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The statistics of the atomic population distributions in nonlinear matter-wave processes, such as four-wave
mixing of matter wavegor output coupled wave packets produced by Bragg scatbefiogn Bose-Einstein
condensateBECS, are determined. Fluctuations of the populations of atoms in the four-wave mixing wave
packet can be due t@) fluctuations of the laser fields that produce the separate momentum wave packets of
the BEC, (b) quantum fluctuations arising from finite temperature effects, @hdhe quantum-mechanical
nature of the mean-field BEC wave function. We focus on the latter source of fluctuations. The distribution of
the number of atoms in the four-wave mixing wave packet is binomial and reduces to a Gaussian distribution
for strong conversion. We calculate the skewness and kurtosis of the distribution. The differences in the nature
of the fluctuations in nonlinear phenomena for atdmsatter wavesand photons are discussed.

PACS numbegps): 03.75.Fi, 05.30.Jp, 67.40.Db

[. INTRODUCTION negligible. The theory for BECs has been developed beyond
mean-field[6,7], and can be applied to determine the fluc-
Recently, the theory of multiwave mixing of matter waves tuations of the number of atoms in the 4WM wave packet
formed from Bose-Einstein condensat®ECS was pre- and the statistics of this problem for finite temperature at a
sented 1], and the first experimental observation of coherenthigher level of approximation. For temperatures significantly
four-wave mixing (4WM) in which three sodium matter below the critical temperature, these effects should be negli-
waves mix to produce a fourth was reporf@l The depen- gible. Therefore, we focus on the latter source of f!uctua—
dence of the generated matter wave on the densities of tHoNs, and assume that the other sources of fluctuations are
three input wave packets showed a clear signature of themall. Her_e, we consider the statistics only within the context
nonlinear 4WM process. Here, we generalize the theory t(?f mean-field theory5].
describe the statistics of the atomic population distributions
that are expected to occur in such nonlinear matter wave
experiments. Our results are also applicable for determining
the statistics of the atomic distribution in any process in
which the separation of the condensate into distinct sub- At the mean-field level of description of a BEC, all the
systems occurs, e.g., the use of a sequence of optical ligh@nslational modes of the BEC are described by a single
pulses to produce high-momentum component wave packetgean-field orbital, and the wave function is symmetric under
by Bragg scattering3,4]. interchange of the Bose particles. TReparticle wave func-
Reference[2] measured the expectation values of thetion ¥ of the zero-temperature Bose condensate is given by
number of atoms in the 4WM wave packet, but did not reporthe symmetric product
on the statistics of the atomic distributions in the various
wave packets produced by the dynamics. Such statistics are N
interesting to determ!ne_ the_oretlcally and_experlme_ntall_y. ‘I'(t):.H (X .1), )
Measurement of the distribution of the atomic populations in j=1
the various wave packets will provide additional information
on the nonlinear 4WM process. There are three potential
sources for the fluctuations of the number of atoms in thevherej is the particle index, and the mean-field orbigals
wave packetsta) fluctuations of the laser fields that produce the same for all particles. For the 4WM experiment under
the separate momentum wave packets of the BECquan-  consideration2], the initial wave function is obtained by
tum fluctuations arising from finite temperature effects, andurning off the confining harmonic potential, letting the con-
(c) the quantum-mechanical nature of the mean-field BEGlensate wave packet ballistically expand for some time and
wave function. Clearly, the statistics of the photon light field applying a set of optical pulses to create wave packets with
used to produce the high-momentum wave packets that imomentatiky, fk,, andfks [1,2,8. Immediately after ap-
turn produce the 4WM wave packet can also introduce flucplication of the optical Bragg pulses which produce the high-
tuations in the number of atoms in the 4WM wave packet. fmomentum components of the BEC by a far-detuned stimu-
the light field is intense and well reproducible from shot tolated Raman-type transition, to an excellent approximation
shot, fluctuations arising through the light fields should bg9],  is comprised of three BEC wave packgiss],

Il. MEAN-FIELD DESCRIPTION OF FOUR-WAVE
MIXING IN BECs
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3 particle indices are equivalent. The number of these equiva-
PY(x,t=0)= Z a;(0) (x,00explik;-x), (2 lent terms is equal to the appropriate multinomial coefficient,
=1 NI/(N1!'N5!N3!N4!). Further, the sum of equivalent terms

where¢(x,0) is ballistically expanded solution to the Gross- IS proportlonal_ to 'ghe symmetrlzgd and normalilzed N b‘_’SOU
Fock state which in the occupation number representation is

Pitaevskii equation, and the amplitudg$0), determined by .
the intensities of the Bragg pulses, specify the probabilitydenOted a$N1,N2,N3,Ny), hence:
amplitudes for the three initial wave packets, where

