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Abstract
It is shown using the Gross–Pitaevskii equation that resonance states of Bose–
Einstein condensates with attractive interactions can be stabilized into true
bound states. A semiclassical variational approximation and an independent
quantum variational numerical method are used to calculate the energies
(chemical potentials) and linewidths of resonances of the time-independent
Gross–Pitaevskii equation; both methods produce similar results. Borders
between the regimes of resonances, bound states and, in two and three
dimensions, collapse are identified.

Resonances are metastable quantum states which have finite lifetimes; they play a key role
in different types of scattering phenomena [1]. Simon et al [2] provided conditions for sharp
transitions from a resonance to a true bound state as a parameter in the system’s Hamiltonian
is varied. These quantum phase transitions have been studied theoretically and experimentally
in the context of the linear Schrödinger equation [3]. Our objective here is to search for
similar transitions in nonlinear systems, such as Bose–Einstein condensates (BECs) [4]. In
particular, we address the question of whether resonance states of a BEC with attractive binary
atomic interactions can be stabilized into bound states by making the effective nonlinearity
increasingly negative (through increase of the number of atoms, or tuning the s-wave scattering
length as near a Feshbach resonance to be more negative). As the existence and stability of
eigenfunctions of nonlinear wave equations is also a central issue in other fields, and nonlinear
Schrödinger-type equations apply to many of them, including nonlinear optics, spin waves in
5 Permanent address: Department of Chemistry and Minerva Center for Nonlinear Physics of Complex Systems,
Technion—Israel Institute of Technology Haifa 32000, Israel.
6 Present address: JILA, National Institute of Standards and Technology and Physics Department, University of
Colorado, Boulder, CO 80309-0440, USA.

0953-4075/04/090193+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK L193

http://stacks.iop.org/jb/37/L193


L194 Letter to the Editor

magnetic films, Langmuir waves in hot plasmas and gravity surface waves in fluids, the study
of the effect of nonlinearity on resonances is of general physical interest.

We develop two independent complementary approaches to this problem. The first utilizes
a variational Gaussian ansatz for the quasi-stationary state and the WKB approximation to
calculate the tunnelling rate. The second utilizes a fully quantum variational method with
an absorbing potential, which, in the case of the linear Schrödinger equation, may be shown
formally [5] to be equivalent to the exterior scaling transformation [6]. We note parenthetically
that complex scaling has been previously used to predict resonances for nonlinear Hartree–
Fock models arising in electronic structure calculations of atoms and molecules [7]. In
both approaches, we seek to determine the energies and linewidths of resonance states of
the Gross–Pitaevskii equation (GPE), which is a nonlinear Schrödinger equation (NLS),
derived in the mean-field approximation. In the context of the BEC, the ‘energy’ may be
interpreted as the chemical potential which is the real part of the eigenvalue associated with
a resonance state, i.e., Re(µ). The ‘linewidth’ γ may be interpreted as the coefficient in
the rate equation, dN/dt = −γ (N)N , where N is the number of trapped atoms in the BEC
and γ (N) = −2 (Im(µ)) /h̄ is the decay rate. We emphasize that Im(µ) is a function of N:
thus the tunnelling problem associated with the decay of the resonance is a nonlinear one,
and the lifetime of a resonance can be obtained by integrating dN/[−γ (N)N ]. In the BEC,
such nonlinear tunnelling problems have been studied theoretically for bright solitons [8] and
experimentally in the context of the relaxation of condensate spin domains [9].

The two general methods are applied to the specific case of an external potential in the
form of a harmonic well multiplied by a Gaussian envelope. This choice of the potential is
motivated by studies of optically trapped BECs [10], where the waist of the trapping laser
beam creates a broad Gaussian envelope. The central harmonic well may be created by a
second, more narrowly focused laser beam, or by a higher Hermite–Gauss mode of the laser,
as used in creating BEC waveguides [11], or by a laser beam with embedded vorticity induced
by passing the beam through a phase mask [12]. The lifetime given by tunnelling of a quasi-
bound resonant state can be reduced by other loss processes, such as three-body recombination
and interactions with the background gas in the vacuum, as in the case for any trapped BEC.
However, as these loss processes are the same for both resonant and bound states, tunnelling
of the mean field can cause a measurable reduction in lifetime. An external potential in the
GPE is similar to the waveguiding profile created by a transverse modulation of the refractive
index that appears in the generalized NLS used for modelling propagation of spatial beams
in optical media in effectively 1D (planar waveguide) and 2D (bulk) geometries [13]. The
potential that we introduce below corresponds to the waveguiding profile that can be easily
engineered in optical media.

