scales inversely proportionaldg, the
this paper will refer to intraband adiabaticity. transverse trapping frequency, which is typically long com-
The goal of the present paper is to present a simple strapared to the times in the present paper. Work is now in
egy for remaining in the adiabatic regime while switching onprogress toward further extending these results to two and
the optical lattice much faster than the millisecond timethree dimensions. It is expectgd] that the squeezing of the
BEC into the transverse directions can also be treated using
the above method, namely, by an appropriate adjustment of
*FAX: 972-8-9344123. the trap in those directions.
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There have been a number of recent publications of botlite, which will serve as quantum bits. However, due to the
experimenta[8—10| and theoretical7,11] studies involving  nonlinearity of the equations, the condensate wave function
the loading of BECs in one-dimensional lattices, and the redevelops a phase that varies from lattice site to lattice site,
sulting dynamics. This paper is related to these publicationgvhen the optical lattice is not turned on adiabaticdHy.
but focuses explicitly on a means of quickly loading an op-Such a wave function can be represented by a superposition
tical lattice from a BEC for quantum computing purposes, a®f quasimomentum states, and a superposition of quasimo-
well as for improving experimental signal to noise in shortmentum corresponds to a higher energy state and thus cannot
time experimental studies of BECs. Note that we considepive rise to the Mott-insulator state. The problem we address
the regime where the density of the condensate is sufficientlis the elimination of this phase profile by adjusting the trap
large, so that the mean-field effects are not entirely neglistrength. In the following section, we analyze the evolution
gible. Experiments can be carried out in the truly dilute gasof BEC wave functions in harmonic traps, and consider the
regime where mean-field effects are negligibl®]. How-  effect of switching on the optical lattice. Finally, a closed
ever, reducing the condensate density to such low valueform is derived for the precise time dependence of the trap
would have to be carried out adiabatically, adversely affectstrength that will insure a flat phase for the wave function for
ing the time to load the optical lattice from the initi@lense¢  all times after the optical potential is fully turned on.

BEC. First, however, we transform the NLSEonlinear Schro

The outline of the paper is as follows: In Sec. Il, we dinger equationto dimensionless units—t/ty, X— Xx/Xq,
define the problem. In Sec. Ill A, a simple analytical theoryand — \/X—Oz,b, where for convenience we choosg
is developed for a nonstationary 1D BEC in a harmonic trap:mxg/zﬁ_ Performing these transformations, we end up
It is shown that a change in the density of the condensat@jith a dimensionless NLSE
induces a time-varying phase across the condensate that can
be eliminated by a change in the harmonic force constant of J
the trap. In Sec. Il B it is shown that the effect of switching iﬁzﬂ(x,t)=
on the optical lattice is to generate an effective renormaliza-
tion of the BEC and an analytical expression is obtained for
the modified harmonic trap force constant that compensates + U|l//|2) v, (2
for the effective renormalization. The analytical theory is in
excellent agreement with numerical simulations. A modified 2.2 . . .
version of the theory in the regime where the nonlinear in—Where the trap force constahl=wily, the field intensity

teraction is strong and hence the width of the condensat¥ ~ Voto/%, and the nonlinear coefficien =N Ugto/Xo,
differs from well to well is developed in Sec. Il C. Section such thaF all space, time, and energy guantities are now ex-
IV contains the conclusion pressed in units ofy, to, and%/ty, respectively15].

1 4 )
_Zé’_xz_l_K(t)X + S(t)Vcog (kx)

Il. DESCRIPTION OF PROBLEM I1l. ANALYTICAL THEORY
We consider a 1D BEC confined by a harmonic trap and A. Dynamics of a Thomas-Fermi BEC in an harmonic trap
governed by the Gross-Pitaevskii equation Consider a normalized Thomas-Fermi-type BEC wave