>3 |a;j(0)|>=1. The normalization is chosen so that the W(t>t.,)= > SN+ Ny + Nyt Ny
norm of ¢ is unity (the norm of¢ is also unity. N1.N2.N3.Ny
The nonlinear Schiinger equatior{the Gross-Pitaevskii NI lepszNspM 12
equation determines the dynamical evolution of the time- ( 172 73 T4 ) INg, Ny, N3, N).
dependent wave functiog(x,t) [5], N1!N2! N3t N,!
Ly : ©
i S = [Tt VOGO +Uolyl 19, ©) The probability distributiorPy(Ny,Ny,Ns,N,) for find-
ing N; atoms in the wave packet;(x—x; ,t), i=1,4, given
where that the total number of atoms in the BECNsis a modulus
2/ .2 ) ) square of the inner product of the wave function in Eg).
. :i(ﬁ_+8_+ﬁ_) with [Ny ,N3,N3,N,) [10];
2m gk ogy? 922

PN(N1, N2, N3, Ng) = [(N1,Np Ng, Ng| W (t>t o))
is the kinetic energy operatdv(x,t) =0 since no potential is NI
imposed on the atoms after the confining potential is
dropped,Uy= (4mayh?/m)N is the atom-atom interaction
strength, proportional to the-wave scattering lengtha,,
and N is the total number of atoms in the condensate. For
times't larger than the collision time of thg wave paCketS’Further simplification results if we are interested in deter-
Leol yvhen the wave pack_ets are separated in space, the Wa}{’ﬁning only the number of atoms in the newly created 4WM
function ¢/(x,t) can be written as wave packet, irrespective of the distribution of the atoms in
4 wave packets 1, 2 and @&s long as the total number of
z/;(x,t):E & (x—x;(1), )exglik; - X), (4) atoms equal®N). In this case our distribution function, de-
i=1 fined by Eq.(6), may be reduced to the binomial distribution:

=6 -
N,N;+N,+N,+N
1N Ng+Ng N TN, NG!N!

X )P 2pyopyt. (6)

wherex;(t) i=1,2,3,4, is the center of thé¢h wave packet,
x(t)=(fk; /m)t, and k,=k,—k,+ks. The fourth wave  Pn(Na)= ; o O+ g+ N PRONT N2, N, Nog)
packet is the 4WM wave packet, absent initially, and created 1

exclusively due to the nonlinear interaction in the dynamics B N! N, NCN

of three wave packet collision. T (N—N,)INg! P4 (1-pa)™ ™ ()
Fort>t.,, the expectation value of the population of the

ith wave packet is independent band given byp;(t) =p; The results of several interesting experiments are embod-

=(N;)/N= [y _dx{(x)|#(x)), where the integration region jed within the probability distributiori6). Experimental tests
V, is selected to include the region around itle wave are likely to entail measurement of moments of the probabil-

packet. Alternativelyp; can be defined in momentum space ity distribution. We now give expllc!t expressions for the
most common moments and convenient expressions for gen-

as pi(t>t°0'):pi:<Ni>/N:kaidk<¢(k)|‘p(k» where the erating arbitrary moments. The calculation of moments fol-
integration regionV is selected to include the region around lows readily by use of the generating function,

the ith wave packet in momentum space. Note thdD)

=|a;(0)|? immediately after the light pulses are applied. 0= s N!
Ny NS N, NN TN NG N TN TNGEN!
Ill. PROBABILITY DISTRIBUTION N No Ne N
FOR FOUR-WAVE MIXING XPytP,2P5 P, (1t P2t P3P ®)

Substituting the wave functiogh in Eq. (4) into Eq. (1)  We define new variables=In(p,), so that
and expanding the product, we obtain the multiatom wave

function W (t) in the form of a sum over M terms. Each of NI glCN1F caNa+CgNg+CaNy]
these terms represents a definite distribution of atoms be-Q:N NEN N ON Ny + Noyt Nyt Ny N, !N, N5 N,!
tween various 4WM peaks. Due to the indistinguishability of L

particles, all terms that differ only by the permutation of the = (e‘1+e2+ e+ e%4)N, 9

013606-2



STATISTICS OF ATOMIC POPULATIONS IN OUTPUD.. .. PHYSICAL REVIEW A 61 013606

10 [ L1 L1 [ L 100 0.30 . T

] L 80 0.25 4 p=0.01 p=0.99

5.0 —| F ] B

2 ] N2 skewness C A 0.20 - =
2 ] — 60 -2 B -
5 00 Eos =z ] g
2 — F - =
ﬂw 7 L 40 3 é 0.15 3 c
S ] roo=z ] E
z 7 L 0.10 J|p=0.1 p=09|F
5.0 - 20 = —05 :'\‘ F
] B 0.050 PN lE

