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Water clusters and some phases of ice are characterized by many isomers with similar oxygen
positions, but which differ in direction of hydrogen bonds. A relationship between physical
properties, like energy or magnitude of the dipole moment, and hydrogen bond arrangements has
long been conjectured. The topology of the hydrogen bond network can be summarized by oriented
graphs. Since scalar physical properties like the energy are invariant to symmetry operations,
graphical invariants are the proper features of the hydrogen bond network which can be used to
discover the correlation with physical properties. We demonstrate how graph invariants are
generated and illustrate some of their formal properties. It is shown that invariants can be used to
change the enumeration of symmetry-distinct hydrogen bond topologies, nominally a task whose
computational cost scales likeN2, whereN is the number of configurations, into anN ln N process.
The utility of graph invariants is confirmed by considering two water clusters, the~H2O!6 cage and
~H2O!20 dodecahedron, which, respectively, possess 27 and 30 026 symmetry-distinct hydrogen
bond topologies associated with roughly the same oxygen atom arrangements. Physical properties of
these clusters are successfully fit to a handful of graph invariants. Using a small number of isomers
as a training set, the energy of other isomers of the~H2O!20 dodecahedron can even be estimated
well enough to locate phase transitions. Some preliminary results for unit cells of ice-Ih are given
to illustrate the application of our results to periodic systems. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1336804#
ol
n
n
re
h
s

r
e
n
ge

c

to

gen
y

ar-
gen-
m-
m
d

n

in
or
ll

h-
as

to
INTRODUCTION

Hydrogen bonds are long-lived structures in ice and c
water clusters, and, to a lesser extent, in liquid water. Tha
to the strong tendency of water to form hydrogen bonds i
tetrahedral arrangement, our understanding of the th
dimensional structure and dynamics of aqueous systems
long been couched in terms of a reduced description ba
on hydrogen bond connectivity.1 Many phenomena illustrate
how hydrogen bond topology serves as a critical structu
descriptor: The zero-point entropy of ice-Ih, ‘‘ordinary’’ ic
at atmospheric pressure, is thought to be a manifestatio
frozen-in complete disorder among the possible hydro
bond topologies of the ice lattice2–5 ~but see below!. Trans-
port properties of ice are understood in terms of defects
H-bond connectivity.6 The language used to name the stru
tural isomers of water clusters—‘‘cage,’’7 for example, or
‘‘cube’’ 8—reflects the correspondence between H-bond
pology and water cluster structure.9,10 The strength of hydro-
gen bonds within the ice-Ih lattice has been conjectured
2520021-9606/2001/114(6)/2527/14/$18.00
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fall into strong or weak classes based on the local hydro
bond topology,11–15 although this distinction has recentl
been questioned.16,17

To determine the lowest energy hydrogen bonding
rangement or construct a statistical average requires, in
eral, a sampling of the hydrogen bond topologies. The nu
ber of available topologies grows exponentially with syste
size. In 1935 Pauling2 estimated that the number of H-bon
arrangements available toN water molecules in the ice-Ih
crystal structure is (3/2)N, an estimate that has been show
to be accurate within a few percent.4,5 The number of struc-
tures in a simulation cell of even 100 water molecules is
the range of;1018, so it might appear that enumeration
sampling of topologies for a system of this size will fa
exclusively in the province of either Monte Carlo17,18 or
more sophisticated variants of Monte Carlo.19,20

The purpose of this work is to provide analytic tec
niques for complicated hydrogen bonded systems, such
the myriad arrangements of ice-Ih, which would seem
7 © 2001 American Institute of Physics
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only be tractable by numerical simulations. The problem
H-bond structures in ice-Ih also happens to be a particul
fascinating one. The experimental residual entropy of ice
at 0 K is close to Pauling’s estimate,2,3 leading to the con-
clusion that H-bond topological disorder becomes frozen i
the ice-Ih lattice as temperature is lowered from the freez
point to absolute zero. Within the last decade, experime
have detected a phase transition in KOH-doped ice
weakly dependent on KOH concentration and tending tow
72 K in the limit of vanishing impurity concentration.21–25

This seems to indicate that the KOH impurity catalyzes
rearrangement of hydrogen bonds, and that ordinary ice
equilibrium could be attained, would undergo a proton ord
ing transition at 72 K. Neutron scattering26–29 and thermal
depolarization experiments30,31 on KOH-doped ice-Ih sug-
gest that the proton-ordered form of ice-Ih, known as ice-
is an orthorhombic ferroelectric crystal, although the int
pretation of these experiments has been debated.32–34 Most
common potential models for water do not predict this str
ture as the ground state, which has forced a reappraisa
such models.17 More recently, Antarctic ice cores have be
investigated with Raman spectroscopy.35 These samples ar
believed to have been equilibrated at temperatures contro
by their depth beneath the surface for tens of thousand
years. The Raman spectra indicate a phase transition at
K that has similar characteristics as, but lies far above,
phase transition in KOH-doped ice-Ih. Studies on Greenl
ices failed to find similar evidence for a phase transition36

Therefore, the current understanding of ordinary ice is r
for further experimental and theoretical insight.

Hydrogen bonds are directional, so hydrogen bond
pologies are in one-to-one correspondence with orien
simple graphs, that is, collections of vertices connected b
most one directed edge. The direction of a hydrogen b
points from hydrogen donor to hydrogen acceptor. Enume
tion of H-bond topologies becomes an exercise in gra
theory, to list all possible graphs consistent with the
called ‘‘ice rules.’’37 These rules allow at most two edge
emanating from a vertex because H2O molecules can donat
at most two hydrogens, and at most two edges incident u
a vertex since at most two hydrogen bonds can be acce
at the lone pairs. The ice rules are modified in an obvio
way to accommodate the presence of species like OH2 and
H1.9

In anything but the smallest water clusters or unit ce
of ice crystals, one is faced with huge numbers of confi
rations. In the more rigid ice clusters—the~H2O!6 cage, the
~H2O!8 cube, the~H2O!20 dodecahedron, to name a few—an
in ice-Ih, local minima of the potential energy surface are
a good approximation, in one-to-one correspondence w
oriented graphs. How does one find the ground state or c
struct a thermal average with anything but numerical sa
pling techniques? Perhaps the most useful result of the
rent work is a strategy by which the physical properti
including but not necessarily confined to the energy, o
large number of H-bonded structures can be summarized
predicted in terms a handful of parameters, each assoc
with a special linear combination of variables defined
oriented graphs called agraph invariant. The procedure by
Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to
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which physical properties are correlated with, and predic
by graph invariants is automatic and does not rely on spe
physical insight, although graph invariants will certainly f
cilitate deeper physical interpretation. The number of gra
invariants used to fit and predict physical properties can
systematically enlarged, leading to a hierarchy of approxim
tions. To determine the energy or find the ground st
among a vast number of structures, we can therefore
graph invariants to avoid explicit and often costly calcu
tions for all but a small training set of structures from whi
the parameters can be extracted. The procedure is teste
this work for two water clusters, the~H2O!6 cage and
~H2O!20 dodecahedron, for which 27 and 30 026 hydrog
bonding arrangements are possible. We also illustrate
utility of graph invariants in the enumeration of the hu
number of H-bond structures possible for a unit cell of ic
Ih, but leave further analysis of this challenging problem to
future work.