P function in a harmonic potential of the form

ih =)= (R+V+NUl )] ), (1) 3 e
= _ 2 Li(bx®+c) 2
_ 7 1 € (xIw) =<1
Pp(x,t) w w ()

whereK = — (#2/2m) (3% 9x?) is the kinetic energy operator, )
V is the external potential energy operator to be discussed 0 (xw)">1,
shortly, andNU, is the nonlinear atom-atom interaction
strength, N being the number of atoms andJ,
=4magh?/m is the atom-atom interaction strength that is
proportional to thes-wave scattering length,. The BEC is

where the widthw(t) and phase componenigt) and c(t)
are all assumed to be time dependent. We wish to analyti-
cally describe the evolution of this wave function in a har-

initially in the ground state of the trap potential and is there-"oMC trap with trap force constaht [we first consider the

fore stationary. An optical lattice is then switched on, havingcars\?vv,;’hege(t IS gﬁgitimr'enr;';?ﬁ’Vt;lﬁgtr;isr??ﬁitegﬁgVr\r,}?;'on
the effect of separating the BEC wave packet into a series JP (1), b(1), (1)

localized pieces. The potential energy operator therefor Ime]. Inserting the above wave function into the dimension-

A B 2 2 2 ess NLSE, we obtain, by considering separately the real and
takes the formV(x,t) = (1/2)Mwix“+ S(t) Vocos(kX), where  imaginary parts, two equations involving the three param-

w, is the trap frequencywhich may be time dependenk is etersw(t), b(t), andc(t). The imaginary part yields
the laser field wave numbey,, is the lattice intensity, and

S(t) is the function that switches on the laser for the optical 2 5
lattice and goes fron$=0 at the beginning of the ramp-on _ ﬂ( _ ZL) - 9( 1— 2X
of the optical potential t&=1 at the end of the switching on 2w w?a? 2 w?a?
time 6ts. In applications to quantum computing, one often

wants to create an optical lattice with one atom per latticevherea= 1 —(x?w?), and from the real part, we get

=w=wb, (4)
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In going to the last line, we expanded/in a Taylor series z00or

in x/w, truncating after the second order. Comparing sepa- 50l
rately the coefficients ox® andx?, we obtain the following
two equations of motion fob(t) andc(t): 1000

i
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FIG. 1. (@) Ve(w) with stationary pointw, and examples of

Taking a time derivative of Eq4) and using Eq(6), we find turning pointsw; and w, marked. The asymptotic curves corre-
spond to the contributions of the two dominant termsVinand

W= bw+ bw highlight the way changes in these terms effect the dynamims. (
V{ chosen such thaty=w, by adjustingK. (c) V, obtained from
1 3U (a) as a consequence of change in wave function normalization.
=—~—=+——Kw (d) AnewV( obtained from ¢) by also changindk to compensate
2w 4w for the change affected by the normalization change shown)in (
_ iv (W) ®) equals some other value, an oscillatory motionvodround
Tooow & the stationary pointv, will develop. The phase curvatute
will also oscillate withw obtaining its maximum value when
with the effective potentiaV,(w) defined as w(t)=w, and vanishing wherw approaches its turning
points,w; andw,.
V(W)= — LZJF EjL EKWZ_ (9) If an abrupt change in the trap force constant can be
4ws 4w 2 made K—K’, at the exact point in time whem(t)=0, i.e.,

. . . . whenw(t) is at one of its turning points, e.gv,=w,, then it
The time evolution of the wave function widih can there- is possible to change the potential, so as to freeze the flat

fore b_e easily determined by consi_dgring the form of thephased wave function and make it stationary. This can be
potentialV¢(w). Furthermore, by defining

