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Water clusters and some phases of ice are characterized by many isomers with similar oxygen
positions, but which differ in direction of hydrogen bonds. A relationship between physical
properties, like energy or magnitude of the dipole moment, and hydrogen bond arrangements has
long been conjectured. The topology of the hydrogen bond network can be summarized by oriented
graphs. Since scalar physical properties like the energy are invariant to symmetry operations,
graphical invariants are the proper features of the hydrogen bond network which can be used to
discover the correlation with physical properties. We demonstrate how graph invariants are
generated and illustrate some of their formal properties. It is shown that invariants can be used to
change the enumeration of symmetry-distinct hydrogen bond topologies, nominally a task whose
computational cost scales lik¢?, whereN is the number of configurations, into &hin N process.

The utility of graph invariants is confirmed by considering two water clustergHk®)s cage and
(H,0),, dodecahedron, which, respectively, possess 27 and 30026 symmetry-distinct hydrogen
bond topologies associated with roughly the same oxygen atom arrangements. Physical properties of
these clusters are successfully fit to a handful of graph invariants. Using a small number of isomers
as a training set, the energy of other isomers of (tig0),, dodecahedron can even be estimated
well enough to locate phase transitions. Some preliminary results for unit cells of ice-lh are given
to illustrate the application of our results to periodic systems.2@1 American Institute of
Physics. [DOI: 10.1063/1.1336804

INTRODUCTION fall into strong or weak classes based on the local hydrogen
bond topology'!~*° although this distinction has recently
Hydrogen bonds are long-lived structures in ice and coltheen questionetf:*’
to the strong tendency of water to form hydrogen bonds in @angement or construct a statistical average requires, in gen-
tgtrahedral arrangement, our understandlng of the threee‘ral, a sampling of the hydrogen bond topologies. The num-
dimensional structurg and dynamics of agueous 'sy'stems h%ﬁr of available topologies grows exponentially with system
long been couched in terms of a reduced descrlptlon baseS|ze. In 1935 Paulirfgestimated that the number of H-bond
on hydrogen bond connectivityMany phenomena illustrate rrangements available fd water molecules in the ice-lh
how hydrogen bond topology serves as a critical structural : .
crystal structure is (3/2) an estimate that has been shown

descriptor: The zero-point entropy of ice-lh, “ordinary” ice b thin a f &R Th ber of
at atmospheric pressure, is thought to be a manifestation dp be accurate within a few percerit.The number of struc-

frozen-in complete disorder among the possible hydrogeﬁ“res in a snmulat;on cgll of even 100 water moIecngs is in
bond topologies of the ice lattiéé® (but see below Trans- the range of~10%%, so it might appear that enumeration or
port properties of ice are understood in terms of defects i@mpling of topologies for a system of this size will fall
H-bond connectivity’. The language used to name the struc-€xclusively in the province of either Monte Catld® or

tural isomers of water clusters—“cage’"for example, or more sophisticated variants of Monte Calg’

“cube” °—reflects the correspondence between H-bond to- The purpose of this work is to provide analytic tech-
pology and water cluster structuté® The strength of hydro- niques for complicated hydrogen bonded systems, such as
gen bonds within the ice-lh lattice has been conjectured téhe myriad arrangements of ice-lh, which would seem to
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only be tractable by numerical simulations. The problem ofwhich physical properties are correlated with, and predicted
H-bond structures in ice-lh also happens to be a particularlypy graph invariants is automatic and does not rely on special
fascinating one. The experimental residual entropy of ice-Itphysical insight, although graph invariants will certainly fa-
at 0 K isclose to Pauling’s estimate leading to the con- cilitate deeper physical interpretation. The number of graph
clusion that H-bond topological disorder becomes frozen intdanvariants used to fit and predict physical properties can be
the ice-1h lattice as temperature is lowered from the freezingystematically enlarged, leading to a hierarchy of approxima-
point to absolute zero. Within the last decade, experimentions. To determine the energy or find the ground state
have detected a phase transition in KOH-doped ice-lhamong a vast number of structures, we can therefore use
weakly dependent on KOH concentration and tending towardjraph invariants to avoid explicit and often costly calcula-
72 K in the limit of vanishing impurity concentratich=2®> tions for all but a small training set of structures from which
This seems to indicate that the KOH impurity catalyzes thehe parameters can be extracted. The procedure is tested in
rearrangement of hydrogen bonds, and that ordinary ice, ithis work for two water clusters, théH,O)s cage and
equilibrium could be attained, would undergo a proton order{H,0),, dodecahedron, for which 27 and 30026 hydrogen
ing transition at 72 K. Neutron scatterfig?® and thermal bonding arrangements are possible. We also illustrate the
depolarization experimerits®* on KOH-doped ice-lh sug- utility of graph invariants in the enumeration of the huge
gest that the proton-ordered form of ice-lh, known as ice-Xl,number of H-bond structures possible for a unit cell of ice-
is an orthorhombic ferroelectric crystal, although the inter-lh, but leave further analysis of this challenging problem to a
pretation of these experiments has been deb&@dMost  future work.
common potential models for water do not predict this struc-  Computationally, explicit enumeration of allowed graphs
ture as the ground state, which has forced a reappraisal &r hydrogen-bonded systems is relatively straightforward,
such models! More recently, Antarctic ice cores have beenbut eliminating structures that are related to each other by a
investigated with Raman spectroscopylhese samples are symmetry operation is not. Nominally, elimination of
believed to have been equilibrated at temperatures controllesymmetry-related graphs is anN?/2 process, wherd\ is
by their depth beneath the surface for tens of thousands d@he number of graphs, because it involves comparison of
years. The Raman spectra indicate a phase transition at 2airs of graphs. Moreover, each of theN?/2 comparisons
K that has similar characteristics as, but lies far above, thean be rather expensive when the symmetry group is large.
phase transition in KOH-doped ice-lh. Studies on Greenlandh this work we show how use of graph invariafit®’ can
ices failed to find similar evidence for a phase transiffon. change the scaling of computational effort wiitfrom N? to
Therefore, the current understanding of ordinary ice is ripeNInN. The desirability of eliminating symmetry-related
for further experimental and theoretical insight. structures is illustrated by our calculation for a 48-member
Hydrogen bonds are directional, so hydrogen bond tohexagonal unit cell of an ice-lh lattice: there are
pologies are in one-to-one correspondence with oriente@ 404 144962 graphs possible in total, but only 8360361
simple graphs, that is, collections of vertices connected by atymmetry-distinct structures. With such large numbers of
most one directed edge. The direction of a hydrogen bondonfigurationsN In N scaling is an enormous improvement.
points from hydrogen donor to hydrogen acceptor. Enumeraklimination of symmetry-related configurations has been at-
tion of H-bond topologies becomes an exercise in graptiempted previously “by hand” for small ice unit cef8 The
theory, to list all possible graphs consistent with the so-+esults of this effort are in apparent conflict with attempts to
called “ice rules.”®” These rules allow at most two edges group symmetry-related structures based on energetic
emanating from a vertex becauseCHmolecules can donate criterial”*! Therefore, efficient and reliable computational
at most two hydrogens, and at most two edges incident upomethods of generating hydrogen bond graphs are needed.
a vertex since at most two hydrogen bonds can be accepted Countingtotal numbers of allowed graphs on an infinite
at the lone pairs. The ice rules are modified in an obviougperiodic lattice(or regular finite structuresan be addressed
way to accommodate the presence of species like @hd by series expansion methoti3Even though series expan-
HT.° sions have only been used, to our knowledge, for counting
In anything but the smallest water clusters or unit cellstotal humbers of hydrogen bond arrangements in regular
of ice crystals, one is faced with huge numbers of configustructures, these methods can presumably be extended to cal-
rations. In the more rigid ice clusters—tid,O)s cage, the culate certain averages with generating function
(H,0)g cube, theH,0),, dodecahedron, to name a few—and technique$? However, the graphs themselves, not just total
in ice-lh, local minima of the potential energy surface are, tonumbers or averages, are needed to construct explicit mo-
a good approximation, in one-to-one correspondence wittecular structures for further study, as would be needed as
oriented graphs. How does one find the ground state or connput for anab initio or empirical potential calculation.
struct a thermal average with anything but numerical sam-  The notion of a graph invariant is introduced in Sec. I.
pling techniques? Perhaps the most useful result of the cufsraph invariants often have a simple physical interpretation,
rent work is a strategy by which the physical properties,as we illustrate in this section. The use of graph invariants to
including but not necessarily confined to the energy, of achange the enumeration of symmetry-distinct graphs from an
large number of H-bonded structures can be summarized arid? to N In N process is described in Sec. II. This section may
predicted in terms a handful of parameters, each associatdést omitted by readers who are not interested in the numerical
with a special linear combination of variables defined forproblems associated with enumeration of H-bonded struc-
oriented graphs called graph invariant The procedure by tures. When the energy and other physical properties can be
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correlated with topological properties of the hydrogenTABLE I. Group of vertex permutations for the triangle graph shown in Fig.
bonded network. as first noted for water clusters byl’ and the induced group of signed permutations on the bonds of the triangle