Computationally, explicit enumeration of allowed grap
for hydrogen-bonded systems is relatively straightforwa
but eliminating structures that are related to each other b
symmetry operation is not. Nominally, elimination o
symmetry-related graphs is an;N2/2 process, whereN is
the number of graphs, because it involves comparison
pairs of graphs. Moreover, each of the;N2/2 comparisons
can be rather expensive when the symmetry group is la
In this work we show how use of graph invariants38,39 can
change the scaling of computational effort withN from N2 to
N ln N. The desirability of eliminating symmetry-relate
structures is illustrated by our calculation for a 48-memb
hexagonal unit cell of an ice-Ih lattice: there a
2 404 144 962 graphs possible in total, but only 8 360 3
symmetry-distinct structures. With such large numbers
configurations,N ln N scaling is an enormous improvemen
Elimination of symmetry-related configurations has been
tempted previously ‘‘by hand’’ for small ice unit cells.40 The
results of this effort are in apparent conflict with attempts
group symmetry-related structures based on energ
criteria.17,41 Therefore, efficient and reliable computation
methods of generating hydrogen bond graphs are neede

Countingtotal numbers of allowed graphs on an infini
periodic lattice~or regular finite structures! can be addresse
by series expansion methods.4,5 Even though series expan
sions have only been used, to our knowledge, for coun
total numbers of hydrogen bond arrangements in reg
structures, these methods can presumably be extended to
culate certain averages with generating functi
techniques.42 However, the graphs themselves, not just to
numbers or averages, are needed to construct explicit
lecular structures for further study, as would be needed
input for anab initio or empirical potential calculation.

The notion of a graph invariant is introduced in Sec.
Graph invariants often have a simple physical interpretati
as we illustrate in this section. The use of graph invariants
change the enumeration of symmetry-distinct graphs from
N2 to N ln N process is described in Sec. II. This section m
be omitted by readers who are not interested in the nume
problems associated with enumeration of H-bonded str
tures. When the energy and other physical properties ca
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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correlated with topological properties of the hydrog
bonded network, as first noted for water clusters
Radhakrishnan and Herndon43 and also by McDonald,
Ojamäe, and Singer,9 then the physical properties, them
selves being invariant with respect to symmetry operatio
should be expressible in terms of the values of graph inv
ants.

The link between physical properties and H-bond top
ogy suggests the following strategy for global optimizatio
put forward in Sec. III, which is useful even when the nu
ber of such isomers is too large to enumerate or analyze
Monte Carlo procedure can be used to generate a trainin
of structures.17,18 The training set can be used to establish
relationship between physical properties and the value
graph invariants, either by least-squares fitting or more
phisticated methods. The tentative relationship betw
physical properties and topology can be refined by furt
sampling. In this way, low-entropy structures, which m
tend to be overlooked in Monte Carlo methods, can be id
tified by selective enumeration. Invariants can concisely
rametrize the energy of a large number of H-bond arran
ments, thereby permitting the calculation of physic
properties that involve the entire ensemble of H-bond topo
gies, like phase transitions, with a minimum of input. W
illustrate this capability with a model calculation of a clust
phase transition for the~H2O!20 dodecahedron in Sec. III.

In Sec. IV we show how invariants may be applied
periodic systems by giving results for hexagonal unit cells
ice-Ih. We conclude with a brief discussion in Sec. V.

I. GRAPH INVARIANTS

Hydrogen bonds between water molecules are dir
tional. One water ‘‘donates’’ its covalently bonded hydrog
to the bond while the second water ‘‘accepts’’ that hydrog
in the vicinity of the lone pair electronic cloud. The hydr
gen bonded network within a water cluster or ice crysta
summarized by graphs in which the vertices represent o
gen atoms and directed bonds~or edges! connecting vertices
represent hydrogen bonds. By convention, the directed bo
point from donor to acceptor. The so-called ‘‘ice rules
stipulate that each neutral water vertex has a maximum
four neighbors. At each vertex there are a maximum of t

FIG. 1. A simple example of an oriented graph, which might represent
configuration of a (H2O!3 cluster, is shown on the left. The direction show
on the edges indicates the orientation of the edges if all the bond varia
br were taken equal to11, canonical orientations chosen arbitrarily for ea
bond. Two different hydrogen bond topologies for (H2O!3 are shown on the
right, along with the value of the bond variables, as referenced to
canonical orientations of the graph on the left.
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outgoing edges, the covalently bonded hydrogens, and
incoming edges, where the two lone pairs can accept
H-bond. The formalism can easily accommodate excess
tons or hydroxide by allowing the appropriate local dev
tions from these rules.9

The hydrogen bond topology of a finite or infinite sy
tem of water molecules is summarized by a collection
variablesbi j , one for each vertex pairij , whose value is

bi j 55
1 if water i donates to waterj

21 if water j donates to wateri

0 if there is no hydrogen bond between

i and j .
~1!

The order of the indices onbi j is meaningful, so to describe
the same physical configuration,bji 52bi j , it is convenient
to let a single indexr replace the dual index for bond pairsij .
It is arbitrary whetherr stands forij or ji , but some canonica
ordering of the bond pairs must be specified. For example
the triangle graph of Fig. 1 the canonical direction chosen
b1 is from vertex 1 to vertex 2. With this convention,b1

51 indicates that molecule 1 donates to molecule 2, wh
b1521 specifies that molecule 2 accepts a hydrogen b
from molecule 1. In Fig. 1 we give some examples of hyd
gen bond arrangements in a triangular cluster of three w
molecules, and the value of bond variables that specify th
physical configurationsrelative to the canonical orientations
given to the left in Fig. 1. In general, once the canonic
orientation for each directed edge is specified, the phys
meaning ofbr is clear: If r stands forij , thenbr51 indicates
that wateri donates to waterj, while if r stands forji , then
br521 must be used to indicate the same arrangement

Symmetry properties of a cluster or crystal are ma
fested by a group of permutation operations mapping the
of vertices onto themselves. The list ofadjacent vertices
~vertices connected by a bond, irrespective of the bon
direction! is preserved by each of the symmetry operatio
It is important to note that the symmetry group pertains
the oxygen atom ‘‘scaffold,’’ and is not dependent on pa
ticular orientations of hydrogen bonds. The group of symm
try operations for the vertices of the triangular graph sho
in Fig. 1 are the 3! vertex permutations given in the seco

e

les

e

TABLE I. Group of vertex permutations for the triangle graph shown in F
1, and the induced group of signed permutations on the bonds of the tria
graph. For the vertex permutations, we denote the permutation taking v
ces 1, 2, and 3 toi, j, andk as ~ijk!. Often this permutation is indicated b
( i j k

1 2 3). It is also common to indicate permutations in terms of independ
cycles, in terms of which, for example, thesv permutation would be written
as ~1!~23!. Our notation for signed bond permutations follows that for ve
tices.

ga Vertex permutation Signed bond permutation

E ~123! (b1 ,b2,b3)
C3

21 ~231! (b2 ,2b3 ,2b1)
C3 ~312! (2b3 ,b1 ,2b2)
sv ~132! (b3 ,2b2 ,b1)
sv8 ~213! (2b1 ,b3 ,b2)
sv9 ~321! (2b2 ,2b1 ,2b3)
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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column of Table I. The group members are labeled by c
responding real-space point group operations in Table
provide a useful mnemonic, but fundamentally our form
ism deals with connectivity, or topology, and not geomet

We stress that the utility of the graph formalism is not
all dependent on the physical isomers having the full sy
metry of the vertex and bond permutation groups. Cons
two H-bond topologies that are symmetry related. They e
correspond to distorted local minima, and possibly have
or no symmetry. As long as the topologies are symme
related, then the energy and any other physical propert
the distorted local minima corresponding to those topolog
will be identical. Therefore, parametrization of energy of d
torted structures in terms of invariants based on higher s
metry of the oxygen scaffold is appropriate. While the valu
of bond lengths and angles are irrelevant in the graph th
retical formalism, it is not true that physical geometry
entirely irrelevant. Firstly, adjacent bonds reflect physi
proximity. Secondly, the symmetry group may be chosen
reflect expected physical geometry, which may lower
symmetry from that based solely on connectivity.