obtained by choosing(’=(3U/4wf) such thatw; is the
p=wb, (10)  stationary point of the new potentid(, [curve () in Fig. 1].
Another scenario to be considered is the following. We
we can formulate the equations for the conjugate variables begin with a stationary flat phased wave function residing at
and p as a Hamiltonian system of equations wh{w,p) the stationary pointvy of the potential. Imagine now the
=p?/2+V(w), such that hypothetical possibility of abruptly changing the normaliza-
tion of the BEC wave function from unity to. This would
W= inp (11) be equivalent to a change in the potential-V, affected
ap ' by changing—nU. It is obvious that this change will shift
the stationary point to some new valug = (3nU/4K)3
- iH _ iV (12) [see curve€) in Fig. 1] and that the wave function currently
P aw ow € positioned atv,y will no longer be stationary under the new
potential. In order to compensate for this change and keep
Consider now the potentialg(w) in Eq. (9) plotted as the wave function stationary one can adjust the trap force
curve @) in Fig. 1. The potential consists of a well centered constant and s&€’ =nK such that the ratidJ/K remains
around the stable poimty~(3U/4K)*. This can be most constant and the stationary poin,=w, will not shift [see
easily obtained by setting=0 andb=0 in Eqg. (6) and curve {d) in Fig. 1].
solving for w while noticing that the first term on the right- We show in the following section that turning on an op-
hand side of Eq(6) is small compared to the rest and cantical lattice corresponds to a change in the normalization of
therefore be neglected. With initial wave function width the wave function, so that the above scenario corresponds
w(0)=w,, wherewy is the width of the Thomas-Fermi sta- precisely to our goal of achieving a flat phased BEC loading
tionary ground state of the trap, the wave function will re-of an optical lattice. It should be noted that the above analy-
main stationary throughout. However, if the initial width sis ignores gravity, which can be assumed to be orthogonal to
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This procedure can also be viewed as a spatial averaging
out of the local structure of the Hamiltonian
operator < H > loc™ <T + Vlattice+ Vt +U | ‘M 2>Ioc: T+ V%\{tice
+V+U{|#|?)0c. The harmonic trap potenti¥, is constant
on the local scale and is therefore unaffected by the averag-
2 ing. If the average kinetic and lattice potential energies per
particle, T? and V.., are constant from well to well, these
contributions to the energy can be absorbed into the chemical
potentialu, resulting in just the averaged global mean-field
playing-off, on the global scale, against the trap potential as
in a simple Thomas-Fermi procedure. The trap must then be
adjusted to compensate only for the varying mean field
ost (i I\ 1  across the BEC wave function.

‘ | In obtaining this simplified picture, we distinguish be-
tween two opposite scenarios occurring on the local scale. In
i il many cases, when considering the dynamics along the direc-
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 . . . . . . .

X [20.3 um] tion of the. one—d.|r’r_1ens!onal Iattlge, the.mean flgld .Wlthln
each well is negligible in comparison with the kinetic and

FIG. 2. Analysis of the BEC wave function in an optical lattice. pot_ential energies along this direction. This occurs_for tight
inie and ;4 are the wave functions before and after applying theoptical wells, e.g., short wavelength and strong intensity,
optical lattice, andp;(x) is the local wave function within a specific such thatyVk?>U/w, wherew is the width of the BEC. The
well (Gaussian approximationgg, is the global Thomas-Fermi- local wave function can then be well approximated by a
type wave function after averaging out the local details. Gaussian with a “well-independent” width implying that the

locally averaged kinetic and lattice potential energies are also
the lattice direction. However, even if gravity is along the well independent. In carrying out the above procedure, we

lattice direction a similar analysis holds but requires an adfind that the global wave function is a stretched image of the
ditional linear offset. initial one, as described above.

In the opposite regime the mean field within each well can
no longer be neglected. In these cases the calculations are
more involved and do not yield the simplified picture pre-

Quickly switching on the optical lattice causes the BECsented here of a mere stretching of the wave function. In-
wave function, which initially has a Thomas-Fermi form of stead, a distortion occurs which must be treated explicitly.
an inverted harmonic potential, to split into a series of local-We therefore delay the discussion of this scenario and pro-
ized pieces each residing in a lattice well. As the overallvide a more general treatment in the following section.
normalization of the wave function must remain unity, the In the following, we wish to determine the normalization
displaced population from areas between the lattice well§actor n in terms of the optical lattice parametévsand k.
builds up within the wells such that the density in theseConsider the initial Thomas-Fermi wave functidm|?
regions increases dramaticallyee Fig. 2 However, if we = (3/4w)[1— (x?/w?)]. The number of atoms in the region
neglect the local lattice structure and consider solely the gloef each lattice well determined by its positianis
bal nature of the BEC wave function, we see that it retains its
guadratic shape, and the change in the wave function brought _ o\
about by the existence of the optical lattice can be viewed as 7(x) = |#(%)| 2
a stretching of the Thomas-Fermi wave function in the ver-
tical direction(see Fig. 2 This picture is based on a sepa- 37 xiz
ration of scales in the spatial dimension, which is a conse- T awk\ T w2
guence of the fact that the length of each lattice welR
=q/k, is much smaller than the scale of the total waveAssuming that the local population becomes trapped in the
packet,w (see, for example, Ref11]). It is for this reason well during the switching on of the optical lattice, we can
that we can treat first the local structure of the wave functiorthen consider the local normalization factor per well as con-
in each well and then consider separately the overall globagtant throughout the evolution. Assuming too that the wave
evolution of the wave function. function at each lattice site is localized after the optical lat-