. graph. For the vertex permutations, we denote the permutation taking verti-
Radhakrishnan and Herndbnand also by McDonald, ces 1, 2, and 3 tq, j, andk as(ijk). Often this permutation is indicated by

Ojamz, and Singef, then the physical properties, them- (13- Itis also common to indicate permutations in terms of independent
selves being invariant with respect to symmetry operationssycles, in terms of which, for example, the permutation would be written
should be expressible in terms of the values of graph invaria}s (1)(23). Our notation for signed bond permutations follows that for ver-
tices.
ants.
The link between physical properties and H-bond topol- Vertex permutation Signed bond permutation
ogy suggests the following strategy for global optimization,

put forward in Sec. I, which is useful even when the num- E_l ggi Egl’kizl’)b{b )
ber of such isomers is too large to enumerate or analyze: A ¢’ (312 (—ba.b.—by)
Monte Carlo procedure can be used to generate a training set ¢, (132 (bs,—b,,by)

of structures.*8 The training set can be used to establish a o, (213 (—by,b3,by)
relationship between physical properties and the values of v (321 (—by,—by,—by)

graph invariants, either by least-squares fitting or more so-
phisticated methods. The tentative relationship between

physical properties and topology can be refined by further )

sampling. In this way, low-entropy structures, which may©Utd0ing edges, the covalently bonded hydrogens, and two

tend to be overlooked in Monte Carlo methods, can be iden'—”ct?m'(';g Ed%es, vxll_here the tw,? lone palrsd can accept an
tified by selective enumeration. Invariants can concisely pati-2ond. The formalism can easily accommodate excess pro-

rametrize the energy of a large number of H-bond arrangel©ns ©r hydroxide by allowing the appropriate local devia-

ments, thereby permiting the calculation of physicallions from these ruleS. . o
properties that involve the entire ensemble of H-bond topolo- 1 1€ hydrogen bond topology of a finite or infinite sys-
gies, like phase transitions, with a minimum of input. we tem of water molecules is summar_l_zed by a collet_:tlon of
iilustrate this capability with a model calculation of a cluster Variablesbij , one for each vertex paif, whose value is
phase transition for théH,0),, dodecahedron in Sec. IIl. 1 if water i donates to watel]

In Sec. IV we show how invariants may be applied to
periodic systems by giving results for hexagonal unit cells of bij=
ice-lh. We conclude with a brief discussion in Sec. V.

—1 if water j donates to watei
0 if there is no hydrogen bond between

i and j.
I. GRAPH INVARIANTS @
Hydrogen bonds between water molecules are direc! N order of the indices ohy; is meaningful, so to describe
tional. One water “donates” its covalently bonded hydrogentn® same physical configuratiopy; = —bj; , it is convenient

to the bond while the second water “accepts” that hydroger{© 1€t @ single index replace the dual index for bond paifs

in the vicinity of the lone pair electronic cloud. The hydro- It S arbitrary whether stands foiij orji, but some canonical -
gen bonded network within a water cluster or ice crystal isordering of the bond pairs must be specified. For example, in
summarized by graphs in which the vertices represent Oth_he.trlangle graph of Fig. 1 the canomcal qllrectlon chpsen for
gen atoms and directed bon(ts edges connecting vertices P1 IS from vertex 1 to vertex 2. With this conventioh;
represent hydrogen bonds. By convention, the directed bonds 1 indicates that molecule 1 donates to molecule 2, while
point from donor to acceptor. The so-called “ice rules” P1=—1 specifies that molecule 2 accepts a hydrogen bond
stipulate that each neutral water vertex has a maximum dfom molecule 1. In Fig. 1 we give some examples of hydro-

four neighbors. At each vertex there are a maximum of twde" bond arrangements in a triangular cluster of three water
molecules, and the value of bond variables that specify these

physical configurationeelative to the canonical orientations
given to the left in Fig. 1. In general, once the canonical
orientation for each directed edge is specified, the physical
meaning ofb, is clear: Ifr stands foiij, thenb,=1 indicates
that wateri donates to watef, while if r stands forji, then
b,=—1 must be used to indicate the same arrangement.
bi=+1 Symmetry properties of a cluster or crystal are mani-
by=—1 fested by a group of permutation operations mapping the set
of vertices onto themselves. The list afljacentvertices
(vertices connected by a bond, irrespective of the bond’s
FIG. 1. A simple example of an oriented graph, which might represent thedirection is preserved by each of the symmetry operations.
configuration of a (HO); cluster, is shown on the left. The direction shown It is important to note that the symmetry group pertains to
on the edges indicates the orientation of the edges if all the bond variablegha oxygen atom “scaffold,” and is not dependent on par-

b, were taken equal te-1, canonical orientations chosen arbitrarily for each .: : : _
bond. Two different hydrogen bond topologies for,(; are shown on the ticular orientations of hydrogen bonds. The group of symme