As a hypothetical example, consider a ring of five ver
ces which represent a geometry in which four vertices
coplanar and the fifth lies far outside the plane. The symm
try group determined by vertex adjacency isD5h , but one
may choose a smaller symmetry group, perhapsCs , to re-
flect the nonplanarity of the ring. However, use of the high
symmetry group may still be appropriate. Consider geome
optimizations initiated from a planar starting structure. If tw
planar initial structures which are equivalent withinD5h

symmetry optimize to the same distorted structure, then
energy of the isomers will be described by the more comp
invariants of theD5h symmetry group. TheCs symmetry
group will generate a larger set of initial structures and~if
they exist on the potential energy surface! will enumerate
more physical isomers. In this situation, the symmetry gro
should be chosen to suit the goals of the calculation and
properties of the potential energy surface.

The symmetry group on vertices induces a group
signed permutations on the bonds. We signify the image
group operationa on bondbr with the notationga(br). For
example, theC3 operation on the triangle graph in Fig.
brings vertices 1 and 2 to vertices 3 and 1, respectively~also
see Table I!. Therefore, bondb1 is moved to the location o
bondb3 . By the convention chosen in Fig. 1,b1511 indi-
cates an H-bond from 1 to 2, andb3511 indicates an
H-bond from 1 to 3. However, theC3 operation takes a bon
from vertex 1 to vertex 2 to another bond from vertex
to vertex 1, not from 1 to 3. Therefore, the image ofb1

under the C3 operation is 2b3 , not b3 , and gC3
(b1)

52b3 .

A. Generation of graph invariants

We seek functions of the bond variablesb
5$b1 ,b2 ,...,br ,...% that, like physical properties, are un
changed by application of symmetry operations. These s
cial functions, theinvariants, have the property

ga~ I ~b!!5I ~ga~b1!,ga~b2!,...!5I ~b!. ~2!
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The functionsI (b) transform as the totally symmetric repre
sentation of the induced group on bonds. According to st
dard group theory, invariants can be constructed using a
jection operator, which takes a particularly simple for
because the characters for the totally symmetric represe
tion are all unity. For example, the application of a proje
tion operator to a single bond variable takes the form

I r5Cr (
a51

G

ga~br !, ~3!

where Cr is a normalization constant chosen for conv
nience. Now consider the application of a group operationgb

to I r :

gb~ I r !5Cr (
a51

G

gb~ga~br !!. ~4!

According to the requirements for group operations the co
positiongb(ga(¯)), a51,2,...,G, generates each of grou
operations once and only once.@If gb(ga(¯)) and
gb(ga8(¯))# gave the same resultant operation, thengb

would fail to have a unique inverse.# Thereforegb(I r)5I r .
By precisely the same reasoning,I rs ,I rst ,..., asdefined

below, are also invariants:

I rs5Crs (
a51

G

ga~brbs!, ~5!

I rst5Crst (
a51

G

ga~brbsbt!,... . ~6!

We refer toI r as a first-order invariant,I rs as a second orde
invariant, and so on. It is obvious that the order of the indic
of bond generators does not change the invariants~i.e., I rs

5I sr!.
The number of first order invariants is generally le

than the number of bonds for several reasons. Many inv
ants may turn out to be identically zero. The necessary
sufficient condition for any invariantI rst... to vanish identi-
cally is the existence of a group operation that takes
product of bond variablesbrbsbt ... into minus itself, as
shown in the Appendix. In many cases, it is possible to fi
an operation which takes a single bondbr into 2br and
therefore many first-order bond invariants vanish identica
The number of first-order invariants may be less than
number of bonds for another reason. Ifga(br)56bs , appli-
cation of the projection operator in Eq.~3! to br and bs

yields the same result within an overall constant, in wh
caseI r and I s are equivalent. The number of different firs
order invariants depends on the number of independent
bits of the bond group, which in turn depends on the str
ture of the induced group on bonds. Similar consideratio
apply to the higher-order invariants. When all bonds a
filled, and therefore all bond variablesbr561, I rrstu...

5I stu... . There can be no linearly independent invariants
order greater than the number of bonds when all bonds
filled. Given a group of symmetry operations expressed
permutations of vertices, we have found symbolic alge
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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programs convenient for computationally generating the
duced group on bonds, and then a table of independen
variants.

Let us use the triangle graph of Fig. 1 as an example
illustrate the properties of invariants mentioned above.
rectly from Table I, it can be seen that all the first-ord
invariants are identically zero. As for second-order inva
ants, after convenient normalization we have that

I 115I 225I 335b1
21b2

21b3
2, ~7!

I 125I 235I 135b1b22b1b32b2b3 . ~8!

Since the image ofb1b2b3 is 1b1b2b3 under the first three
group operations in Table I and2b1b2b3 under the last three
operations,I 12350. Other third-order invariants, like

I 12252~b21b3!b1
21~b11b3!b2

22~b12b2!b3
2, ~9!

may take nonzero values if one of the bonds is empty.
Products of invariants are also invariant. Therefo

products of two first-order invariants can be expanded a
linear combination of second-order invariants, products
first and second are a linear combination of third-order
variants, and so on:

I r I s5(
tu

ctu
r ,sI tu , ~10!

I r I st5(
uvw

cuvw
r ,st I uvw ,... . ~11!

Standard group representation theory governs the resolu
of invariant products.

B. Physical interpretation of graph invariants

The invariants can be interpreted in terms of physi
quantities, often in terms of several such quantities. For
ample, second-order invariants of the triangle graph~Fig. 1!
with identical indices likeI 11 in Eq. ~7! simply count the
number of nonempty bonds within a group theoretical or
If we would write the dipole moment of water molecules
terms of bond dipoles of magnitudembond, the total dipole
moment due to ring dipoles would be

mx5 1
2 mbond~2b112b21b3!, ~12!

my52
)

2
mbond~b11b3!. ~13!

The squared magnitude of the dipole moment is

mx
21my

25mbond
2 @ 1

4 ~b1
214b2

21b3
222b1b324b1b2

14b2b3!1 3
4 ~b1

21b3
212b1b3!#

5mbond
2 @~b1

21b2
21b3

3!2~b1b22b1b32b2b3!#

5mbond
2 @ I 112I 12#,

a quantity invariant to symmetry operations. It therefo
comes as no surprise that second-order invariants nicely
ture the dependence of the squared magnitude of the di
moment on hydrogen bonded configurations.
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Second-order invariants can always be understood
terms of counting nonempty bonds and the magnitude of
dipole moment. However, these are not the only poss
interpretations of the second-order invariants. For exam
the invariantsI 3,75I 5,8 of the (H2O)6 cage structure shown
in Fig. 2 are connected to the number of single-donor/sing
acceptor molecules, a feature which strongly affects the t
energy of the cage.10 The precise relation is

FIG. 2. The cage structure of (H2O!6. One of the 27 possible symmetry
distinct hydrogen bonding arrangements for the cage structure is shown
arrows and bond labels indicate the directions of the bonds when the b
variables are equal to11.