The idea is therefore to view the wave function on a leveltice has been switched on, we can ascribe to each lattice site
coarser than the lattice site dimension, averaging out the lca local wave function;(x), which is normalized tay; . In
cal lattice structure of the wave function. This procedureorder to obtain an average norm per well, we define the local
yields a Thomas-Fermi-type wave functio¢¢g|ob|2 probability functionP;(x), which is just the local wave func-
=(| %) 0= (3n/4w)[ 1— (x?/w?)] differing from the initial  tion normalized to unity
one by a modified normalization factor (see Fig. 2 The
evolution of this wave fu.nction can then be analyzed using Pi(X)= £|¢i(x)|2_ (14)
the results of the preceding section. 7

initial

R EEECEEEF e
LA ALARLARRFRLLERLARNARIY SLLLARALEERLLEADAERLRRLARULLERARN RN

B. Switching on the optical lattice

(13
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Averaging out the local structure using the local probability 23~ a— ' ' ' : ' '
function P;(x), we obtain the coarse-grained wave function 2f A it

.6 ms
2ms
8ms
4ms |
=3 ms

M= =00

o
T
|
I

W )= (1) c= [ P100]6100]70

1
_ - ()4
= mf | i(x)[*dx. (15

Note, the limits of integration in the above integral should be
restricted to a single well but due to the Gaussian-like nature
of the wave functiong;(x) the specific limits are unimpor-
tant. Note that in evaluating the integral, was considered
constant as it is only slowly varying on the local scale. :

In many cases, the local wave function can be well ap-  °b——c— =2

H

proximated by a Gaussian o N eosum]
_ FIG. 3. Evolution of the wave functiofamplitude and phasas
bi(X) = / i e—[(x—xi)Z/ZAZ]eicb (16) a consequence of switching on the optical lattice. Note the devel-
' w2A ' opment of a quadratic phase profile.
whereA is the width and the wave function normalizes to the 2 Kk
local normalization factom; (see inset in Fig. 2 A is typi- A=\ =M - PNk (19
cally on the order of but smaller thankw and is therefore MV

small compared with the width of the total wave function, SO, here W(X) is the LambertW function [12], so that the

”(Xi). is only slowly va_ryi_ng with respect ta a_nd can be_ normalization facton is finally given by
considered constant within any given lattice site. Averaging

out the local structure, we obtain the coarse wave function

Ugion(X) which we now show to be of Thomas-Fermi type, (20)

W )= (1) c= [ P00]6100]70

The effect of switching on the optical lattice on the dynamics
7, 1 lex)?a?) of the wave function_ can now be vi(_awed as ch.anging the
=— —f e i dx normalization of the initial wave function from unity to
VrA A If the switching-on timedtg is short compared to the glo-
bal nonlinear time scalg,, [13], so as no substantial phase

i evolution occurs during this time, the transformation of the
= J2mA normalization constant can be considered abrupt and the dy-

namics of the wave-function parametev$t) and b(t) are
) raised from the initial potential curvé, to V{ [curves @)
:i\ﬁi( _X_|> and (c) respectively, in Fig. L by the changdJ—nU as
4w V 2 kA w? described in the preceding section. If no further adjustments
are made, the wave function will begin to evolve on the
3n xi2 potential curveV, and develop phase as seen in Fig. 3. In
= m( - W-z) . 17 order to cancel this effect one can compensate for the change
of normalization by adjusting the trap force constantkto
=nKy [curve d) of Fig. 1]. In Fig. 4 we plot the
switching-on function of the optical lattice and the change of
the trap force constamiK=K—K, as a function of time.
The evolution of the wave packet under this sequence of

In going from the third to the fourth line we used the explicit
form of #; given in Eq.(13). Comparing the last two lines,
we find the modified normalization to be

events is plotted in Fig. 5, from which it is evident that the
n= \/Ei (18) phase remains constant throughout the evolution for the cor-
2kA” rect tuning of the trap force constant.