The time-independent isotropic GPE with such an external potential can be written in
terms of dimensionless variables scaled to the harmonic oscillator frequency ω and length
�ho ≡ √

h̄/mω as

−[� ′′ + (D − 1)� ′/r]/2 + V (r)� + U0|�2|� = µ�, (1)

V (r) = (V0 + r2/2) exp(−αr2), (2)

βD

∫ ∞

0
drrD−1|�|2 = 1. (3)

Here �(r) is the normalized wavefunction, µ is the above-mentioned complex eigenvalue,
β1,2,3 = 2, 2π, 4π for the spatial dimension D = 1, 2, 3, and U0 ∝ asN is the appropriately
scaled nonlinearity coefficient in dimension D [20], with as the s-wave scattering length. The
prime stands for d/dr , and α ≡ (�ho/�Gauss)

2 is a parameter which characterizes the structure
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of the potential. For a broad Gaussian envelope, which pertains to the experimentally available
optical trap described above, α � 1.

Variational WKB approach. Approximate solutions to equation (1) with potential (2) can be
obtained via variational methods. We adopt a Gaussian ansatz, �an(r) = A exp[−r2/(2ρ2)],
where the width ρ and amplitude A are variational parameters. Substituting the ansatz into
the normalization condition (3) and the Lagrangian of the GPE (for the time being, Im(µ) is
disregarded) and minimizing it with respect to ρ and A, one obtains A2 = 2/[βDρD	(D/2)],
and

Re(µ) = {(−4 + D)/ρ2 + (1 + αρ2)−2−D/2[4V0 + (4 + D)ρ2 − α(D + 4V0α)ρ4]}/4, (4)

|U0| = 	(D/2)2−2+D/2βρ−2+D(1 + αρ2)−2−D/2

×{−2(1 + αρ2)2+D/2 + ρ4[2 − 4V0α − α(D + 4V0α)ρ2]}, (5)

where 	(D/2) is a Gamma function. The solution is stable in the framework of the
time-dependent GPE if dRe(µ)/d|U0| � 0, which is known as the Vakhitov–Kolokolov
criterion [14].

One can now apply the WKB approximation to find Im(µ) [15]. In the 1D case, it is
given by the standard expressions

γ = exp

(
−2

∣∣∣∣
∫ r2

r1

drp(r)

∣∣∣∣
) /

T , (6)

p =
√

2[µ − Veff(r)], T = 4

∣∣∣∣
∫ r1

0
dr/p(r)

∣∣∣∣ , (7)

where Veff(r) ≡ [V (r) + U0|�(r)|2], and the endpoints r = r1 and r = r2 are found from
p(r) = 0. In the 2D and 3D cases, it is necessary to transform the GPE into a 1D form via
� = φ/

√
r and � = φ/r , respectively (for the spherical wave). In the former case, this yields

Veff(r) = V (r) − (1/8)r−2 + U0r
−1|φ2|, whereas in the latter, Veff(r) = V (r) + U0r

−2|φ2|.
Note that Im(µ) = −γ /2 in these units; also, γ must be multiplied by 2 in the 1D case to
account for tunnelling from both sides of the well. Results for the 1D, 2D and 3D cases are
illustrated in the figures below.