TABLE II. First- and second-order invariants for the (H2O)6 cage structure
shown in Fig. 2. The invariants are calculated using a permutation symm
group on the vertices isomorphic to theD2d point group. In the text we refer
to the invariants by any of the bond products that generate the invarian
application of a projection operator. For example,I 35I 55¯ is at the top of
the list of first-order invariants, whileI 1,15I 2,2¯ heads the list of second
order invariants andI 3,95I 7,95¯ is at the bottom of the list.

First-order invariants

b31b51b71b8

b91b01b111b12

Second-order invariants

b1
21b2

21b4
21b6

2

b3
21b5

21b7
21b8

2

b9
21b10

2 1b11
2 1b12

2

b2b42b1b6

b3b71b5b8

b9b101b11b12

b1b22b1b41b2b62b4b6

b3b51b5b71b3b81b7b8

b5b91b8b101b3b111b7b12

b8b91b5b101b7b111b3b12

b9b111b10b111b9b121b10b12

b1b31b2b32b1b51b4b52b4b71b6b72b2b82b6b8

b1b92b4b91b2b101b6b102b1b112b2b111b4b122b6b12

b2b91b6b91b1b102b4b101b4b112b6b112b1b122b2b12

b3b41b2b52b3b61b5b62b1b72b2b71b1b82b4b8

b3b91b7b91b3b101b7b101b5b111b8b111b5b121b8b12
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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~number of single-donor/single-acceptors!512 1
2 I 3,7.

~14!

Incidentally, the (H2O)6 cage is an example of a structu
which has nonzero first-order invariants. The complete lis
invariants for the (H2O)6 cage is given in Table II. The first
order invariantI 35b31b51b71b8 counts the number o
H-bonds among bonds 3, 5, 7, and 8 pointing away from
center of the cage, while the invariantI 95b91b101b11

1b12 has a similar interpretation for bonds 9, 10, 11, and
~See Fig. 2 for the definition of the bond variables. Later
explain the rationale for including four bonds incident on t
apical vertices, even though the apical waters participat
only two hydrogen bonds and have only one dangling hyd
gen.!

While we have stressed that invariants possess phy
interpretations, their power lies in the fact that their gene
tion and use can be automated. Trends can be deduced
out reliance on physical insight or tedious trial-and-error p
cess. Better yet, the use of invariants can guide the disco
of physical interpretation, or show that several interpre
tions are equivalent. We will show that certain critical phy
cal properties are captured by surprisingly low order inva
ants because the constraints of the ice rules link propertie
nonobvious ways.

II. GRAPH INVARIANTS AS A TOOL FOR
ENUMERATING H-BOND TOPOLOGIES

Graph invariants can be used to change the computa
of all symmetry-distinct hydrogen bond topologies for
cluster or crystal unit cell from a process scaling asN2,
whereN is the total number of topologies, to anN ln N pro-
cess. Readers who are not interested in the computati
aspects of enumerating hydrogen bond arrangements
proceed to the next section.

Enumerating all possible hydrogen bond arrangeme
for a cluster is accomplished by considering each of thenbond

hydrogen bonds in turn. After completing the assignmen
i bond out of the totalnbond hydrogen bonds, a list of all hy
drogen bond topologies for the firsti bond bonds consisten
with the ice rules is in hand. Each entry of this list is
sequence of 1s,21s, or 0s of lengthi bond for each configu-
ration. The61s stand for the two orientations of an H-bon
and the 0 means the bond is left empty. Usually there are
the two orientations signified by61 but in certain cases
discussed below, we will see that also allowing a bond to
empty is useful. Instead of using bond variables, the H-b
configuration is sometimes parametrized by the arrangem
of edges incident at each vertex44,41 ~e.g., the six bond ar-
rangements at a vertex of a four-coordinate water!. The ad-
vantage furnished by invariants does not depend on how
H-bond configurations are parametrized.

The addition of bond (i bond11) means making a new lis
of H-bond topologies by attempting to fit in all orientation
of the (i bond11)th H-bond with each member of the old lis
When an orientation of the new bond is allowed by the
rules, that configuration ofi bond11 bonds is added to th
new list. Eventually a new list containing all possible orie
tations of H-bonds amongi bond11 bonds is completed, an
Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to
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the process of adding bondi bond12 is started. After some o
all of bonds are added, the list of configurations is checke
eliminate configurations that are related by a symmetry
eration. Symmetry-related configurations can be safely eli
nated from the list when only a fraction of the bonds ha
been added, for if two partial~that is, containingi bond out of
the full nbond bonds! configurations are symmetry-relate
then the configurations grown from these two by filling
the rest of the bonds will also be symmetry-related. Elim
nating symmetry-related graphs is the difficult step in en
merating H-bond topologies. It involves comparing pairs
graphs and is therefore nominally anN2 process, whereN is
the number of graphs before symmetry comparison. Sym
try comparison involves applying each group operation
turn and checking if a match is found. Two graphs are
termined to be symmetry-distinct only after all group ope
tions are applied. Therefore the pairwise comparisons a
lengthy process, more so when the symmetry group is la
and symmetry reduction offers the most benefit. By comp
son, checking the ice rules after adding an H-bond, a proc
that scales asN, is far less costly. The cost of the symmet
comparisons can be reduced by only performing this ch
after certain of the H-bonds have been added. It is bes
order the bonds into cycles or orbits, groups of bonds that
related by a symmetry operation, and check for symme
only after all bonds of an orbit are added. However, ev
with this strategy, the computational cost of checking
symmetry grows rapidly with system size and would quick
render most large calculations infeasible if there was
some way around theN2 scaling.

In this section we demonstrate that, using graph inva
ants, the nominallyN2 process of symmetry comparison ca
be turned into a calculation that scales likeN ln N. The strat-
egy is one of divide and conquer. The set ofN graphs is
sorted into groups of target sizen, such that graphs in differ-
ent groups must be symmetry-distinct. Within each grou
conventional~n2-scaling! symmetry comparison method i
used. Since there areN/n such groups, the total work asso
ciated with conventional symmetry comparison scales l
N/n3n25Nn, linear with the number of graphs. If sortin
can be made to scale more efficiently thanN2, the overall
efficiency of symmetry comparisons will be improved.

A. Sorting strategy

The value of all invariants of two symmetry-relate
graphs must be identical. Therefore, if we divideN graphs
into P groups, each one with a different value of a particu
invariant, symmetry comparisons need only be done wit
each group. The work of calculating the value of that p
ticular invariant for allN graphs and sorting them intoP
groups scales likeN, while the work of symmetry compari
sons now scales like (N/P)2 within each group. After sepa
ration into P groups, the work of symmetry compariso
scales likeP(N/P)25N2/P, an improvement by a factorP
in efficiency.

Instead of using just one invariant to sort the graphs i
smaller subsets, imagine usingm different invariants to sort
the graphsm times. For simplicity, we will assume that th
graphs are sorted intoP equal piles according to each ne
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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invariant. After employing the first invariant the graphs a
divided intoP groups. Then the next invariant divides ea
of those groups intoP subgroups, making a total ofP2

groups. Finally, afterm such sorts, the graphs are partition
into Pm groups of size

n5
N

Pm . ~15!

The goal is to reduce the groups to a target sizen which is
small enough to employ a conventional symmetry comp
son method. From Eq.~15!, the number of sorts required t
reach a target sizen is

m5
ln~N/n!

ln P
. ~16!

Each time the graphs are sorted, an invariant is ca
lated for each of the graphs, and that graph is either lab
or moved to another location in memory or on disk. The c
of each sort is proportional toN, the total number of graphs
The computational cost ofm sorts is proportional to

mN5N
ln~N/n!

ln P
. ~17!