right, along with the value of the bond variables, as referenced to thé_ry qperations for the vertices of the_ triangular_graph shown
canonical orientations of the graph on the left. in Fig. 1 are the 3! vertex permutations given in the second
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column of Table I. The group members are labeled by corThe functiond (b) transform as the totally symmetric repre-
responding real-space point group operations in Table | t@entation of the induced group on bonds. According to stan-
provide a useful mnemonic, but fundamentally our formal-dard group theory, invariants can be constructed using a pro-
ism deals with connectivity, or topology, and not geometry.jection operator, which takes a particularly simple form
We stress that the utility of the graph formalism is not atbecause the characters for the totally symmetric representa-
all dependent on the physical isomers having the full symtion are all unity. For example, the application of a projec-
metry of the vertex and bond permutation groups. Considetion operator to a single bond variable takes the form
two H-bond topologies that are symmetry related. They each
correspond to distorted local minima, and possibly have low B
or no symmetry. As long as the topologies are symmetry r—C,aZl 9albr), )
related, then the energy and any other physical property of
the distorted local minima corresponding to those topologiesvhere C, is a normalization constant chosen for conve-
will be identical. Therefore, parametrization of energy of dis-nience. Now consider the application of a group operagipn
torted structures in terms of invariants based on higher synto |, :
metry of the oxygen scaffold is appropriate. While the values
of bond lengths and angles are irrelevant in the graph theo-
retical formalism, it is not true that physical geometry is gﬁ(lf)chzl 95(9a(br)). @
entirely irrelevant. Firstly, adjacent bonds reflect physical
proximity. Secondly, the symmetry group may be chosen tdAccording to the requirements for group operations the com-
reflect expected physical geometry, which may lower thepositiongg(g,(---)), a=1,2,...(3, generates each of group
symmetry from that based solely on connectivity. operations once and only oncélf gs(g.(---)) and
As a hypothetical example, consider a ring of five verti-g4(g,/(---))] gave the same resultant operation, thgn
ces which represent a geometry in which four vertices arevould fail to have a unique inverdeThereforegs(l,) =1, .
coplanar and the fifth lies far outside the plane. The symme- By precisely the same reasonifg,l,,..., asdefined
try group determined by vertex adjacencyls,;,, but one below, are also invariants:
may choose a smaller symmetry group, perh@gs to re-

G

flect the nonplanarity of the ring. However, use of the higher ©

symmetry group may still be appropriate. Consider geometry ls=C a:l o(brbs), ®)

optimizations initiated from a planar starting structure. If two

planar initial structures which are equivalent withidy, G

symmetry optimize to the same distorted structure, then the |,4=C,q; 21 0.(bbghy),... . (6)
=

energy of the isomers will be described by the more compact
invariants of theDs;, symmetry group. TheC, symmetry We refer tol,

group will generate a larger set of initial structures 4id invariant, and so on. It is obvious that the order of the indices
they exist on the potential energy surfacell enumerate f bond generators does not change the invariéies |
more physical isomers. In this situation, the symmetry group_ ) e

SI’ .

should be chosen to suit the goals of the calculation and the The number of first order invariants is generally less

properties of the potential energy surface. fthan the number of bonds for several reasons. Many invari-

. TZe symr?ett_ry grou;:h OT) VGJIIC(:.‘; |n<_jugestr? group 0ilnts may turn out to be identically zero. The necessary and
signed permutations on the bonds. We signify the image o ufficient condition for any invariant., to vanish identi-

group operation on bopdbr with the' notatiorga(br)_ Fpr cally is the existence of a group operation that takes the
example, theC; operation on the triangle graph in Fig. 1 product of bond variable® bgb;... into minus itself, as

brings vertices 1 and 2 to vertlc_:es 3and 1, respecn@lso shown in the Appendix. In many cases, it is possible to find
see Table)l Therefore, bondb,; is moved to the location of an operation which takes a single bobd into —b, and
r

bondbs. By the convention chosen in Fig. fl,=+1 indi- therefore many first-order bond invariants vanish identically.

cHaLes ;? H—blotnd3fr|(_)|m 1to tZr:@arinJg: +t'1 |rt1d|lcatesban q The number of first-order invariants may be less than the
¢ -bon :oml to ) towezvetr, 3tﬁper§1 '03 fa esa ton 3number of bonds for another reasonglf(b,) = = b, appli-
rom vertex 1 10 vertex 2 1o another bond from Vertex 3 ..4qn of the projection operator in E¢3) to b, and bg

to &/ert?;: 1C’ not fror? 1 t_o E.bThereIolr)e, thedlmagebhqf yields the same result within an overall constant, in which
under the C; operation is —bs, not by, and g (by) casel, andlg are equivalent. The number of different first-

as a first-order invariant, s as a second order

=—bs. order invariants depends on the number of independent or-
bits of the bond group, which in turn depends on the struc-
A. Generation of graph invariants ture of the induced group on bonds. Similar considerations

. . apply to the higher-order invariants. When all bonds are
We seek functions of the bond variable® filled, and therefore all bond variables,==*1, | s,

c?h{;lgéb a '“(}:ag:)ant ol;k: namsgfagpéigsé?\e: Ti:aeseurs] ef'stu There can be no linearly independent invariants of
g Y app y y op PSrder greater than the number of bonds when all bonds are

cial functions, thanvariants have the property
filled. Given a group of symmetry operations expressed as
9.(1(b))=1(g.(b1),9.(by),...)=1(b). (2)  permutations of vertices, we have found symbolic algebra
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programs convenient for computationally generating the in-
duced group on bonds, and then a table of independent in-
variants.

Let us use the triangle graph of Fig. 1 as an example to
illustrate the properties of invariants mentioned above. Di-
rectly from Table |, it can be seen that all the first-order
invariants are identically zero. As for second-order invari-
ants, after convenient normalization we have that

111=12,=133=bf+b5+Db3, ()
l1o=123=I13=b1by;—b;1b3—bybs. 8

Since the image alb,b,b; is +b;b,bs under the first three
group operations in Table | andb;b,b; under the last three
operations] ;,5= 0. Other third-order invariants, like

l105= — (Dy+b3)bZ+ (by+Dbsg)b3— (b, —by)b3,  (9)

may take nonzerq valges if one of the .bond,s IS empty. FIG. 2. The cage structure of ¢B)s. One of the 27 possible symmetry-
Products of invariants are also invariant. Therefore distinct hydrogen bonding arrangements for the cage structure is shown. The

products of two first-order invariants can be expanded as arrows and bond labels indicate the directions of the bonds when the bond

linear combination of second-order invariants, products ofaiables are equal to-1.

first and second are a linear combination of third-order in-

variants, and so on:

rs Second-order invariants can always be understood in
'rls:%‘f il (10 terms of counting nonempty bonds and the magnitude of the
dipole moment. However, these are not the only possible
interpretations of the second-order invariants. For example,
the invariantsl ; /=15 g of the (H,O)gs cage structure shown
in Fig. 2 are connected to the number of single-donor/single-

Sta_ndar_d group representation theory governs the resomtioaﬂ:ceptor molecules, a feature which strongly affects the total
of invariant products. energy of the cag¥ The precise relation is