Exterior complex scaling of the GPE. In the linear Schrödinger equation (U0 = 0), resonances
are associated with complex eigenvalues of the Hamiltonian which are obtained by imposing
outgoing-wave boundary conditions on �. Such eigenvectors are sometimes called Siegert
states. They are not in the Hilbert space, hence the Hamiltonian is a non-Hermitian
operator over the class of functions including the Siegert states. In order to calculate
resonances, it is convenient to carry out a similarity transformation which ‘brings back’ the
resonances to the Hilbert space. A well-known transformation of this kind is complex scaling,
wherein the coordinates are rotated into the complex plane by a fixed angle θ [16, 17].
When θ is sufficiently large, the resonance eigenfunctions become square-integrable.
Although the complex eigenvalues are θ -independent, provided tan(2θ) > γ/[2Re(µ)], the
corresponding resonance eigenfunctions do depend on θ : therefore the nonlinearity prevents
direct application of complex scaling to the GPE. However, with the use of exterior [6] or
smooth exterior scaling [18, 19], the potential V (r) remains unscaled except at large r, and
the small distortion of the effective nonlinear potential, U0|�|2, may be neglected.

It has been shown for the linear Schrödinger equation that smooth exterior scaling
transformations are equivalent to adding a reflection-free complex absorbing potential (CAP)
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Figure 1. One dimension. Shown is the Re(µ) and Im(µ) versus |U0| for the potential in the form
of a harmonic well times the Gaussian envelope (see equation (2)), with α ≡ (�ho/�Gauss)

2 = 0.2.
Solid curves: results of the numerical method utilizing a complex scaling method. Dashed curves:
the variational WKB approximation. The critical point for the conversion of the resonance into a
bound state is

∣∣U crit
0

∣∣ = 1.09.

to the Hamiltonian [19], which is often approximated by a local negative imaginary potential.
We chose VCAP(r) = −iλ(r − r0)

4, if r > r0, and VCAP(r) = 0, if r � r0, where r0 is a point
near the edge of the grid, and λ is a variational parameter (unrelated to the above variational
approximation). This CAP is the most common one used in calculations of resonances in
atoms, molecules and nuclei. The value of λ is found numerically from the variational
condition dµ/dλ = 0, where µ is generally complex, and stationary solutions with respect
to small variation of λ are obtained; note that stationary solutions in the λ-variational space
requires optimization of another parameter, such as the box size in physical space, L (see the
‘cusp’ condition in [16]). The value of r0 is chosen so that the wavefunction is exponentially
small for r > r0; this ensures that the smooth exterior scaling transformation does not distort
the effective potential Veff(r) (for a detailed discussion of this point, see [5, 19] and references
therein).

In our calculations, sinusoidal functions were used as a basis set in the 1D and 3D cases,
and Bessel functions in 2D. Starting from zero, the nonlinear strength parameter U0 was
decreased in steps of δU0 < 0, so that the overlap between the solutions for U0 and U0 + δU0

was close to unity, to ensure that the evolution of a single resonance was followed. Thus,
resonances could be identified by the CAP method, at each step of the iteration, in the same
manner as in linear quantum mechanics.

GPE resonances and bound states. Consider first the case of one dimension and no offset,
i.e., D = 1 and V0 = 0. No bound states and a single resonance exist in this potential for
the linear Schrödinger (U0 = 0); the latter has Re(µ) = 0.411 34 and Im(µ) = −0.002 7894.
Beginning with this known result, the Re(µ) and Im(µ) were calculated numerically as a
function of the nonlinear parameter U0 by adiabatically decreasing the nonlinear parameter
from zero. These numerical results, and those obtained via the above analytical methods,
are displayed in figure 1. The transition from the resonance to a true bound state occurs at
U crit

0 = −1.09. It is noteworthy that, despite the well-known fact that any 1D symmetric
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Figure 2. Two dimensions. Same as in figure 1 for two different values of the potential-shape
parameter, α = 0.16 and α = 0.18 (the upper and lower curves, respectively; the analytical curves
for Re(µ) at both values of α completely overlap). Regions of the resonance, bound state and
collapse are indicated.

potential with minimum below the asymptotic value of the potential gives rise to at least one
bound state in linear quantum mechanics, the nonlinear 1D GPE creates a bound state only if
−U0 �

∣∣U crit
0

∣∣ (i.e., if U0 � U crit
0 ).