Associating a coefficientA with the computational cos
of sorting the graphs into groups of target sizen, and another
coefficient B associated with the conventional symme
comparison within each group, the total work of eliminati
symmetry-related graphs scales like

AN
ln~N/n!

ln P
1B

N

n
n25

A

ln P
N ln N1S Bn2A

ln n

ln PDN. ~18!

The total work contains components that scale asN ln N and
as N, far more efficient than conventionalN2-scaling sym-
metry comparison.

We arrived atN ln N scaling by assuming that each so
breaks the graphs intoP groups of equal size. Actual com
putations are more complicated. The number of groups
which the graphs are sorted is the number of different val
an invariant takes over the set of graphs. This varies fr
invariant to invariant, so invariants differ in their ability t
resolve the graphs into smaller groups. Moreover, in e
sort the graphs are, in general, broken into groups of une
size. Therefore, the parameterP used in Eqs.~15!–~18! must
be taken as an average or effective number of groups.
basic idea is confirmed, and evidence presented below sh
N ln N scaling in realistic calculations.

B. Performation of sorting algorithm for realistic
calculations

We have previously enumerated the 30 026 symme
distinct H-bond topologies of the~H2O!20 dodecahedra
clathrate.9 After the addition of each hydrogen bond to th
structure, we determined which graphs were related to ot
by a symmetry operation and eliminated all but one rep
sentative from each set of symmetry related structures
symmetry-related graphs can be eliminated from sma
substructures, then we avoid the work of adding and tes
redundant new structures built from the symmetry-rela
Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to
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structures. The process of adding occupied bonds one
time furnishes a data set on which we can compare diffe
methods of graph enumeration. Our previous calculation9 did
use a crude version of what we now call invariants to sp
up symmetry comparisons, but ultimately it was
N2-scaling method because the graphs were not sorte
described in the previous section. The CPU time neede
eliminate symmetry-related duplicate structures is plot
against the number of graphs after each of the 30 bond
ditions in Fig. 3. The CPU time clearly increases faster th
linear with the number of graphs, and the old method ev
appears to scale withN more steeply thanN2.

The same~H2O!20 clathrate calculation was repeated u
ing graph invariants to sort the graphs until each group c
tained no more thatn5500 structures. The CPU time fo
sorting is plotted against the number of graphs in the
panel of Fig. 4. It is difficult to distinguish whether the com
putational cost is actually scaling asN or N ln N ~actually a
happy state of affairs!!, and clearly the calculation no longe
scales asN2 or worse. The CPU time for symmetry compar
sons within the group of sizen<500 is shown in the bottom
panel of Fig. 4, clearly compatible with linear scaling.

At the time we first published the enumeration of t
30 026 H-bond topologies of the~H2O!20 dodecahedron,9 it
was a challenging calculation. With the help of graphic
invariants, this calculation is rather quick. The most ch
lenging example we have tackled to date is the enumera
of the 8 360 361 symmetry-distinct H-bond topologies of
48-water hexagonal unit cell from the ice-Ih lattice. The
are 2 404 144 962 H-bond topologies of this system, incl
ing symmetry-related configurations, indicating how va
able the symmetry reduction can be.

FIG. 3. Enumeration of all symmetry-distinct H-bond topologies for
(H2O!20 dodecahedral clathrate was performed by considering a sequen
structures containing fewer bonds than the full dodecahedron. Additio
H-bonds were added to the structures after all symmetry-related duplic
were eliminated. This process furnishes data on the computational co
eliminating symmetry-related structures as a function of the numbe
graphs. This data shown is for the calculation as performed in Ref. 9, w
out the use of the sorting method introduced in this work. The computatio
cost per graph edge is plotted as a function of the number of graphsN before
symmetry comparisons were made. Least-squares fits of CPU time toN, N2

and N3 clearly show that the computational cost scales asN2 or worse
without the sorting method.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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III. CORRELATION AND PREDICTION OF PHYSICAL
PROPERTIES FROM H-BOND TOPOLOGY
USING GRAPHICAL INVARIANTS

The number of hydrogen-bonded arrangements fo
given water framework, increasing exponentially with sy
tem size, quickly grows beyond the point where it is practi
to calculate the energy, or other properties, of each struc
by ab initio, or even semiempirical or empirical potenti
methods. If physical properties correlate with hydrog
bonding topology, then connecting physical properties w
features of the hydrogen bonding network provides a n
means of understanding hydrogen bonded structures, a
new route to predicting their properties based on limited
put. Physical properties are themselves invariant to sym
try operations. If a correlation exists between physical pr
erties and hydrogen bonding topology, the graph invaria
furnish the required connection.

A. „H2O…6 and „H2O…20

Our first test of the correlation between H-bond topolo
and physical properties is the~H2O!6 cage. Using the semi
empirical PM3 method,45 Tissandieret al. recently deter-

FIG. 4. Data for the same calculation as in Fig. 3, this time employing
sorting method introduced in this work. CPU time per graph edge for sor
the graphs is plotted against the number of graphsN in the top panel. The
total CPU time for symmetry comparisons within groups of sizen<500 is
shown in the bottom panel. Least-square fits clearly show that the com
tational cost scales as eitherN or N ln N in each case, and definitely not lik
N2 as in Fig. 3. On the basis of arguments presented in Sec. II we ex
N ln N scaling in the bottom panel and linear scaling in the top panel.
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mined optimized geometries of isomers corresponding
each of the 27 hydrogen bond topologies possible for
~H2O!6 cage structure~Fig. 2!, and calculated the energy an
dipole moment at each optimized geometry. Where comp
son could be made, they found the semiempirical energ
consistent with previousab initio results.46–50 Here we take
those results and test whether these properties correlate
hydrogen bond topology, and, if so, how effective invarian
are in fitting those properties. Of course, what we are tes
is not dependent on the absolute accuracy of the P
method. As long as both PM3 properties and those fr
more accurate methods exhibit a similar level of depende
on H-bond topology, then PM3 properties can be used
gauge the effectiveness of our graph invariant technique

Before discussing how graph invariants apply to t
~H2O!6 cage, we pause to discuss the use of both filled
empty bonds in this case. The canonical orientations we
bitrarily choose for the cage structure are shown in Fig.
The actual bond orientations are specified relative to the
nonical orientations. For example, for the physical config
ration of H-bonds shown in Fig. 2,b3521 while b7511.
The apical water molecules~top and bottom of the cage
structure in Fig. 2! are only two-coordinate. When these mo
ecules are single-donor/single-acceptors,ab initio calcula-
tions on~H2O!6 have shown there are two minimum ener
positions of the apical waters that arise from these molec
accepting a hydrogen bond at either of their two lone pa
The isomers that arise in this case are conveniently enum
ated by adding two ‘‘ghost’’ atoms for each of the two
coordinate waters, and to which the two-coordinate wat
can be treated as donating a hydrogen bond.10 Of course, we
only allow the ghost atoms to be a hydrogen bond accep
not donor. Bonds 9, 10, 11, and 12 in Fig. 2 involve gho
atoms. The variablesb9 , b10, b11, andb12 can sometimes
take the value 0, whileb1–b8 only assume the values61.

