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Partially incoherent gap solitons in Bose-Einstein condensates
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We construct families of incoherent matter-wave solitons in a repulsive degenerate Bose gas trapped in an
optical lattice (OL), i.e., gap solitons, and investigate their stability at zero and finite temperature, using the
Hartree-Fock-Bogoliubov equations. The gap solitons are composed of a coherent condensate, and normal and
anomalous densities of incoherent vapor cotrapped with the condensate. Both intragap and intergap solitons
are constructed, with chemical potentials of the components falling in one or different band gaps in the
OL-induced spectrum. Solitons change gradually with temperature. Families of intragap solitons are com-
pletely stable (both in direct simulations and in terms of eigenvalues of perturbation modes), while the intergap
family may have a very small unstable eigenvalue (nevertheless, they feature no instability in direct simula-
tions). Stable higher-order (multihumped) solitons and bound complexes of fundamental solitons are found too.

DOI: 10.1103/PhysRevA.74.033614

I. INTRODUCTION

An ultracold Bose gas is, in general, a mixture of a co-
herent Bose-Einstein condensate (BEC) and an incoherent
(fluctuating) “vapor.” As shown in Refs. [1,2], the Hartree-
Fock-Bogoliubov (HFB) description of such a mixture in one
dimension is provided by the Gross-Pitaevskii (GP) equation
for the condensate order parameter ¢(x,f), coupled to equa-
tions for components of the vapor wave function, u(x,t) and
v(x,7), which are responsible for normal and anomalous den-
sities of the fluctuations. This approach and related formal-
isms for the description of fluctuations make it possible to
analyze various effects, such as quantum phase diffusion in
BEC and its depletion in a time-dependent trap through
transfer of atoms to noncondensed states [3], depletion of
dark solitons [4], quantum-noise squeezing of gap solitons in
a repulsive condensate trapped in an optical lattice (OL) [5],
deviations from one-dimensionality [6], and friction and dif-
fusion of solitons in a cloud of thermal atoms [7]. The full
system of coupled HFB equations was used in Ref. [2] to
show that, in the case of attraction between atoms, the matter
flux from the condensate to the vapor may lead to splitting of
bright matter-wave solitons (which have been created experi-
mentally in “Li [8] and 3°Rb [9] condensates) into two frag-
ments that may be regarded as partially incoherent solitons,
i.e., bound states of the coherent condensate and vapor com-
ponents, similar to partially incoherent solitons known in
nonlinear optics [10].

The objective of this work is to find solutions for partially
incoherent gap solitons (GSs) in an OL potential, and inves-
tigate their stability, at zero and finite temperatures. GSs in
BEC were predicted using the GP equation [11], and then
created experimentally in a ’Rb condensate [12] (these soli-
tons were quite “meager,” each consisting of just a few hun-
dred atoms). Partially incoherent lattice solitons at finite tem-
perature (T) were qualitatively predicted in Ref. [13], which
relied upon simulations of the GP equation, starting with a
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random Bose distribution at finite 7" and gradually forming a
soliton by switching the OL potential on. Families of two-
component GSs of intragap and intergap types (see below),
i.e., with chemical potentials of the components falling in
one or different band gaps of their common OL-induced lin-
ear spectrum, were found within the framework of GP equa-
tions coupled by repulsion between the species [14]. It is
relevant to mention that two-component solitons of the inter-
gap type [15], as well as their discrete counterparts [16],
were earlier predicted in lattice models of nonlinear optics
[10]; however, these were coherent objects and, unlike the
model considered here (see below), they were found in mod-
els that did not include coherent four-wave-mixing terms.
The GS is not a ground state of the repulsive condensate
(it is obvious that it does not realize an absolute energy mini-
mum for the self-repulsive condensate loaded into the OL
potential, with a given number of atoms), but it is neverthe-
less stable. It is relevant to stress the difference of the analy-
sis of quantum fluctuations around the GSs from the problem
of quantum depletion of dark solitons, where fluctuations fill
out the notch at the center of the soliton and thus gradually
destroy it [4]. For GSs (which are bright solitons), the notch
is absent in the family of solutions found in the first band gap
[see Fig. 2(a)]. In the second gap, notch(es) may be present
in decaying wings of the soliton’s wave form [see Figs. 2(b)
and 5], but the soliton’s identity is not predicated on them.
The paper is organized as follows. In Sec. II, we formu-
late the model, which is based on time-dependent HFB equa-
tions for the coherent condensate and incoherent vapor com-
ponents interacting with it (at finite 7). Basic results for the
partially coherent GS families of the intra- and intergap
types, found in a numerical form at 7=0 and 7>0, are re-
ported in Sec. III. Examples of higher-order (multihumped)
solitons of various types are presented in Sec. III too. Stabil-
ity of these solitons is investigated, by means of computation
of the corresponding eigenvalues for small perturbations, and
in direct simulations, in Sec. IV. Section V concludes the

paper.
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FIG. 1. The band gaps (unshaded areas) in the identical spectra
of three linearized equations (7), with w standing for any chemical
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II. THE MODEL