In the 2D case with V0 = 0, the numerical solution of equations (4) and (5) shows that a
resonance or bound state can exist for α < αc = 0.192 45, where the tunnelling rate diverges
as αc − α → +0. For α � αc, the potential walls are too thin to retain the condensate. The
cases of α = 0.18 and α = 0.16 are shown in figure 2. The numerical study demonstrates that
collapse occurs at the point U coll

0

/
(2π) = −0.86, while the variational approximation gives a

result 13% larger (because the above ansatz is a poor approximation near the collapse, see [8]
and references therein). The transition from the resonance to a bound state takes place at the
point U crit

0

/
(2π) = −0.66. These values vary slightly with α.

In the 3D case, we again start by considering V0 = 0. Varying α, we found that resonances
never turn into bound states as the nonlinearity coefficient U0 is made more negative. Instead,
the condensate collapses7, as shown in figure 3; the variational approximation produces exactly
the same result (details are not displayed here). It is not surprising that collapse sets in after the
stabilization of the bound state in the 2D case (figure 2), while this does not happen in 3D:
as is well known, the cubic nonlinearity gives rise to weak and strong collapse in 2D and
3D, respectively (the nonlinear term of the effective potential in 2D and 3D is U0r

−1|φ|2 and
U0r

−2|φ|2, respectively).
The above result for the 3D case may be understood as follows: the variational

approximation with the Gaussian ansatz shows that the chemical potential at the collapse
point in the isotropic 3D harmonic well without a Gaussian envelope is µcoll = 0.224. Since
this value is greater than zero, and the full potential has V (∞) = 0, it is not possible to

7 What actually happens in the case of collapse cannot be determined within the mean-field description. We do not
address this issue here.
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Figure 3. Three dimensions. The width of the resonance states versus energy for three different
wells with V (0) = V (∞) (i.e., V0 = 0): α ≡ (�ho/�Gauss)

2 = 0.02, 0.03 and 0.04. For the
definition of k, see the label attached to the vertical axis. In each case, the collapse point is reached
before the resonance can be stabilized into a bound state. The variational WKB approximation
produces similar results (not shown here).

Figure 4. Three dimensions. Same as in figure 1 for the potential (2) with α = 0.02 and V0 = −0.8
(so that V (0) = V (∞) − 0.8). The offset V0 < 0 allows for the stabilization of the resonance into
a bound state, unlike the case shown in figure 3.

transform a resonance into a bound state. However, lowering V (0) ≡ V0 (see equation (2))
with respect to V (∞) makes such a transition possible. To illustrate this, the case of V0 = −0.8
and α = 0.02 is shown in figure 4. The corresponding potential (2) has a single resonance
and no bound states in the linear limit (U0 = 0). The figure shows that, as |U0| increases,
the width and energy of the resonance decrease, and indeed the resonance is stabilized into
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a bound state at the point U crit
0

/
(4π) = −0.552. As in the 1D and 2D cases, the variational

WKB approximation provides for reasonable accuracy, as compared to the numerical results.
Clearly, our two independent methods may also be used to address the question of whether

BECs with repulsive nonlinearity have a critical point beyond which bound states trapped in
a potential well destabilize into resonances as the nonlinearity is increased.

In conclusion, we have demonstrated within a mean-field approximation that resonances
in a BEC can be transformed into true bound states, as the strength of the attractive nonlinearity
increases beyond a critical value

∣∣U crit
0

∣∣. Borders between three different dynamical regimes,
namely resonances, bound states and collapse, have been delineated. In 1D, resonances can
always be stabilized into bound states, as collapse is not possible. In 2D, we find that the
transition of the resonance into a bound state can be readily achieved before collapse occurs,
as the collapse is weak in this case. However, in 3D, where collapse is strong, the critical
value for the transition,

∣∣U crit
0

∣∣, can be made smaller than the collapse threshold,
∣∣U coll

0

∣∣, only
if V (0) < V (∞), i.e., the floor of the potential well is lower than at infinity. In optically
trapped BECs, this can be achieved by means of depression of the effective potential well with
a red-detuned laser.
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