_ ,st
[P S o IR (12)
uvw

B. Physical interpretation of graph invariants

. . . . . TABLE Il. First- and second-order invariants for the {B)¢ cage structure
The invariants can be interpreted in terms f)f physicakhown in Fig. 2. The invariants are calculated using a permutation symmetry
guantities, often in terms of several such quantities. For exgroup on the vertices isomorphic to tBey point group. In the text we refer

ample, second-order invariants of the triangle gréﬁb. 1 to the invariants by any of the bond products that generate the invariant by
with identical indices likel 1, in Eq. (7) simply count the application of a projection operator. For examples | 5=--- is at the top of

b f b dll ithi ) h ical orbi the list of first-order invariants, whilg, ;=1, 5 -+ heads the list of second-
numoer o nongmpty pn s within a group theoretical or : I'['order invariants andl; =1, ¢=-- is at the bottom of the list.
If we would write the dipole moment of water molecules in
terms of bond dipoles of magnituge,.,q, the total dipole  First-order invariants

moment due to ring dipoles would be b+ bs+ b+ bg
bg+bg+ by +b
#x="} Hbond — b1+ 20+ bg), (12 Pororbutha
Second-order invariants
My="— 7Mbono(bl+b3)- (13 b2+ b2+ b2+ b2
b3+b2+b3+b3
The squared magnitude of the dipole moment is bg+bio+ bl +bi,
b,b,—b;bg
pE+ us= pupond 3 (03 +4b3+b5—2bsbs—4b;b, bsb;+bsbg
bobigtbiibs,
324 2 byb,—b;b,+bybg—b,bg
T 4b2bg) 5 (b1 + b3+ 2byby) ] babs+ bsb,+bzbg+bobg
= hond (D3 b5+ b3) — (byby—bybs—bybs) ] pebo  bebio psbur Dz

bgbg+bsbyg+b7bs;+bsbyy
= thond 112~ 112, b bbb by + gy g
V3 2M3 1¥s 45 447 6M7 2M8 6M8
a quantity invariant to symmetry operations. It therefore DiPe=Dabg+bobig+bghig=01b13=bobyy+byb1—beby,
comes as no surprise that second-order invariants nicely cap-gzggiEeggfglglfbbﬁblibéb&; kéﬁbflb_é’ lElbz_bebl2
ture the dependence of the squared magnitude of the dipolep’n’ . 1 h. + b-b.ot bbygt bebys- byby+ bubiyk babis
moment on hydrogen bonded configurations.
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(number of single-donor/single-acceptorsl — %1 . the process of adding borigy,qt 2 is started. After some or
('14) all of bonds are added, the list of configurations is checked to

eliminate configurations that are related by a symmetry op-
feration. Symmetry-related configurations can be safely elimi-
nated from the list when only a fraction of the bonds have
been added, for if two partidthat is, containing,,,q out of

e the full ny.,q boOndg configurations are symmetry-related,
H-bonds among bonds 3, 5, 7, and 8 pointing away from th('t‘hen the configurations grown from these two by filling in

center of the cage, while the invaria§=be+biotbis o ogt of the bonds will also be symmetry-related. Elimi-
+b,, has a similar interpretation for bonds 9, 10, 11, and 12hatin symmetrv-related aranhs is the difficult step in enu-
(See Fig. 2 for the definition of the bond variables. Later we 9 sy Y grap P

explain the rationale for including four bonds incident on themeratlng H-bond topologies. It involves comparing pairs of

! . . i “graphs and is therefore nominally & process, wherd\ is
apical vertices, even though the apical waters participate It e number of araphs before symmetry comparison. Symme-
only two hydrogen bonds and have only one dangling hydro- orgrap y y P - Symm
gen) try comparison involves applying each group operation in

While we have stressed that invariants possess physic%ﬂ'm .and checking if a matf:h. is found. Two graphs are de-
ermined to be symmetry-distinct only after all group opera-

interpretations, their power lies in the fact that their genera-. lied. Therefore th 7 :
tion and use can be automated. Trends can be deduced Wit}l‘gns are applied. Therefore the pairwise comparisons are a

out reliance on physical insight or tedious trial-and-error pro-engthy Process, more so when the symmetry group 1S Iarge
cess. Better yet, the use of invariants can guide the discove d symmgtry rEdl.JCtlon offers the mpst benefit. By compari-
of physical interpretation, or show that several interpreta- on, checking the ice rules after adding an H-bond, a process
tions are equivalent. We will show that certain critical physi-that scales abl, is far less costly. The cost of the symmetry

cal properties are captured by surprisingly low order invari_comparisons can be reduced by only performing this check
prop P y Sup il %fter certain of the H-bonds have been added. It is best to

ants because the constraints of the ice rules link properties | ) )
nonobvious ways. order the bonds into cycles or qrb|ts, groups of bonds that are
related by a symmetry operation, and check for symmetry
only after all bonds of an orbit are added. However, even
with this strategy, the computational cost of checking for
symmetry grows rapidly with system size and would quickly
Graph invariants can be used to change the computatiorender most large calculations infeasible if there was not
of all symmetry-distinct hydrogen bond topologies for asome way around thi? scaling.
cluster or crystal unit cell from a process scaling N& In this section we demonstrate that, using graph invari-
whereN is the total number of topologies, to &lnN pro-  ants, the nominallN? process of symmetry comparison can
cess. Readers who are not interested in the computationbk turned into a calculation that scales Iikén N. The strat-
aspects of enumerating hydrogen bond arrangements cagy is one of divide and conquer. The setMfgraphs is
proceed to the next section. sorted into groups of target sire such that graphs in differ-
Enumerating all possible hydrogen bond arrangementent groups must be symmetry-distinct. Within each group a
for a cluster is accomplished by considering each ofifggy  conventional(n?-scaling symmetry comparison method is
hydrogen bonds in turn. After completing the assignment olused. Since there aid/n such groups, the total work asso-
inong OUL Of the totalnyy,g hydrogen bonds, a list of all hy- ciated with conventional symmetry comparison scales like
drogen bond topologies for the firgf,,q bonds consistent N/nxn?=Nn, linear with the number of graphs. If sorting
with the ice rules is in hand. Each entry of this list is acan be made to scale more efficiently thidf, the overall
sequence of 1s;1s, or Os of length,,q for each configu-  efficiency of symmetry comparisons will be improved.
ration. The*1s stand for the two orientations of an H-bond, A. Sorting strategy
and the 0 means the bond is left empty. Usually there are just’
the two orientations signified by-1 but in certain cases, The value of all invariants of two symmetry-related
discussed below, we will see that also allowing a bond to bgraphs must be identical. Therefore, if we diviNegraphs
empty is useful. Instead of using bond variables, the H-bondhto P groups, each one with a different value of a particular
configuration is sometimes parametrized by the arrangemeirtvariant, symmetry comparisons need only be done within
of edges incident at each verfé%! (e.g., the six bond ar- each group. The work of calculating the value of that par-
rangements at a vertex of a four-coordinate wat€he ad- ticular invariant for allN graphs and sorting them int®
vantage furnished by invariants does not depend on how thgroups scales lik&, while the work of symmetry compari-
H-bond configurations are parametrized. sons now scales likeN/P)? within each group. After sepa-
The addition of bondiyng+ 1) means making a new list ration into P groups, the work of symmetry comparison
of H-bond topologies by attempting to fit in all orientations scales likeP(N/P)?=N?/P, an improvement by a factd®
of the (iyongt 1)th H-bond with each member of the old list. in efficiency.
When an orientation of the new bond is allowed by the ice  Instead of using just one invariant to sort the graphs into
rules, that configuration off,,,q+1 bonds is added to the smaller subsets, imagine usingdifferent invariants to sort
new list. Eventually a new list containing all possible orien-the graphanm times. For simplicity, we will assume that the
tations of H-bonds amonig,,,q+1 bonds is completed, and graphs are sorted int® equal piles according to each new

Incidentally, the (HO)g cage is an example of a structure
which has nonzero first-order invariants. The complete list o
invariants for the (HO)g cage is given in Table Il. The first-
order invariantl 3;=bs;+bs+b;+bg counts the number of

Il. GRAPH INVARIANTS AS A TOOL FOR
ENUMERATING H-BOND TOPOLOGIES
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invariant. After employing the first invariant the graphs are .
divided into P groups. Then the next invariant divides each

of those groups intd® subgroups, making a total dp? 800
groups. Finally, aftem such sorts, the graphs are partitioned
into P™ groups of size