The vertex and bond permutation group of the~H2O!6

cage was taken to be isomorphic to theD2d point group,
although each of the 27 isomers is distorted from perfectD2d

symmetry. As discussed earlier in Sec. I, use of graph the
and invariants for the~H2O!6 cage in no way requires that th
isomers haveD2d symmetry. We regard the value of th
energy or other physical properties for each of the isomer
a 27-dimensional vector that we wish to express, in a le
squared sense, as a linear combination of several
dimensional vectors which contain the value of one of
invariants of Table II for each of the 27 isomers. There ar
total of 18 first- and second-order invariants, 2 first and
second-order, for the~H2O!6 cage structure. However, th
number of independent vectors from among the first-a
second-order invariants available to fit physical propert
turned out to be much less than 18. Because of constra
among the bonds imposed by the ice rules, some invari
evaluate to be linearly dependent on others. Second-o
invariants with repeated indices (I i i ) merely count the num-
ber of filled bonds (brÞ0) within a group theoretical orbit o
cycle. Some cycles contain bonds which are always fil
bonds, and therefore they give rise to an invariant tha
represented by a 27-dimensional vector all of whose com
nents are identical. The existence of more than one s
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‘‘bond-counting’’ invariant is another source of linear depe
dence. For the~H2O!6 cage structure, the sources of line
dependence just mentioned conspire to limit the numbe
independent first- and second-order invariants available t
physical properties to 9.

The ability of the first- and second-order invariants
capture the trends in energy and squared total dipole for
~H2O!6 cage is confirmed in Fig. 5. The root-mean-squa
deviation of the invariant fit from the actual energy is 0.
kcal/mol and the maximum deviation is .38 kcal/mol, co
pared to a range of 9.7 kcal/mol between least and m
stable isomers. Specifically, the nine-invariant fit portray
in Fig. 5 is given as

FIG. 5. In the upper panel, we test the degree to which the energies of th
isomers of the (H2O)6 cage are correlated with hydrogen bond topolog
and the effectiveness of graphical invariants in capturing that trend.
x-coordinate is the energy of the isomers using the PM3 semiempi
theory. They-coordinate is the result of a least-squares fit to these ener
using all nine linearly independent first and second graph invariants~filled
symbols!, or just four out of those nine that proved to be most import
~open symbols!. If the fit was perfect all points would lie along the straig
line. The lower panel exhibits the fit of the squared dipole moment to n
linearly independent first- and second-order invariants.
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E~kcal/mol!'0.956I 322.235I 910.668I 2,410.755I 3,7

10.158I 3,520.393I 5,910.159I 1,3

20.364I 2,910.571I 3,4, ~19!

where the invariantsI r ,I rs for the ~H2O!6 cage are defined in
Table II. Since there are linear dependencies among the
variants, the linear fit in Eq.~19! could be written in many
different ways, although the fit itself is uniquely defined. T
root-mean-squared and maximum deviations for the squa
dipole moment are 4.7D2 and 9.4D2, respectively, compared
to a range of 119D2 between least and greatest squared
pole moment. Further invariants—third, fourth, and ev
higher-order—could have been used to fit physical prop
ties. It is enlightening that physical properties of the~H2O!6

cage do correlate well with the hydrogen bond topology, a
encouraging that only first- and second-order invariants
the H-bond topology can capture the trends in physical pr
erties. Actually, in Fig. 5 we show that only four out of th
nine available first- and second-order invariants are re
important in describing the cluster energy.

Similar encouraging results are obtained upon exam
tion of a dodecahedral cage of 20 water molecules. We h
calculated the optimized geometry, and energy at that ge
etry, for each of the 30 026 symmetry-distinct isomers of
~H2O!20 dodecahedron using the OSS2 empiric
potential.51–53The data in Fig. 6 confirms that the energies
~H2O!20 isomers are correlated with H-bond topology, a
that the trend is captured well by the seven linear
independent second-order graph invariants for the dodec
dron. @All first-order invariants for the dodecahedron a
identically zero. There are eight second-order invariants,
one linear dependence among this set caused by factors

27

e
al
es

t

e

FIG. 6. This plot evaluates the degree to which the energies of the 30
isomers of the dodecahedral (H2O)20 cage are correlated with hydroge
bond topology, and the effectiveness of graphical invariants in capturing
trend. Thex-coordinate is the energy of the isomers using the OSS2 em
cal potential~Refs. 51, 53!. They-coordinate is the result of a least-squar
fit to these energies using the seven linearly independent second grap
variants. If the fit was perfect all points would like along the straight line.
training set of only 20 randomly selected configurations was used to pa
etrize the energy as a linear combination of invariants.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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tioned above in the discussion of the~H2O!6 cage.# The en-
ergy as a linear combination of the seven independent g
invariants was determined by least-squares fit using 20
mers randomly selected from the full set of 30 026 as a tra
ing set. Figure 6 shows that the second-order graph inv
ants can be effectively employed to predict the energy of
remaining isomers based on data from a small training
The fit could be further improved by using still more isome
in the training set, or by including third- and higher-ord
invariants. We did not pursue these refinements since e
the lowest level calculation seemed quite adequate for e
mating thermal properties or selecting candidates for
lowest energy isomer.

In our original work on the~H2O!20 dodecahedron,9 we
noted that the energy of various isomers largely depende
a single topological feature, the number of nearest-neigh
pairs of double acceptor waters in the clathrate structure.
hydrogen of each of the ten double acceptor waters
‘‘dangling’’ hydrogen and does not participate in a hydrog
bond. Therefore, the energy of the dodecahedral clathra
determined by the number of nearest-neighbor dangling
drogen pairs. The number of such pairs is indeed a topol
cal feature captured by graph invariants of the dodecahe
at second-order. Therefore, the success of the second-
graph invariants in Fig. 6 is not surprising. However, t
procedure used in this work is entirely automatic. It can
applied in situations~we have ice-Ih in mind! where a ser-
endipitous discovery of an important topological feature, l
the dangling hydrogen pairs of the dodecahedron, is lack
The graph invariants provide anonserendipitous route fo
discovery of such important topological features.

B. Using invariants to calculate phase transitions:
Dodecahedral „H2O…20 as a dry run

The potential energy surface for ice or cold water clu
ters consists of a number of deep minima, each corresp
ing to a different hydrogen bond topology. Working with
the framework of classical statistical mechanics, the class
configuration integral for these systems can be written a
sum of contributions from each of theM symmetry-distinct
local minima of the potential energy surface:54–62

ZN5E drN e2bV~rN!

5(
i 51

M

f ie
2bEiE

Di

drN e2b@V~rN!2V~r i
N

!#. ~20!

We useN to stand for (NO,NH), the number of hydrogen
and oxygen atoms. The position of the atoms at thei th local
minimum is denoted asr i , Di is anN-dimensional integra-
tion domain about thei th minimum,Ei[V(r i

N) is the poten-
tial energy at thei th minimum, andf i is the number of
symmetry-related configurations which are represented
one symmetry-distinct configuration. The canonical partit
function of the system is given as

QN5(
i 51

M
f i

L3NN!
e2bEiE

Di

drN e2b@V~rN!2V~r i
N

!# ~21a!
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i 51

M

f ie
2b~Ei1Avib,i !. ~21b!

In keeping with the notation of Eq.~20!, L3NN! stands for
(LO

3NOLH
3NHNO!NH!).