10 -] 0 1 U

[T T T [ T T T [T T T[T T [T 17T 0.0 i, e e : C

0 0.2 0.4 0.6 0.8 1
b; 0 50 100 150 200
N

FIG. 1. Distribution functiondy(N,4) vs number of atom$, )

for different mean number of particles in the 4WM wave packet. FIG. 2. Skewness and kurtosis of the wave packet population
distribution P(N,) as a function of the mean number of particles
Moments are generated by taking derivatives with respect to the 4WM wave packet.
thec;:
rather than the moments of the probability distribution. The

first few cumulants are given by
(NPNJ-- )= > NPNJ--- Py(N1 N2 Ng.Ny)

Np.Nz: N3Ny ((Ni))=(N;)=Np;, (15

Q-+
(a—Q> (10) (NEYY=((Ni=(Ni))®)=Np,(1-p)), (16)
acPac]- - -

((N)=((N;=(Ni))®)=Npi(1—p;)(1=2py), (17
The condition e°1+e%2+ e+ e%=p,+p,+p3+ps=1 is

ef1+ef2+ef3+efa=1

to be invokedafter derivatives are taken. The general expres- UNDY=((N=(N))H = 3((N; —(N;))?)?
sion for moments of the population within wave packeéan )
be written as =Npi(1-p;)(1—6p;+6p;). (18)

(NY=Np,(1+[N—1]p;(2+[N=2]pi(- - - (k+[n—K])))). The first and second cumulants are the average and variance.
' ' ' ' (1)  The third and fourth cumulants are closely related to what is
commonly called the skewness and kurtosis of the distribu-

From the general expressioh0), several useful particular tion [12]:
results follow. The average population in each wave packet

IS ® (skewnesp= ((ND) __1°% (19
2\\312 —
(N;})=Ne%i=Np;, (12) (NP VNPi(1—pj)
4 2
and the covariances are ® (kurtosig= ((Ni)) — 1—6pi+6p; (20)
N2 Npi(l-p;)
o ((N?))
Npi(1—pi), i=]
((Ni=(Ni»)(N;—(N;j)))= —Npip; i+, (13 skewness measures the departure of the distribution from

symmetrical, while kurtosis measures the flatness of the top
Fori=j, the particle probability distribution function is the ©Of the distribution. Both quantify how different the distribu-
widest with respect to its mean wher=0 in the sense that tion is from Gaussian, and both are zero for a Gaussian dis-
((N;—(N;»)?)/({N;))? is maximum forp;~0. The probabil- tribution. Figure(2) plotfs_\/NCD(skewnes)sandNd)(kurt_osis)
ity distribution itself is the sharpest whetiN;)/N)~0 or 1.  Versusp;; these quantities are independentNofThe figure
Figure(1) plots Py(N,4) vs N, for N=200. The distributions shows that t_he we.\ve.packet. popuIatlon distribution tends to-
are narrower for largeN. Fori#j, Eq.(13) indicates there Ward Gaussian with increasing, especially away from the
is a negative correlation between population fluctuations ofimits pi—0 or 1. As shown in Fig. 2, the skewness indicates
different wave packets, as is expected from conservation ghat the population tails toward high; when p;<1/2 and
total number of particles. toward lowN; whenp;>1/2, and the kurtosis indicates that
Higher moments reveal departures of the population disthe distribution is slightly flatter than Gaussigd (kurtosis
tributions from Gaussian. Here it is more useful to analyze<0] when p;~1/2 and more spiked than Gaussian

the cumulantg(NP)) [11], [® (kurtosig>0] in the limits of p;—0 or 1. _
When the total number of particlés is a random vari-

9P able, the results we have obtained for the statistics of the
((N?))E—pln Q, (14  atoms in the various wave packets must be folded with the
J¢; statistics P;(N) of N initial bosons. The probabilities
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P(N:,N,,N3,N,) and P(N,) are then obtained as To evaluate the average in EQ2) for the case of a coherent

P(N1,N5,N3,Ng)=2\Pi(N)Pn(N1,N,,N3,Ny) and P(Ny) electromagnetic input field as defined here, we use the Fou-

=3\Pi(N)PN(N,), respectively. rier expansion of the delta function and the well-known ex-
In the above discussion we described fluctuations ofression of the exponential function in the normal-ordering

atomic boson systems. It is both interesting and instructive téorm,

mention the difference between atomic and photonic sys- .

tems, especially in view of the close analogy between 4WM exd —i¢aja,]=:exf (e ¥~ Daja]:, (24)

with BECs and 4WM in nonlinear optics. The difference is ] ]

due to superselection rulgs3] and conservation of barionic Where O: denotes normal ordering of an opera@r Since

number in bosonic matter wave systems. In order to undef20rmal ordering of the operators yields normal ordering of

stand the relationship between the statistics of 4WM of matthe b operators, when we take the expectation value in the

ter waves and of photons in a nonlinear dispersive mediunguation after introducing normal ordering according to the

it is instructive to consider what a beam splitter does to mat@bove prescription, all the operators can be substituted by

ter waves(i.e., an atomic beam splitteand compare it to a their expectation _values. By expanding and integrating, term

photonic beam splitter. As we shall see, the difference ariseY term, we obtain

not in the action of the beam splitter, which leads to the 2N

equivalent 'o.f thg chtoFN(N4) given above, but in the ini- P(N)= (p[o") exp —pB2). (25)

tial probability distributionP;(N). N!