N
-
The goal is to reduce the groups to a target siaghich is
small enough to employ a conventional symmetry compari-

son method. From Eq15), the number of sorts required to
reach a target size is 0

_ In(N/n) . (16) N (number of graphs)

InP

[}
[=3
(=

n= (15

400

CPU time/ngonq

200 |

0 100000 200000 300000

. . . i FIG. 3. Enumeration of all symmetry-distinct H-bond topologies for a
Each time the graphs are sorted, an invariant is calcus,0),, dodecahedral clathrate was performed by considering a sequence of

lated for each of the graphs, and that graph is either labelestructures containing fewer bonds than the full dodecahedron. Additional
or moved to another location in memory or on disk. The costi-bonds were added to the structures after all symmetry-related duplicates

- . were eliminated. This process furnishes data on the computational cost of
of each sort is proportlonal t, the total number of graphs. eliminating symmetry-related structures as a function of the number of

The computational cost oh sorts is proportional to graphs. This data shown is for the calculation as performed in Ref. 9, with-
out the use of the sorting method introduced in this work. The computational

_ In(N/n) (17) cost per graph edge is plotted as a function of the number of gidplesore

- InP symmetry comparisons were made. Least-squares fits of CPU titdeN®

o o ) ) and N clearly show that the computational cost scalesN&sor worse
Associating a coefficien® with the computational cost without the sorting method.

of sorting the graphs into groups of target sige@nd another
coefficient B associated with the conventional symmetry
comparison within each group, the total work of eliminating
symmetry-related graphs scales like structures. The process of adding occupied bonds one at a
time furnishes a data set on which we can compare different
In(N/n) N A Inn . . L
AN +B—n?=——NInN+|Bn—A——|N. (18) methods of graph enumeration. Our previous calcul&tih
InP n InP InP use a crude version of what we now call invariants to speed

The total work contains components that scal®NasN and ~ Up Symmetry comparisons, but ultimately it was an
asN, far more efficient than convention&l?-scaling sym-  N?-scaling method because the graphs were not sorted as
metry comparison. described in the previous section. The CPU time needed to

We arrived atN In N scaling by assuming that each sort €liminate symmetry-related duplicate structures is plotted
breaks the graphs int® groups of equal size. Actual com- against the number of graphs after each of the 30 bond ad-
putations are more complicated. The number of groups intlitions in Fig. 3. The CPU time clearly increases faster than
which the graphs are sorted is the number of different valueknear with the number of graphs, and the old method even
an invariant takes over the set of graphs. This varies fron@ppears to scale witN more steeply thai?.
invariant to invariant, so invariants differ in their ability to The samegH,0),, clathrate calculation was repeated us-
resolve the graphs into smaller groups. Moreover, in eacling graph invariants to sort the graphs until each group con-
sort the graphs are, in general, broken into groups of unequégined no more thah=>500 structures. The CPU time for
size. Therefore, the paramefused in Eqs(15)—(18) must ~ sorting is plotted against the number of graphs in the top
be taken as an average or effective number of groups. Theanel of Fig. 4. It is difficult to distinguish whether the com-
basic idea is confirmed, and evidence presented below shovpsitational cost is actually scaling &sor NInN (actually a
N In N scaling in realistic calculations. happy state of affairg! and clearly the calculation no longer

scales ad\? or worse. The CPU time for symmetry compari-
) ) ] o sons within the group of size<500 is shown in the bottom

B. Performation of sorting algorithm for realistic panel of Fig. 4, clearly compatible with linear scaling.
calculations At the time we first published the enumeration of the

We have previously enumerated the 30026 symmetnB0026 H-bond topologies of th@d,0),, dodecahedrof,it
distinct H-bond topologies of thdH,0),, dodecahedral was a challenging calculation. With the help of graphical
clathrate’ After the addition of each hydrogen bond to the invariants, this calculation is rather quick. The most chal-
structure, we determined which graphs were related to othelenging example we have tackled to date is the enumeration
by a symmetry operation and eliminated all but one repreof the 8360361 symmetry-distinct H-bond topologies of a
sentative from each set of symmetry related structures. I8-water hexagonal unit cell from the ice-lh lattice. There
symmetry-related graphs can be eliminated from smalleare 2 404 144 962 H-bond topologies of this system, includ-
substructures, then we avoid the work of adding and testingng symmetry-related configurations, indicating how valu-
redundant new structures built from the symmetry-relatechble the symmetry reduction can be.

Downloaded 12 Mar 2001 to 132.72.138.1. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



2534 J. Chem. Phys., Vol. 114, No. 6, 8 February 2001 Kuo et al.

. mined optimized geometries of isomers corresponding to
121 each of the 27 hydrogen bond topologies possible for the
(H,0)g cage structuréFig. 2), and calculated the energy and
dipole moment at each optimized geometry. Where compari-
son could be made, they found the semiempirical energies
consistent with previouab initio results**~°° Here we take
those results and test whether these properties correlate with
hydrogen bond topology, and, if so, how effective invariants
are in fitting those properties. Of course, what we are testing
is not dependent on the absolute accuracy of the PM3
method. As long as both PM3 properties and those from
more accurate methods exhibit a similar level of dependence
0 100000 200000 300000 on H-bond topology, then PM3 properties can be used to
N (number of graphs) gauge the effectiveness of our graph invariant technique.
Before discussing how graph invariants apply to the
(H,O)s cage, we pause to discuss the use of both filled and
empty bonds in this case. The canonical orientations we ar-
bitrarily choose for the cage structure are shown in Fig. 2.
The actual bond orientations are specified relative to the ca-
nonical orientations. For example, for the physical configu-
ration of H-bonds shown in Fig. Z1;3=—1 while b;=+1.
The apical water moleculegop and bottom of the cage
structure in Fig. 2are only two-coordinate. When these mol-
ecules are single-donor/single-acceptab, initio calcula-
0 . ‘ . tions on(H,O)s have shown there are two minimum energy
0 100000 200000 300000 posmons of the apical waters tha_t arise from these moIeCL_JIes
N (number of graphs) acce_ptmg a hydroggn b_ond_at either of their tvyo lone pairs.
The isomers that arise in this case are conveniently enumer-
FIG. 4. Data for the same calculation as in Fig. 3, this time employing theated by adding two “ghost” atoms for each of the two-
sorting method introduced in this work. CPU time per graph edge for sortingcoordinate waters, and to which the two-coordinate waters

the graphs is plotted against the number of graghs the top panel. The .
total CPU time for symmetry comparisons within groups of size500 is can be treated as donatlng a hydrogen bt course, we
shown in the bottom panel. Least-square fits clearly show that the compuenly allow the ghost atoms to be a hydrogen bond acceptor,

tational cost scales as eithigror N In N in each case, and definitely not like not donor. Bonds 9, 10, 11, and 12 in Fig. 2 involve ghost
N2 as in Fig. 3. On the basis of arguments presented in Sec. Il we expegtoms. The variablebg, byg, by;, andb,, can sometimes
N In N scaling in the bottom panel and linear scaling in the top panel. take the value 0, Whil@l—bg onIy assume the values1.
The vertex and bond permutation group of tth&0)g
cage was taken to be isomorphic to thgy point group,

—
<

CPU time/ Nyond
=N

15

CPU time/npgng
=)