The contribution of each isomer to the partition functio
is determined by the potential energyEi of the isomer, and
an integral over ‘‘vibrational’’ or ‘‘phonon’’ fluctuations
about thei th local minimum of the potential energy surfac
whose contribution we call the vibrational free energyAvib,i .
In a harmonic approximation,V(rN)2V(r i

N) would be taken
as a quadratic function in deviations fromr i

N and the range of
integration overDi could be safely extended to all space.
also might be a reasonable assumption to replaceAvib,i by an
average valueĀvib for each of the isomers, in which cas

QN'e2bĀvib( i 51
M f ie

2bEi. Consider now the calculation o
the average energy as a function of temperature. Under
framework of classical statistical mechanics, by equipartit
the vibrational contribution to the average configuration
energy is 1/2kBT for each degree of freedom, regardless
how the spectrum of harmonic frequencies may cha
among the isomers. At this level of approximation, the av
age energŷE& and the heat capacityCV are unaffected by
the details of vibrational structure. Classical statistical m
chanics may be acceptable, even for the ice-Ih→ice-XI tran-
sition: the heat capacity peak assigned to this transition o
shifts from 72 to 76 K upon replacing H2O by D2O.24 If the
vibrational contribution to the heat capacity does not va
widely among the isomers, then an expression in the sa
form as Eq.~21b! applies even in the quantum regime.

Calculating theEi and Avib,i for all possible hydrogen
bond topologies is a daunting task, yet it is what would
needed to, say, predict proton ordering phase transition
ice-Ih. The graph invariants we introduce in this work pr
vide a way to circumvent the need to calculate all theEi and
Avib,i . Provided these quantities can be fit, using a relativ
small training set, as a linear combination of graph inva
ants, we would have all information in hand to calcula
thermodynamic properties and phase transitions. This ide
tested here for a hypothetical, unphysical situation: We c
culate proton ordering phase transitions for the~H2O!20

dodecahedron. This calculation is not experimentally r
evant because it may never be possible to study the~H2O!20

dodecahedral cluster, and even more unlikely to obtain pr
erties as a function of temperature. At higher energies
dodecahedron will transform into a more stable isomer
dissociate into smaller fragments. The calculation of pro
ordering transitions in the~H2O!20 dodecahedron is presente
here as a dry run for an especially physically relevant sit
tion, proton ordering transitions in ice.

The top panel of Fig. 7 shows the heat capacity of
~H2O!20 dodecahedron calculated using the energy of
30 026 isomers in Eqs.~21a!–~21b!, which were optimized
using the OSS2 potential energy surface.51 These curves are
labeled as ‘‘exact’’ in Fig. 7, but they are only exact und
the reasonable assumptions~harmonic fluctuations about lo
cal minima of the potential energy surface or similarAvib,i

among the many isomers! and unreasonable assumptio
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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@that the~H2O!20 dodecahedron will reach several hundr
degrees Kelvin without transforming into another structu
or dissociating into smaller fragments# that underly the ap-
plication of Eqs.~21a!–~21b! to dodecahedral~H2O!20. All
these assumptionwould be reasonable for ice-Ih. The fit la
beled ‘‘converged fit’’ in Fig. 7 is the heat capacity derive
from cluster energy expressed as a linear combination
second-order invariants with the linear coefficients de
mined by least-squared fit to all 30 026 isomers of
dodecahedron.

The curves in Fig. 7 indicate there are the cluster anal
of two phase transitions for this model system, one near 5
and another near 600 K. The fit using only seven seco
order invariants~recall that all first-order invariants of th
dodecahedron are zero! accurately describes the main he
capacity peak. The smaller peak at low temperature
slightly displaced. This peak is more difficult to reprodu

FIG. 7. Configurational energy and heat capacity of a model (H2O)20

dodecahedral cluster. The ‘‘exact’’ curve in the top panel is calculated f
the partition function in Eqs.~21a!, ~21b! using the energy of all 30 026
isomers of the (H2O)20 dodecahedron. The vibrational contribution to th
energy, which would only add a linear term to the average energy a
constant to the heat capacity under the assumption of harmonic fluctua
about each local minimum, is not included. The curve labeled ‘‘conver
fit’’ is obtained using an arbitrarily large number of isomers in the train
set. It represents the best fit possible using only second-order invariants
curves with thin lines in the bottom panel give the results of the invar
fitting procedure, as fully explained in the text. The heat capacity was
culated using only 30 of the 30 026 isomers as input for a fit to invaria
after which the energiesEi in Eqs.~21a!, ~21b! were calculated from the fit.
To portray the variability arising from fitting to randomly selected poin
we give results for nine independent trials.
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because it involves relatively few configurations. Usi
higher-order invariants would narrow the gap between
‘‘exact’’ and ‘‘converged fit.’’ Of course, even if an en
semble of~H2O!20 dodecahedra could be prepared, the h
temperature transition would certainly never be obser
since these clusters would fragment long before the temp
ture reached this value.

Next, just 20 randomly selected isomers from the full s
of 30 026 were used as an initial training set to paramet
the energies as a function of graph invariants. The resul
fit gave a good representation of the overall behavior of
energy and heat capacity, including the heat capacity p
around 600 K, and indicated some structure in the l
~,250 K! energy range. However, it gave a poor repres
tation of the low energy peak in the heat capacity. This is
surprising, since the isomers range in energy up to;50 kcal/
mol, or ;25 000 K, about the lowest energy isomer. The
fore, the structure at low temperature involves an extrem
small fraction of the isomers. We added ten more random
selected isomers to the fitting set, this time chosen from
mers that, according to the initial fit, were within 350 K o
the lowest energy configuration. The resulting fit, obtain
by randomly sampling from 0.1% of the total number
isomers, reproduces the qualitative features of the heat
pacity function. We repeated the entire procedure nine tim
and show the results as the thin lines in the bottom pane
Fig. 7 to illustrate the errors incurred at this level. It is ve
encouraging that using the lowest-order nonvanishing inv
ants and a sparse sample of configurations gives a qua
tively correct description of the 30 026 H-bond isomers
the (H2O)20 dodecahedron.

IV. GRAPH INVARIANTS IN PERIODIC SYSTEMS

The same formalism employed for clusters is applica
to periodic systems. Invariants are constructed by apply
the crystal space group to the bonds of the crystal lattice.
invariants are therefore infinite sums of bonds. When
hydrogen bond arrangement repeats according to a peri
unit cell, then the invariants can be expressed as finite s
over bonds from one unit cell. A less rigorous, more intuiti
approach~but with some pitfalls! is to picture the crystal unit
cell as a finite cluster in which hydrogen bonds to ato
outside the unit cell wrap around to the corresponding ato
in the original unit cell. The formalism governing invarian
in hydrogen-bonded crystals will be presented in a sepa
publication.63 As a demonstration of the capabilities of o
formalism, we present the results of enumerating hydro
bond topologies for several unit cells from the ice-Ih lattic
which are the most challenging systems we have tackle
date.

Under normal condition, the space group of the oxyg
lattice in Ice-Ih belongs to theP63 /mmcspace group. In the
ice-Ih→XI transition, neutron scattering experiments ind
cate that theP63 /mmc symmetry is broken by ordering o
the hydrogen bonds, and the lattice symmetry falls
Cmc21 .26–29 The distortion of the lattice vectors from
P63 /mmc symmetry is measured to be 2% in theab-plane
and 0.5% along thec-axis.27 According to the discussion in
Sec. I, enumerated H-bond arrangement and invariants
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the high-symmetry lattice will even describe distorted str
tures, provided there is some correspondence~such as a de-
creasing energy path! between undistorted and distorte
structures. We have enumerated H-bond configurations u
the hexagonalP63 /mmc lattice of ice-Ih, but enumeration
using theCmc21 lattice are certainly also possible.

Our smallest unit cell is a hexagonal prism of 12 wa
molecules~Fig. 8!. This unit cell can be extended in bot
ab-plane andc-axis. We useHm3n to designate these hex
agonal unit cells wherem stands for the extension inab-
plane andn stands for the extension inc-axis. By this con-
vention the smallest hexagonal unit cell~with 12 molecules!
is namedH131 . H132 has 24 molecules whileH231 has 48
molecules.