In the simulations presented here, we have tdkenl.5
It remains to determine the local width of the wave func- X 10° sodium atoms, a scattering lengthay=2.8 nm, and
tion within each lattice site in terms of the external param-a trap of average frequency 59.26 Hz. Using these values the
eters. It can be shown analyticallgee the Appendjxthat Thomas-Fermi approximation to the chemical potenjiak
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x10° ‘ ( . , ‘ K=[(hw/E,)]?=5.615<10 ¢ for the initial trap force
e e unekon constant, V=10.94 for the final field intensity, and
U=(4/3)(ty/tn) (XTe/X0) =9.55 for the nonlinear interac-
tion strength.

Inserting these values into E(RO) yields the normaliza-
tion factor n=2.0866, such that the trap force constant,
which we analytically predict to yield an optimally flat
phase, isk=1.172<10 ° (85.5 H2. This value is off by
merely 2% from the empirically found optimal value Kf
7 =1.151x 10 ° (84.8 H2, which generates the evolution
plotted in Fig. 5. Some small residual spatially varying phase
1 structure remains. This structure is due to incomplete inter-
band adiabaticity and can be reduced by increasing the
- : switching-on timests.

027 028 029 0.3 031 0.32

N
T
L

T

o
T

®
T

)
T

Trap ConstantK [ (hv/E )2]

N
T

05 1 15 2 25 3 C. Nonlinear regime
time [ms]

We now return to the more complicated scenario where
FIG. 4. Sequence of external fields keeping phase of wave functhe local wave function has spatially varying contributions
tion flat and stationary. from the mean-field term. Various complications arise in this
regime, which must be solved individually. The main com-
can be calculated and the nonlinear interaction time becomedication is due to the fact that when the mean field is locally
tnu=7%/ ure=96.2 us. In order to preserve the time scales inimportant it affects the width and shape of the local wave
the 1D model as they are in 3D reality, we follow REf3]  functions, such that they differ from well to well as shown in
and replace the nonlinear coefficieMU, by Cutexe,  the Appendix. This implies that the average kinetic and lat-
where the Thomas-Fermi radiMg= \/Z,uT,:/mwtz gives the tice potential energies also vary from well to well, affecting
size of the condensate and the fac®rarries the depen- the phase accumulation.
dence of the simulation on the dimensions and is for our 1D Assuming that the local wave function can still be ap-
caseC=[ /T (2+1/2)]= % [13]. proximated by a Gaussian along the lattice directias is
We take the optical lattice wavelength to he-589 nm  the case unless the local mean field is larger than the kinetic
and choosex,=\/m=2/k, such thatt,=#/E,, whereE,  €nergy, we can use the results of the Appendix to obtain the
=1#2k%/2m is recoil energy. The optical lattice is switched on Well-dependentidth A(x;). This can be inserted back into
in a time Sty~20 s to the final intensity oV,=10.94,.  Ed- (A2) to obtain the total local energy as a sum of its
In units of xo=\/m, t, and#%/t,=E,, for space, time, and contributions: the kinetic e_nergi], the lattice potential en-
energy quantities, respectively, we therefore get the follower9Y Eatice, the trap potential enerdy; , and the mean-field

ing unitless valuesk=2 for the optical wave number, energyE,s. The chemical potential associated with a spe-
cific lattice site is[14]

sl =1 1
. g e M= _'(T+ Ejatiicet Et+ 2Em¢)
15+ - t=1.8ms |H 7i
[SU 1 : ti_|2_ftams
9_ t=T=3 ms |
_1ﬁz ‘.““M‘\\|‘ it ‘ H
N 11 e | _
T i | | I B R D (21)
P i 1 .
° -1 -08 -0.6 -0.4 -0.2 0 0.2 0.4 06 08 1 8AI 2 \ 27TA|
. Z:' e T R D e S In order to keep the phase evolution constant from well to
§ i well, one must adjus¥,(x;), such that it cancels all othey
B I e bt dependenciegoriginating in A(x;) and 7(x;)] and thus
o iir makesu independent ok; .
eqﬁ\/* — Another complication arises from the fact that the optical
i , , . . , . . , lattice must be switched on adiabatically with respect to in-