[V}

Ill. CORRELATION AND PREDICTION OF PHYSICAL although each of the 27 isomers is distorted from peifegt
LPJE%ZEELIAEF?H'TESMll\IA\},IBA\OR'I\IADNigPOLOGY symmetry. As discussed earlier in Sec. |, use of graph theory
and invariants for théH,O)q cage in no way requires that the

The number of hydrogen-bonded arrangements for #somers haveD,q symmetry. We regard the value of the
given water framework, increasing exponentially with sys-energy or other physical properties for each of the isomers as
tem size, quickly grows beyond the point where it is practicala 27-dimensional vector that we wish to express, in a least-
to calculate the energy, or other properties, of each structurgquared sense, as a linear combination of several 27-
by ab initio, or even semiempirical or empirical potential dimensional vectors which contain the value of one of the
methods. If physical properties correlate with hydrogeninvariants of Table Il for each of the 27 isomers. There are a
bonding topology, then connecting physical properties withtotal of 18 first- and second-order invariants, 2 first and 16
features of the hydrogen bonding network provides a nevgecond-order, for théH,0)s cage structure. However, the
means of understanding hydrogen bonded structures, andnamber of independent vectors from among the first-and
new route to predicting their properties based on limited in-second-order invariants available to fit physical properties
put. Physical properties are themselves invariant to symmedurned out to be much less than 18. Because of constraints
try operations. If a correlation exists between physical propamong the bonds imposed by the ice rules, some invariants
erties and hydrogen bonding topology, the graph invariantsvaluate to be linearly dependent on others. Second-order
furnish the required connection. invariants with repeated indices;() merely count the num-
ber of filled bonds o, # 0) within a group theoretical orbit or
A (H20)s and (Hz0)z cycle. Some cycles contain bonds which are always filled

Ouir first test of the correlation between H-bond topologybonds, and therefore they give rise to an invariant that is
and physical properties is thel,0)g cage. Using the semi- represented by a 27-dimensional vector all of whose compo-
empirical PM3 method® Tissandieret al. recently deter- nents are identical. The existence of more than one such
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FIG. 6. This plot evaluates the degree to which the energies of the 30 026
120 | isomers of the dodecahedral {®),, cage are correlated with hydrogen
° bond topology, and the effectiveness of graphical invariants in capturing that
trend. Thex-coordinate is the energy of the isomers using the OSS2 empiri-
100 + cal potential(Refs. 51, 53 They-coordinate is the result of a least-squares
fit to these energies using the seven linearly independent second graph in-
[ variants. If the fit was perfect all points would like along the straight line. A
80 | training set of only 20 randomly selected configurations was used to param-
= etrize the energy as a linear combination of invariants.
g
.5 60 -
E E(kcal/mo)~0.956 ;—2.233 ¢+ 0.668 , 4+ 0.759 5 7
| [ ]
40 A +0.158 55— 0.39359+0.159 ; 5
o
20 F _0364 2’9“1‘ 057:“ 3,41 (19)
® . . . .
where the invariants, ,1, for the (H,0)s cage are defined in
0 | ) . N \ . Table II. Since there are linear dependencies among the in-
0 20 40 60 80 100 120 variants, the linear fit in Eq(19) could be written in many
PM3 2 (DY) different ways, although the fit itself is uniquely defined. The

root-mean-squared and maximum deviations for the squared

FIG. 5. Inthe upper panel, we test the degree to which the energies of the Zfipole moment are A2 and 9_4)2, respectively, compared
isomers of the (HO)g cage are correlated with hydrogen bond topology,

2 i
and the effectiveness of graphical invariants in capturing that trend. Thc;[0 a range of 118 between .IeaSt anq greatest SquarEd di
x-coordinate is the energy of the isomers using the PM3 semiempiricap_OIe moment. Further invariants—third, _fourth!_ and even
theory. They-coordinate is the result of a least-squares fit to these energiehigher-order—could have been used to fit physical proper-

using all nine linearly independent first and second graph invarifitiesi ties. It is enlightening that physical properties of th&0)g
symbols, or just four out of those nine that proved to be most important

(open symbols If the fit was perfect all points would lie along the straight cage do C,O[‘relate well W,Ith the hydrogen bond tc,)pom,gy’ and
line. The lower panel exhibits the fit of the squared dipole moment to nine€Ncouraging that only first- and second-order invariants of
linearly independent first- and second-order invariants. the H-bond topology can capture the trends in physical prop-
erties. Actually, in Fig. 5 we show that only four out of the
nine available first- and second-order invariants are really
“bond-counting” invariant is another source of linear depen-important in describing the cluster energy.
dence. For thgH,0)g cage structure, the sources of linear Similar encouraging results are obtained upon examina-
dependence just mentioned conspire to limit the number ofion of a dodecahedral cage of 20 water molecules. We have
independent first- and second-order invariants available to fitalculated the optimized geometry, and energy at that geom-
physical properties to 9. etry, for each of the 30026 symmetry-distinct isomers of the
The ability of the first- and second-order invariants to(H,O),, dodecahedron using the OSS2 empirical
capture the trends in energy and squared total dipole for thpotential®’~>3The data in Fig. 6 confirms that the energies of
(H,0)g cage is confirmed in Fig. 5. The root-mean-squaredH,0),, isomers are correlated with H-bond topology, and
deviation of the invariant fit from the actual energy is 0.15that the trend is captured well by the seven linearly-
kcal/mol and the maximum deviation is .38 kcal/mol, com-independent second-order graph invariants for the dodecahe-
pared to a range of 9.7 kcal/mol between least and mogiron. [All first-order invariants for the dodecahedron are
stable isomers. Specifically, the nine-invariant fit portrayeddentically zero. There are eight second-order invariants, but
in Fig. 5 is given as one linear dependence among this set caused by factors men-
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tioned above in the discussion of tkid,0)s cage] The en-

ergy as a linear combination of the seven independent graph =

invariants was determined by least-squares fit using 20 iso-

mers randomly selected from the full set of 30 026 as a train- ] ) ) an

ing set. Figure 6 shows that the second-order graph invari! I;Sepgrihg with the notation of Eq20), A®"N! stands for

ants can be effectively employed to predict the energy of théAg Ay "No!Ny!).

remaining isomers based on data from a small training set. The contribution of each isomer to the partition function

The fit could be further improved by using still more isomersis determined by the potential energy of the isomer, and

in the training set, or by including third- and higher-orderan integral over “vibrational” or “phonon” fluctuations

invariants. We did not pursue these refinements since evegbout theith local minimum of the potential energy surface

the lowest level calculation seemed quite adequate for estwhose contribution we call the vibrational free enefgy, ; .