Coupled time-dependent HFB equations are obtained as a
truncation of a hierarchy of approximations [1] developed
for the description of the dynamics of interacting condensate
and vapor components of the degenerate bosonic gas, at very
low but, generally, finite 7. Following Ref. [2], the equations
for the gas with repulsion between bosonic atoms are cast in
the following normalized form, with the nonlinearity coeffi-
cient scaled to unity:

io;_(f - %% +[~ e cos(2x) +|¢* + 27l + g, (1)

d(u L —in-¢ \(u
i— =\ . . ) . (2)
ar\v i +(¢) -L v

Here L=-(1 12)d —e cos(2x) +2(| B> +71), = (1+Np)|v|
+Nplul?, and #i=—-(1+2Ng)uv" are the normal and anoma-
lous fluctuation densities (the asterisk stands for the complex
conjugation),

NB= (eE/kT_ 1)—1 (3)

is the Bose occupancy, with E the ground-state energy of the
tight transverse confinement (note that the one-dimensional
equations are derived from their 3D counterparts, assuming
strong confinement in the transverse plane, by means of vari-
ous approaches implying averaging in the transverse plane
[17,18]), and € is the strength of the longitudinal OL poten-
tial, whose period is scaled to be . A dynamical invariant of
Egs. (1) and (2) is the total number of atoms,
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N= j PRI + (1 + 2N + o) Thdx

= Ny(1) + N, (1) + N, (1) “4)

(note that the expression for N explicitly depends on T via
Np).

Partially incoherent GSs are looked for as bound states in
which the coherent condensate and incoherent vapor compo-
nents are trapped together in the OL,

Bx,1) = D(x)e™ M,

{uCe,0,0(x,0} = {U)e™ !, V(x)e 'y, (5)

with chemical potentials w4, u,, and -, subject to the con-
straint (phase-locking condition),

Myt Iav = 21“‘(/)’ (6)

which implies that collisions may kick out pairs of conden-
sate atoms into the vapor (i.e., dynamical depletion of the
condensate); the above-mentioned transverse-confinement
energy was subtracted from the chemical potentials. Equa-
tions for the stationary parts of the wave functions are ob-
tained by the substitution of expressions (5) in Egs. (1) and

(2):
pg® == @"12 - £ cos(2x)P + (|P* + 27) P + M D",

w,U==U"12 =g cos(2x)U + 2(|®)* + ) U — (P> + )V,

&,V ==V"12 =g cos(2x)V+2(|D)? + A)V - (P> + ) "U.
(7)

In the linear approximation, Egs. (7) decouple into
the Mathieu equation for the condensate, ®”
+2[ py+e cos(2x)]® =0, and its replicas for U and V, giving
rise to identical band-gap spectra for the three waves. This
band-gap spectrum is displayed, for the sake of illustration,
in Fig. 1. GS solutions can be found if g4, u,. and i, [the
latter chemical potential is equal to —u, +2u4, as per locking
condition (6)] belong to one or different band gaps. The re-
spective solutions will be called intragap and intergap soli-
tons, as in Ref. [14] (see also Refs. [15,16]). In particular, in
the typical case of a moderately strong OL, which is used
below to present generic results, with OL strength =5
(i.e., 2.5Eg, where the recoil energy is, in physical units,
Ex=h%k*/2m, k being the OL wave number), the first
and second band gaps in Fig. 1 are -2.5<u<<0.7 and
1.2<u<3.8.

To conclude the description of the model, it is relevant to
stress that the fluctuations, u(x) and v(x), must include con-
tributions from all Bloch bands of the periodic potential. For
sufficiently large &, the lowest bands are narrow, hence the
Bloch states in each of them may be approximated by a
single mode in « and v. For instance, inspection of the spec-
trum from Fig. 1 for e=5 (this value will be used below)
demonstrates that the three lowest bands are indeed suffi-
ciently narrow to be approximated by single modes, while
other bands have little relevance as they correspond to very
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high values of the chemical potential. Furthermore, in this
situation contributions from mode-mixing cross terms to
quadratic quantities (integrated densities, that measure the
strength of the fluctuation components in the Bose gas, see
below) are negligible, in view of the effective mutual inco-
herence of the Bloch wave functions in distinct narrow bands
separated by wide gaps. Therefore, in such a representation,
the integral quantities actually take the familiar form of di-
agonal sums over several fluctuation modes [1-4].