-1 -0.8 -0.6 -0.4 -0.2

0 0.2
x [20.3 um]

0.4 0.6

terband excitationgas stressed in the Introductiore.g., the
switching-on timeétg in our dimensionless units must be

FIG. 5. Evolution of the wave functiofamplitude and phagas  longer than (2r/kyV). This means that for experiments in
a consequence of switching on the optical lattice and adjusting thwhich the lattice wavelength is large, the lower bound on the
compensating trap force constant. The stationary flat phase is strilswitching-on time becomes comparabletp and consider-
ingly apparent. able phase evolution will occur during this time.

053620-6



FLAT-PHASE LOADING OF A BOSE-EINSTEIN. .. PHYSICAL REVIEW A6, 053620 (2002

is possible by appropriately adjusting the external trap. A
simple analytical theory has been developed for a nonstation-
ary 1D BEC in a harmonic trap. It was shown that the effect
of switching on the optical lattice is to generate an effective
renormalization of the BEC, and hence a nonstationary con-
densate. Finally, an analytical expression was obtained for
the modified harmonic trap force constant that compensates
for the new effective normalization. The analytical theory is
in excellent agreement with numerical simulations.

In real experiments, more care is needed to account for
the effects of evolution in the transverse directions. Work is
now in progress toward extending these results to two and
three dimensions. It is expected that the expansion of the
BEC into the transverse directions can also be treated using
the above method, namely, by an appropriate adjustment of
O e oa o 0 e or s o the trap in those directions. We have detailed elsewhere how

X [20.3 um our quasi-1D calculations of the type we presented here
. . ) model 3D aspects of the dynamics in cylindrically symmetric

FIG. 6. Evolution of the wave functiofamplitude and phas@s  ngentials[7], but this method can not describe radial exci-
a consequence of adlabr_:\tlcally switching on the optical lattice an‘i’ations of the BEC that might arise due to the optical poten-
adjusting the compensating trggtrength and shape tial via the mean-field interaction. To the extent that radial

excitations are not important, our method should be an ad-

To avoid the phase winding during the switching-on timeaequate approximation to the 3D dynamics.
one must make the trap frequency change gradually so as to |t js not known how a small residual spatially varying
compensate for the changing shape of the wave function ghase will affect the Mott-insulator transition. The residual
intermediate times. As a zeroth order approximation, we asphase can be thought of as a phonon like excitation that
sume that a transition of the magnetic trap from its initial toshould be mapped onto the final Mott-insulator state. Char-
its final form, using the same switching-on function as theacterizing the nature of excitations in an inhomogeneous
optical lattice, will momentarily compensate for the chang-pmott insulator has not been done; however, the small re-
ing shape of the wave function. The relevant parts of thesidual excitations seen here are not expected to have a strong
potential terms in the Hamiltonian will take the following effect since the total energy of the system is only slightly
form: [ 1—S(t) V"™ + S(t) V{"'+ S(t) Vcog(kx). above that of the ideal case. A more exact answer to this

In Fig. 6, we show a case where the mean field is imporquestion cannot be provided within the context of a mean-
tant. In this simulation, we choose parameters as above, efeld approach and requires analysis using many-body ap-
cept the optical lattice wavelength and strength wergroaches to the Mott-insulator transition. Moreover, no the-
changed to ba =8X589 nm[16] andV,=45.4E,, respec- oretical model exists that is completely appropriate in both
tively, so that the mean field within each well is no longerthe superfluid and Mott-insulator regimes.
negligible. With these parameters and following the above