Photons in the coherent state obey Poisson statistics and
initial probability P;(n) for measuringn photons in the first

To illustrate the difference between statistics of photonicPort, before it passes through the beam splitter is therefore
and matter 4WM, we consider a simple model of a beanequal to
splitter for photons or for bosonic atomhe application of )

. n
Bragg pulses to output couple part of a BEC may be viewed _ '8_ _ 2
L . ) ; Pi(n)= | exp(— B9). (26)

as a realization of a single-input atomic beam splitt€on- n
sider a beam splitter having two input and two output ports. ) o _
The annihilation (and creatioh operators for(photon or Ina fashion similar to what was mentioned at the end of the
bosonic atom particles in the input and output ports are previous section, the probability distribution after passing
related as follows: through the beam splitter is a convolution of the initial sta-
tistics and statistics of the beam spilitter:

IV. BEAM-SPLITTER ANALOGY

LS T @ g
&) | =Vi-p p /iby)’ P(N)= 2, Pi(n)<N)pN(l—P)”_N
ne
wherep is the probability of particles being directed from the 5 N 2 n—N
first input port to the first output port. The input annihilation =exp(—,82)(B P) E [B°(1-p)] (27)
operators are denoted t; andb,, and the output annihi- NI = (n=N)!

lation operators bya; and a,, respectively. Note that we

have taken the probabilitgmplitudesto be real; in general This yields the result presented in Bg5). Hence, the sta-
the matrix elements appearing on the right-hand side of Edistics of photons passing though a beam splitter remains
(21) are complex. An input field can be injected into eachPoissonian, but the mean val(i) is lowered.

port. The probability distribution for the number of particles ~ On the other hand, in the atomic bosonic case discussed in

in the jth output port is in general given by Sec. II, the initial zero temperature state of the BEC is a Fock
state, with a well-defined number of particles. Hence, after
P(N)z(g(N—ajTaj»_ (22)  application of the Bragg pulses to split the condensate, the

particle distribution is binomial for bosonic atoms. In terms

Let us consider the case of electromagnetic input fieldo©f our simple model of the beam splitter, we calculate the
that are coherent states, and for simplicity, (@ consider —average in Eq(22) using Fock states instead of coherent
only one mode of the field being populated, dbiltake the state:
initial input into the second port of the beam splitter to be the 2nde
vacuum field. The product coherent input state is therefore _ | “7us R
given by|8,0) whereg is the complex coherence coefficient P(N)= fo 27T<N,0|exp: £a32,]IN.0)
for the first input port and 0 is the complex coherence coef-

ficient for the second input port. The action of the input AT 1—p)N-n 28
annihilation operators on the input state is given by "IN PY(1=p)" (28)
b,[B,0)=8|8,0), Our simple model of the beam splitter points out one of
the differences in the statistics with photons and with coher-
b,|3,0)=0. (23)  ent matter waves. The distributid?;(N) is in general dif-
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ferent for the two cases. Another important difference arisepackets. We discussed the possible differences of the statis-
from the fact that the nonlinearity in the mean-field approxi-tics of 4WM for photons in nonlinear dispersive media and
mation for BECs is not associated with any external mediumfor coherent matter waves. The fluctuations described here
In contrast, for AWM of electromagnetic fields in a disper-will be difficult to observe in experiment, but their signifi-
sive nonlinear medium, the medium itself introduces acance should not be underestimated, since their understand-
source of thermal fluctuations that may significantly affecting is important for problems associated with entanglement,
the statistics of the measurements of particle number. A thiréind because they provide a fundamental quantum limit. Fi-
potential source of difference is the fluctuations of the lasenally, we emphasize that the statistical properties discussed
fields that produce the separate momentum wave packets bére may be directly applied to any process in which the
the BEC. The statistics of the Bragg pulses used to producgeparation of the condensate into distinct subsystems occurs,
the high-momentum wave packets can introduce fluctuations.g., the use of a sequence of optical light pulses to produce
in the number of atoms in the 4WM wave packet. high-momentum component wave pacekts by Bragg scatter-
ing [3,4].
V. SUMMARY AND CONCLUSION
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