III. NUMERICAL RESULTS: FAMILIES OF PARTIALLY
INCOHERENT GAP SOLITONS

A. Intragap solitons

Generic examples of solutions to Eqgs. (7) with T=0 and
T>0, in the form of intragap GSs with the three chemical
potentials falling in the first or second band gap, are shown
in Fig. 2. In terms of Ref. [14], they are categorized as
tightly and loosely bound solitons, respectively. Note that
N3p=1 corresponds to T=70 nK, if the transverse trapping
frequency is 277X 1 kHz. In Fig. 2, it is seen that the soliton
does not suffer drastic changes with the increase of tempera-
ture.

Families of partially incoherent GSs can be characterized
by fractions of the vapor components in the total number of
atoms, i.e., N,/N and N,/N [see Eq. (4)], as functions of w,
and f,, each chemical potential varying within a given band
gap. In Fig. 3 we display these dependences for 7=0, with
both w, and @, belonging to the first or second band gap
[then w,=(m,+/,)/2, see Eq. (6), lies in the same gap,
hence the families are of the intragap type, indeed]. A
“valley” in the plots running along the diagonal means that
the symmetric solutions, with u,= i,,, amount to the ordinary
GSs, with u=v=0. All solitons belonging to these families in
the first and second gaps feature, respectively, tightly and
loosely bound shapes, similar to those in Fig. 2.

Figure 4 shows that the dependence of N,/N and N,/N on
temperature is very weak, at fixed values of u, and &, (in the
temperature range considered). Counterparts of the latter de-
pendence for fixed N (rather than fixed chemical potentials)
may be interesting too, but they need a large pool of numeri-
cal data and will be reported elsewhere.

B. Intergap and higher-order solitons

A family of intergap solitons has been constructed too,
with the chemical potentials of the fluctuational components,
M, and m,, belonging to the first and second band gaps, re-
spectively [then, the condensate’s chemical potential, locked
to u, and i, as per Eq. (6), wgs=(um,+f,)/2, belongs to the
second band gap too]. A typical soliton of this type is shown
in Fig. 5. Note that its U(x) component, which corresponds
to the chemical potential, u,, which belongs to the first band
gap, features a typical tightly bound shape, cf. Fig. 2(a),
while the shapes of the other two components, ®(x) and
V(x), that pertain to the chemical potentials, u, and f,,
which belong to the second band gap, are weakly bound, cf.
Fig. 2(a).
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FIG. 2. (Color online) Typical examples of stable intragap soli-
tons found for 7=0 and 7> 0, which correspond to Bose occupancy
N3=0 and 1, respectively [see Eq. (3)] in the first (a) and second
(b) band gaps, with (a) u,=-2, &,=-2.5, and u,=-2.25; and (b)
#y=1.5, @,=3, and pu4=2.25. In this and other examples, the OL
strength is £=5.

The N,/N and N,/N characteristics for the entire intergap
family are presented in Fig. 6. Note that intergap solitons
with u=v=0 do not exist, unlike their intragap counterparts,
therefore these plots do not feature “valleys,” unlike Fig. 3.

In addition to the fundamental (single-humped) GSs, vari-
ous types of higher-order multihumped states have been
found too. In Fig. 7, we display (for T=0 and T7>0) the
simplest among them, which is single-humped in the conden-
sate field (¢), and doubled-humped in one of the vapor com-
ponents.

Obviously, the higher-order soliton shown in Fig. 7 is not
a bound state of fundamental solitons. On the other hand,
straightforward bound states can be found too, see an ex-
ample of a three-soliton complex in Fig. 8. Note that, as per
a general principle for the stability of bound solitons on lat-
tices [19], this complex may be stable because the phase
difference between the bound solitons is 7. As well as the
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FIG. 3. (Color online) The vapor fractions N,/N and N,/N in
families of stable tightly and loosely bound intragap solitons in the
first (a,b) and second (c,d) band gaps vs u, and i,, at T=0.
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FIG. 4. (Color online) The vapor fractions N,/N and N,/N vs
temperature [shown via Bose occupancy N, see Eq. (3)] for the
same solitons as in Fig. 2.

fundamental intra- and intergap solitons, their higher-order
counterparts of various types form families which fill out the
band gaps.