: Switctlﬂng on function

amplitude

prf_ocledure, we found the optimgl trap shape to be of the form ACKNOWLEDGMENTS
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introduced above. We turned on the new trap shape gradiResearchiGrant No. NO0014-01-1-066,/the Israel Science
ally, as described above, with a switching-on time & Foundation(Grant No. 128/00- and the German-Israel
~1 ms, the resulting constant flat phase can be clearly sed#MBF (Grant No. 13N 794y Y.B.B. acknowledges support
in Fig. 6. Some small residual spatially varying phase strucfrom the U.S.-Israel Binational Science Foundati@rant
ture due to incomplete interband adiabaticity remains her&l0.1998-421 the Israel Science FoundatioiGrant No.

too, and increasing the switching-on tinae, will reduce the ~ 212/01, and the Israel Ministry of Defense Research and
residual phase structure. Technology Unit. C.J.W. acknowledges partial support of the

U.S. Office of Naval Research, the Advanced Research and
Development Activity, and the National Security Agency.
IV. CONCLUSIONS

The switching on of an optical lattice potential can divide APPENDIX: CALCULATION OF LOCAL WAVE
a BEC into many individual pieces, where phase coherence FUNCTION WIDTH A
is maintained across the whole condensate. However, be- g in the text, we approximate the local wave function by
cause of a spatially dependent change in the density and thuss 4,;ssian
the mean field per well site, one can end up with a quadratic
phase dependence developing along the lattice direction if (x)
one does not load the lattice adiabatically. We have shown bi(x)= n_'ef[(X*xi)Z/ZAz], (A1)
analytically and numerically that a cancellation of this effect w2A
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of width A, normalized to the local normalization factgy ~ An explicit solution of this equation foA is not possible in
and centered around. We intend here, using the variational general; we therefore distinguish between several cases and
method, to determine the width of the Gaussian in terms ofnake some simplifying assumptions. If, as is the case for

the optical lattice strengtl and wave numbek. short optical wavelengths, the mean-field term becomes neg-
We first compute the energy associated wihas a func-  ligible with respect to the other energy terms, it can be ne-
tion of A: glected to obtain the following equation:
. 1 2
E(A)= | &7 (x) —ZW-FVI(Xi)-i—VSI [k(x=x;)] A4e7k2A2= 4\i-k2. (A4)

1
+ §U|d>i(X)|2) $i(x)dx
The solution to this secular equation can be written in terms
of the LambertWV function, y=W(x), which is defined as

7(X) f —[(x—x-)Z/ZAZ]( 15 the inverse ok=ye’ [12]
= e [0 — 7 53+ Vi(xi) y :
\/;A> 4 9x
. 1 T(x—x)2/2A2 2 k
+Vsir[k(x—x)]+ §U|¢>i|2)e R A:\/— —ZW(—— . (A5)
k a\v
1 v K242 . . . .
=7(X)| gaz tVilx) + 5 (1~e ) It can be seen in the inset of Fig. 2 that this value for the
width of the local wave function gives good results. An im-
. portant point to note is that in this regindeis independent
7(xj)U . . . . .
. (A2) of the well position, implying that the lattice potential and
2y2mA kinetic energies per particle too are well independent. This

. crucial point justifies our treatment of the global wave func-
Note that the trap potential, dgnotb@, and thg number of Yo aS @ Thomas-Fermi approximation.
atoms in the region of the lattice well at positign, 7(X;), For high-density BECs and longer optical wavelengths
were extracted from the averaging integral since they arg o mean field cannot be neglected and E&B) must be
assumed constant on the local scale. According to the Variz?'iumerically solved for. It must be noted. however. that the
tional princi.ple, we determine the Widf[h. OT the grOund'smt‘:"resuIting form forA(x;) will, in general, bé well dep’endent,
wave function, ¢;, as that which minimizes the energy jnnying that the kinetic and lattice potential energies per
E(A): particle will also be well dependent and thus contribute to
the phase curvature accumulation. This must be taken into
JE(A) =l — = 7Y —0. account while adjusting the trap to counter the phase accu-
dA \o4ad 2\27A mulation, within the non-negligible mean-field regime, as
(A3) has been discussed in Sec. Il C.
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