mating thermal properties or selecting candidates for thén a harmonic approximationy/(r™) — V(r{") would be taken

lowest energy isomer. as a quaderatic function in deviations frmﬁ‘l and the range of
In our original work on theH,0),, dodecahedrohwe  integration overD; could be safely extended to all space. It

noted that the energy of various isomers largely depended otlso might be a reasonable assumption to replagg by an

a single topological feature, the number of nearest-neighbasiverage valued;, for each of the isomers, in which case

pairs of double acceptor waters in the clathrate structure. O@Nme*ﬁxvibEiM:lfie*BEi' Consider now the calculation of

hydrogen of each of the ten double acceptor waters is ghe average energy as a function of temperature. Under the
dangling” hydrogen and does not participate in a hydrogenframework of classical statistical mechanics, by equipartition
bond. Therefore, the energy of the dodecahedral clathrate {fe yiprational contribution to the average configurational

determined by the number of nearest-neighbor dangling hyénergy is 1/RgT for each degree of freedom, regardless of
drogen pairs. The number of such pairs is indeed a topologinow the spectrum of harmonic frequencies may change
cal feature captured by graph invariants of the dodecahedr%ong the isomers. At this level of approximation, the aver-
at second-order. Therefore, the success of the second-ordg@e energyE) and the heat capacit@, are unaffected by
graph invariants in Fig. 6 is not surprising. However, thethe details of vibrational structure. Classical statistical me-
procedure used in this work is entirely automatic. It can b&:panics may be acceptable, even for the ice-ite-XI tran-

applied in situationswe have ice-lh in mingwhere a ser-  sition: the heat capacity peak assigned to this transition only

endipitous discovery of an important topological feature, likeghifts from 72 to 76 K upon replacing,© by D,0.24 If the

the dangling hydrogen pairs of the dodecahedron, is lacking;iprational contribution to the heat capacity does not vary

The graph invariants provide morserendipitous route for wjgely among the isomers, then an expression in the same

discovery of such important topological features. form as Eq.(21b) applies even in the quantum regime.

Calculating theE; and A, for all possible hydrogen
B. Using invariants to calculate phase transitions: bond topologies is a _dauntlng task, yet it is what quld bg
Dodecahedral (H,0),, as a dry run _needed to, say, predlct_ proton qrdermg phase_transmons in
_ . ice-lh. The graph invariants we introduce in this work pro-

The potential energy surface for ice or cold water clus-yide a way to circumvent the need to calculate all Ehand

ters consists of a number of deep minima, each correspongk . .. Provided these quantities can be fit, using a relatively

ing to a different hydrogen bond topology. Working within small training set, as a linear combination of graph invari-

the framework of classical statistical mechanics, the classicaints, we would have all information in hand to calculate

configuration integral for these systems can be written as ghermodynamic properties and phase transitions. This idea is

sum of contributions from each of thd symmetry-distinct  tested here for a hypothetical, unphysical situation: We cal-

VE

f,e™ BE+Av,), (21b)

i=1

. H =562 . .
local minima of the potential energy surfate: culate proton ordering phase transitions for tft#,0),,
N dodecahedron. This calculation is not experimentally rel-
ZN= f drNe AV evant because it may never be possible to studykh®),,

dodecahedral cluster, and even more unlikely to obtain prop-
M . N e BV V()] erties as a function of temperature. At higher energies the
:gl fie 'L.dr e ' (200 dodecahedron will transform into a more stable isomer or
: dissociate into smaller fragments. The calculation of proton
We useN to stand for No,Ny), the number of hydrogen ordering transitions in théH,0),, dodecahedron is presented
and oxygen atoms. The position of the atoms atithdocal  here as a dry run for an especially physically relevant situa-
minimum is denoted as;, D; is anN-dimensional integra- tion, proton ordering transitions in ice.
tion domain about théth minimum,E;=V(r}") is the poten- The top panel of Fig. 7 shows the heat capacity of the
tial energy at theith minimum, andf; is the number of (H,0),, dodecahedron calculated using the energy of all
symmetry-related configurations which are represented bg0 026 isomers in Eqg21a—(21b), which were optimized
one symmetry-distinct configuration. The canonical partitionusing the OSS2 potential energy surfat@hese curves are

function of the system is given as labeled as “exact” in Fig. 7, but they are only exact under
M . the reasonable assumptiofiermonic fluctuations about lo-
QNZE AT'NIe—ﬁEiJ drN e—ﬁ[v(rN>—V<riN)] (2139 cal minima of the potential energy surface or simigjy, ;
=1 . Di

among the many isomersaand unreasonable assumptions
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because it involves relatively few configurations. Using
higher-order invariants would narrow the gap between the
“exact” and “converged fit.” Of course, even if an en-
semble of(H,0),, dodecahedra could be prepared, the high
temperature transition would certainly never be observed
since these clusters would fragment long before the tempera-
ture reached this value.

Next, just 20 randomly selected isomers from the full set
of 30026 were used as an initial training set to parametrize
the energies as a function of graph invariants. The resulting
fit gave a good representation of the overall behavior of the
0 ' : ' energy and heat capacity, including the heat capacity peak
0 1000 T K2000 3000 around 600 K, and indicated some structure in the low

® (<250 K) energy range. However, it gave a poor represen-
tation of the low energy peak in the heat capacity. This is not
surprising, since the isomers range in energy up 5@ kcal/
mol, or ~25000 K, about the lowest energy isomer. There-
fore, the structure at low temperature involves an extremely
small fraction of the isomers. We added ten more randomly
selected isomers to the fitting set, this time chosen from iso-
mers that, according to the initial fit, were within 350 K of
the lowest energy configuration. The resulting fit, obtained
by randomly sampling from 0.1% of the total number of
isomers, reproduces the qualitative features of the heat ca-
pacity function. We repeated the entire procedure nine times
and show the results as the thin lines in the bottom panel of
Fig. 7 to illustrate the errors incurred at this level. It is very
encouraging that using the lowest-order nonvanishing invari-
FIG. 7. Configurational energy and heat capacity of a modelOjk} ants and a sparse sample of configurations gives a qualita-

dodecahedral cluster. The “exact” curve in the top panel is calculated fromtively correct description of the 30026 H-bond isomers of

the partition function in Egs(213, (21b) using the energy of all 30 026 the 0).. dodecahedron
isomers of the (KHO),q dodecahedron. The vibrational contribution to the (HZ )20 )

energy, which would only add a linear term to the average energy and a
constant to the heat capacity under the assumption of harmonic fluctuatioly. GRAPH INVARIANTS IN PERIODIC SYSTEMS

about each local minimum, is not included. The curve labeled “converged h f i | df | . licabl
fit” is obtained using an arbitrarily large number of isomers in the training The same formalism employed for clusters is applicable