IV. STABILITY ANALYSIS

The stability of the GSs was first tested in direct simula-
tions, which have demonstrated that they all appear to be
stable, both at 7=0 and 7>0. Most accurate information
about the stability can be obtained from computation of ei-
genvalues for small perturbations, using Eqgs. (1) and (2) lin-
earized around stationary solitons. In particular, the stability
of ordinary GSs was previously shown in the framework of
the Bogoliubov-de Gennes equations, which are derived by
the linearization of the GP equation about the solitons [20].

JuixO?
0.2,

amplitude

=
o

FIG. 5. (Color online) An intergap soliton at 7=0, with chemi-

cal potentials u,=0 and f,=3, ug=1.5, which fall in the first and

second band gaps, respectively. The inset illustrates stability of the

perturbed intergap soliton in direct simulations.
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FIG. 6. (Color online) The vapor fractions N,/N and N,/N in
the family of intergap solitons, at 7=0, vs chemical potentials of the
two fluctuational components, u, and [, belonging to the first and
second band gaps, respectively.

Following this approach, we first consider the stability of
the GSs with u=v=0 (i.e., the subfamily along the diagonal
“valleys” in Fig. 3) against small vapor perturbations,
u=e My, (x) and v=e"@*6N (x), where \ is the perturba-
tion eigenvalue. The instability implies the existence of ei-
genvalues with Im(\) > 0. In this case, linearized equations
(5) decouple from Eq. (1), yielding

(1/2)u} + [& cos(2x) = 2p|®|*Ju, + P*v; = \uy,

(172)v] + [& cos(2x) = 2p|®[*Jv; + Dy == (2 + Ny
(®)

Solving these equations (which do not depend on tempera-
ture) numerically (with proper boundary conditions), we
have concluded that all GSs with zero vapor components are
stable against “vaporization.”

Then, we performed the linear-stability analysis for the
full GSs, including nonzero vapor components. We have
found that the families of intragap solitons in both (first and
second) band gaps are completely stable (for 7=0 and
T>0 alike), in complete accordance with direct simulations.
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FIG. 7. (Color online) Stable higher-order solitons in the first
band gap, for the same parameters as in Fig. 2(a).
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FIG. 8. (Color online) An example of a stable bound state of
three fundamental solitons belonging to the first band gap
(for u,=-2.0, @t,=-2.2, and pys=-2.1): the condensate component
(a) and vapor wave functions (b).
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FIG. 9. (Color online) The instability growth rate for the family
of intergap solitons (at 7=0), as found from numerical solution of
the linearized equations for small perturbations.

Preliminary considerations of higher-order intragap solitons,
such as ones displayed in Figs. 7 and 8, suggest that they are
stable too.

For the intergap family, a weak instability is revealed by
the computation of eigenvalues, see Fig. 9 (since intergap
solitons cannot exist without vapor components, this insta-
bility is specific to the partially incoherent GSs). However,
this weak instability does not manifest itself in direct simu-
lations (as shown, for instance, by the inset in Fig. 5), which
suggests that the intergap solitons, even though being for-
mally unstable, may be observed in experiments.
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It is also relevant to check the stability of the solitons
against deviations from the one-dimensionality [6]. In the
simplest approximation, this amounts to modifying the equa-
tions, keeping them effectively one-dimensional but adding
quintic terms to the cubic nonlinearity [7,18]. Preliminary
analysis shows that no additional instability emerges in this
way.

V. CONCLUSION

We have found families of matter-wave gap solitons
(GSs) in the degenerate Bose gas with repulsive interactions
between atoms, trapped at zero or finite temperature in a
periodic optical-lattice (OL) potential. Stability of the GSs
was studied too. The solitons include a coherent condensate
wave function, and two components of the incoherent “va-
por” (which actually comprise many fluctuation modes, due
to the OL’s band structure). Chemical potentials of all con-
stituents of the GS must fall in band gaps. Accordingly, fami-
lies of intra- and intergap solitons (including higher-order
ones, and bound states of fundamental solitons) were found
in the two lowest band gaps, and it was concluded that they
do not change drastically with the growth of temperature.
While the intragap GSs are completely stable, their counter-
parts of the intergap type feature a very small unstable per-
turbation eigenvalue, but, nevertheless, they do not demon-
strate any tangible instability in direct simulations.
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