The result of graph enumeration for different unit ce
in summarized in Table III. The rapid growth of the tot
number of configurations and symmetry-distinct configu
tions with unit cell size is apparent. Isolating symmetr

FIG. 8. ~a! HexagonalH131 unit cell for ice-Ih containing 12 water mol-
ecules. An all-atom depiction looking parallel to theab-plane is shown on
the left. On the right, only the oxygen atoms are shown looking along
c-direction.~b! The oxygen atoms of the 48-waterH231 cell are shown.

TABLE III. Results of enumerating hydrogen bond arrangements for v
ous units cells of the ice-Ih lattice. The unit cell designations are expla
in Sec. IV.nmol is the number of water molecules in each unit cell,nGv is the
order of the permutation group,nInv is the number of second-order invar
ants. ~All first-order invariants for the ice-Ih lattice are identically zero!
Ndist is the number of symmetrically distinct structures,Ntotal is the number
of structures satisfying the ice rule. Letmi be the number of permutation
symmetry elements of thei th graph. According to group theory, there a
nGv /mi5 f i graphs which are generated from thei th graph by a symmetry
operation. Therefore, we have the relationNtotal5(k51

Ndist (nGv/mk) .

Unit cell nmol nGv nInv Ndist Ntotal

H131 12 72 13 14 522
H231 48 288 36 8 360 361 2 404 144 962
Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to
-

ng

r

-
-

distinct configurations reduces the total number by a fac
of 37 for the H131 cell and 288 for the largerH231 cell.
Calculating the energy of all configurations of the large c
is certainly not feasible. However, invariants can be tra
ferred from small cells to larger cells63 and it is very feasible
to estimate the energy of all 8 360 361 configurations for
larger cell using invariants.

V. DISCUSSION

In the past, it has seemed natural to assume some c
lation between the hydrogen bond topology and phys
properties like energy and dipole moment.11–15 Oriented
graph invariants provide a means to quantify the correlat
between hydrogen bond arrangement and physical pro
ties, and systematize the process determining the feature
the hydrogen bond network which most affects the ener
and other physical properties. Such correlations would pr
exceedingly useful in resolving outstanding questions
garding thermal properties and possible phase transition
common ice-Ih. The verdict on the degree to which H-bo
topology predicts energy in ice must await further investig
tion. This article furnishes the tools needed to analyze s
putative relationships. We also provide a highly efficie
method for either exhaustive or selective enumeration of
drogen bond topologies of clusters and crystals.

The utility of graph invariants rests on the extent
which physical properties depend on hydrogen bond top
ogy. The basic idea underlying the formalism is that sca
physical properties, like energy or magnitude of the dip
moment, are invariant to symmetry transformations. If tw
hydrogen bonding arrangements are symmetry related,
physical properties associated with these arrangements
also be identical. For example, the association might be
tured as arising from geometry optimization from a hig
symmetry initial structure. The symmetry properties of t
oriented graph and the geometry-optimized physical isom
may be different. Remarkably, as long as symmet
equivalent initial structures optimize to the same distor
structure, invariants based on the high-symmetry struc
are still appropriate for describing the relationship betwe
hydrogen bonding topology and physical properties of
distorted final structures.
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APPENDIX

Here we demonstrate a necessary and sufficient co
tion for a graphical invariant to be identically zero. We fir
show that a sufficient condition for the first-order invarian
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I r5 (
a51

G

ga~br !, ~A1!

to vanish is the existence of a group element that takes
bondbr into minus itself,

ga~br !52br . ~A2!

Apply the projection operator for the totally symmetric re
resentation as in Eq.~3! to both sides of the above equatio

(
b51

G

gb~ga~br !!52 (
b51

G

gb~br !52I r . ~A3!

Let gb(ga(br))5gg(br) and realize that from the group re
quirement of a unique inverse that no two elementsgb can
give rise to the samegg . It follows that

I r5 (
g51

G

gg~br !52 (
b51

G

gb~br !52I r , ~A4!

and therefore the existence of a group element that takebr

into minus itself is a sufficient condition forI r50. To show
that this is a necessary condition note that ifI r vanishes
identically, then the result of applying the projector of E
~3! onto br can be grouped into pairs of terms that can
each other,

I r5 (
a51

G

ga~br !}¯~gb~br !1gg~br !!1¯

5¯~bs2bs!1¯ , ~A5!

for if gb(br)5bs there must be another group operationgg

such thatgg(br)52bs if I r vanishes identically. However
if gb(br)52gg(br), then there must be a group elementga

with the property that

ga~br !5gg
21~gb~br !!52br . ~A6!

This shows that condition~A2! is both necessary and suffi
cient for I r to vanish identically.

The same reasoning can be applied to show that
invariantI rst¯ vanishes identically if and only if there exis
a group elements such that

ga~brbsbt¯ !52brbsbt¯ . ~A7!

Condition ~A7! is sufficient because applying the project
of the totally symmetric representation to both sides of E
~A7! leads to

I rst¯5 (
b51

G

gb~ga~brbsbt¯ !!

52 (
b51

G

gb~brbsbt¯ !52I rst¯ . ~A8!

Condition~A7! is necessary because ifI rst¯ vanishes it must
be possible to group its terms into pairs that cancel e
other:
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I rst¯5 (
a51

G

ga~brbsbt¯ !

}¯~gb~brbsbt¯ !1gg~brbsbt¯ !!1¯

5¯~br 8bs8bt8¯2br 8bs8bt8¯ !1¯ . ~A9!

Therefore there must exist a group elementga that satisfies
condition ~A7!.
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51L. Ojamäe, I. Shavitt, and S. J. Singer, J. Chem. Phys.109, 5547~1998!.
52C. V. Ciobanu, L. P. Ojama¨e, I. Shavitt, and S. J. Singer~unpublished!.

Preliminary density functional theory and MP2ab initio results confirm
the trends of the OSS2 potential for the (H2O!20 dodecahedron. In particu
lar the isomers become less stable as the number of nearest-nei
dangling hydrogens increase.

53Using the OSS2 potential, roughly 10% of the 30 026 isomers failed
optimize to a structure with the same hydrogen bond topology as
starting structure. Including or deleting these exceptions makes no pe
tible difference in Figs. 6 and 7. The exceptions are nevertheless q
Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to
bor

o
e
p-

ite

interesting. They are not an artifact of the OSS2 potential, and the eff
are confirmed in DFT/B3LYP and MP2 levelab initio studies. They will
be described in a future report.

54D. J. McGinty, J. Chem. Phys.55, 580 ~1971!.
55J. J. Burton, J. Chem. Phys.56, 3133~1972!.
56M. R. Hoare, Adv. Chem. Phys.40, 49 ~1979!.
57F. H. Stillinger and T. A. Weber, Phys. Rev. A25, 978 ~1982!.
58F. H. Stillinger and T. A. Weber, Phys. Rev.28, 2408~1983!.
59P. G. Mezey, inPotential Energy Hypersurfaces, Studies in Physical and

Theoretical Chemistry~Elsevier, New York, 1987!, Vol. 53.
60G. Franke, E. R. Hilf, and P. Borrmann, J. Chem. Phys.98, 3496~1993!.
61D. J. Wales, Mol. Phys.78, 151 ~1993!.
62J. P. K. Doye and D. J. Wales, J. Chem. Phys.102, 9659~1995!.
63J.-L. Kuo and S. J. Singer~unpublished!.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html