set. It represents the best fit possible using only second-order invariants. TR® periodic systems. Invariants are constructed by applying
curves with thin lines in the bottom panel give the results of the invariantthe crystal space group to the bonds of the crystal lattice. The
fitting procedure, as fully explained in the text. The heat capacity was caly, 2 riants are therefore infinite sums of bonds. When the
culated using only 30 of the 30 026 isomers as input for a fit to invariants, . L
after which the energiels; in Egs.(219), (21b) were calculated from the fit. hydrogen bond arrangement repeats according to a periodic
To portray the variability arising from fitting to randomly selected points, unit cell, then the invariants can be expressed as finite sums
we give results for nine independent trials. over bonds from one unit cell. A less rigorous, more intuitive
approacHbut with some pitfallgis to picture the crystal unit
cell as a finite cluster in which hydrogen bonds to atoms
[that the (H,0),, dodecahedron will reach several hundredoutside the unit cell wrap around to the corresponding atoms
degrees Kelvin without transforming into another structurein the original unit cell. The formalism governing invariants
or dissociating into smaller fragmeijtthat underly the ap- in hydrogen-bonded crystals will be presented in a separate
plication of Egs.(2189—(21b) to dodecahedralH,0),,. All publication®® As a demonstration of the capabilities of our
these assumptiowould be reasonable for ice-Ih. The fit la- formalism, we present the results of enumerating hydrogen
beled “converged fit” in Fig. 7 is the heat capacity derived bond topologies for several unit cells from the ice-lh lattice,
from cluster energy expressed as a linear combination ofvhich are the most challenging systems we have tackled to
second-order invariants with the linear coefficients deterdate.
mined by least-squared fit to all 30026 isomers of the  Under normal condition, the space group of the oxygen
dodecahedron. lattice in Ice-lh belongs to thB6;/mmcspace group. In the
The curves in Fig. 7 indicate there are the cluster analogie-lh—XI transition, neutron scattering experiments indi-
of two phase transitions for this model system, one near 50 Kate that the?6;/mmc symmetry is broken by ordering of
and another near 600 K. The fit using only seven secondthe hydrogen bonds, and the lattice symmetry falls to
order invariants(recall that all first-order invariants of the Cmc2;.2572° The distortion of the lattice vectors from
dodecahedron are zeraccurately describes the main heat P6;/mmcsymmetry is measured to be 2% in thb-plane
capacity peak. The smaller peak at low temperature isind 0.5% along the-axis?’ According to the discussion in
slightly displaced. This peak is more difficult to reproduceSec. |, enumerated H-bond arrangement and invariants for
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distinct configurations reduces the total number by a factor
of 37 for theH,; cell and 288 for the largeH,; cell.
Calculating the energy of all configurations of the large cell
is certainly not feasible. However, invariants can be trans-
ferred from small cells to larger ceffsand it is very feasible

to estimate the energy of all 8 360 361 configurations for the
larger cell using invariants.

V. DISCUSSION

In the past, it has seemed natural to assume some corre-
lation between the hydrogen bond topology and physical
properties like energy and dipole moméht'® Oriented
graph invariants provide a means to quantify the correlation
between hydrogen bond arrangement and physical proper-
ties, and systematize the process determining the features of
the hydrogen bond network which most affects the energy,
and other physical properties. Such correlations would prove
exceedingly useful in resolving outstanding questions re-
garding thermal properties and possible phase transitions in
common ice-lh. The verdict on the degree to which H-bond
FIG. 8. (a) HexagonalH ., unit cell for ice-lh containing 12 water mol- t.OpOIOgY pre(_:hcts ene_rgy in ice must await further investiga-
ecules. An all-atom depiction looking parallel to tab-plane is shown on tion. This article furnishes the tools needed to analyze such
the left. On the right, only the oxygen atoms are shown looking along theputative relationships. We also provide a highly efficient
c-direction. (b) The oxygen atoms of the 48-watkl,; cell are shown. method for either exhaustive or selective enumeration of hy-
drogen bond topologies of clusters and crystals.

The utility of graph invariants rests on the extent to
‘which physical properties depend on hydrogen bond topol-
ogy. The basic idea underlying the formalism is that scalar

hysical properties, like energy or magnitude of the dipole
rﬁ%oment, are invariant to symmetry transformations. If two
ydrogen bonding arrangements are symmetry related, then
physical properties associated with these arrangements must
also be identical. For example, the association might be pic-
tured as arising from geometry optimization from a high-
symmetry initial structure. The symmetry properties of the
oriented graph and the geometry-optimized physical isomers
may be different. Remarkably, as long as symmetry-
equivalent initial structures optimize to the same distorted
structure, invariants based on the high-symmetry structure
molecules. . : I . :

are still appropriate for describing the relationship between

The result of graph enumeration for different unit cellsh - : :
. . . . ydrogen bonding topology and physical properties of the
in summarized in Table Ill. The rapid growth of the total distorted final structures.

number of configurations and symmetry-distinct configura-
tions with unit cell size is apparent. Isolating symmetry-
ACKNOWLEDGMENTS

the high-symmetry lattice will even describe distorted struc
tures, provided there is some correspondesceh as a de-
creasing energy pathbetween undistorted and distorted
structures. We have enumerated H-bond configurations usi
the hexagonaP6;/mmc lattice of ice-lh, but enumerations h
using theCme2, lattice are certainly also possible.

Our smallest unit cell is a hexagonal prism of 12 water
molecules(Fig. 8). This unit cell can be extended in both
ab-plane andc-axis. We useH,,«,, to designate these hex-
agonal unit cells wheren stands for the extension iab-
plane andn stands for the extension iraxis. By this con-
vention the smallest hexagonal unit cellith 12 molecules
is namedH 1. Hqx» has 24 molecules whilel,, ; has 48

TABLE lIl. Results of enumerating hydrogen bond arrangements for vari-  S.J.S. gratefully acknowledges receipt of a Dozor Fel-
ous units cells of the ice-Ih lattice. The unit cell designations are explainedowship enabling him to visit to Ben-Gurion University of
in Sec. IV.n,, is the number of water molecules in each unit agy, is the the Negev where this work was initiated. L.P.R. acknowl-
order of the permutation group,,, is the number of second-order invari- . .

ants. (All first-order invariants for the ice-lh lattice are identically zero. edges.support from the Swedish Natur_al Science Research
N iS the number of symmetrically distinct structurés,, is the number ~ Council (NFR). Some of the computations reported here

of structures satisfying the ice rule. Let be the number of permutation were made possible by a resource grant from the Ohio Su-
symmetry elements of thith graph. According to group theory, there are percomputer Center.

ng, /m;j=f; graphs which are generated from titke graph by a symmetry

operation. Therefore, we have the relatN{gm:EEjisl‘(nGU/ my) .

APPENDIX

Unit cell Nimol NGy Niny Ndist Ntotal

H 2 2 13 14 522 Here we demonstrate a necessary and sufficient condi-
H:ii 48 288 36 8360361 2404144962 tion for a graphical invariant to be identically zero. We first
show that a sufficient condition for the first-order invariant,
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G
|r=a§l g.(by), (A1)

to vanish is the existence of a group element that takes the

bondb, into minus itself,

ga(by)=—b,. (A2)

Apply the projection operator for the totally symmetric rep-

resentation as in Eq3) to both sides of the above equation,

G G
> 95(9a(b))=— > ggb)=—1,. (A3)
p=1 B=1

Let g5(9.(b;))=g,(b,) and realize that from the group re-
quirement of a unique inverse that no two elemegyscan
give rise to the samg,, . It follows that

G G
=2 g,(b)=—2 gab)=—1, (A4)
y=1 B=1

and therefore the existence of a group element that takes
into minus itself is a sufficient condition fdr=0. To show
that this is a necessary condition note that ifvanishes

identically, then the result of applying the projector of Eq.
(3) onto b, can be grouped into pairs of terms that cance

each other,

G
Ir=gl ga(by)o -+ (ga(br) +g,(b,)) ++ -

=-+(bg—bg)+-+, (A5)

for if gg(b,)=bs there must be another group operatmn
such thatg,(b,) = —bs if I, vanishes identically. However,
if g9g(b,)=—g,(b,), then there must be a group elemgpt
with the property that

9a(b) =9, (gg(b;))=—b;. (AB)

This shows that conditiofA2) is both necessary and suffi-

cient forl, to vanish identically.

Hydrogen bond topologies 2539
G
lrst..= Zl gq(brbsby )
o+ (gg(bybgby )+ g, (bybgby )+
:'“(br/bs/bt/'“_br/bs/bt/‘")+"' (Ag)

Therefore there must exist a group elemgptthat satisfies
condition (A7).
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