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We consider optimization of a rubidium atom clock that uses magnetically trapped Bose condensed atoms in
a highly elongated trap, and determine the optimal conditions for minimum Allan variance of the clock using
microwave Ramsey fringe spectroscopy. Elimination of magnetic field shifts and collisional shifts are consid-
ered. The effects of spin-dipolar relaxation are addressed in the optimization of the clock. We find that for the
interstate interaction strength equal to or larger than the intrastate interaction strengths, a modulational insta-
bility results in phase separation and symmetry breaking of the two-component condensate composed of the
ground and excited hyperfine clock levels, and this mechanism limits the clock accuracy.
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I. INTRODUCTION

The most accurate atomic clocks in operation today are
based either on trapped single ions or on atomic beams. The
advantage of ion clocks is that a single ion can be trapped
very tightly by static electric fields such that optical transi-
tions do not cause significant heating or an escape of the ion.
These optical transitions are decoupled from the trapping
potential such that both ground and excited atomic states feel
the same potential. On the other hand, one advantage of
atomic beam clocks is the large number of atoms in a beam,
such that the quantum projection noise can be decreased by
2–3 orders of magnitude with respect to the single ion clock.
A clock based on a thermal atomic beam suffers from the
velocity distribution that limits the transition bandwidth. Us-
ing a Bose-Einstein condensate �BEC� would significantly
ameliorate this problem. A new type of atomic clock based
on neutral atoms trapped in a deep “magic-wavelength” op-
tical lattice �magic because the transition does not have an
optical light shift because the difference between the ac po-
larizabilities vanishes at the wavelength of the optical lattice�
has recently been suggested �1,2�. This kind of clock can be
operated on an optical transition, rather than a microwave
transition, and promises to be most accurate, but clocks of
this type have not yet been fully characterized.

Here we consider whether a good atomic clock can be
based on a more common type of trapped ultracold atom
configuration, i.e., on a BEC in a magnetic trap. Trapped
BECs can have many atoms, which gives them the large
number advantage mentioned above. This kind of clock can
be much more accurate than a thermal cloud clock because
the Doppler effect in a thermal clould can severely limit
clock performance �see Sec. III B below�. This effect is neg-
ligible for a BEC. In addition a BEC cloud has a well-
defined energy determined by the chemical potential that is
uniform over the BEC and this helps in lowering the vari-
ance of the clock frequency. This kind of clock might be
miniaturized, as microtraps for atomic BECs can be created
above a fabricated chip. As has now been fully demonstrated,
magnetic microchip traps can be used to manipulate neutral
atoms on the micrometer scale �3�. A high density, coherent
atom source can be created via Bose-Einstein condensation

on an atom chip �4�, and “atomic conveyor belts,”
waveguides, and beam splitters can be implemented on atom
chips �3�. It is therefore intriguing to entertain the possibility
of creating an atomic clock on an atom chip �5,6�. Hence, it
is important to study theoretically and experimentally the
potential of this kind of clock. One experiment of this kind,
using Ramsey spectroscopy �7�, has already been carried out
�5�, and another experiment has been performed in a macro-
scopic magnetic trap �8�, but using the same spectroscopic
method. More recent mesoscopic atom clocks using coherent
population trapping have been reported �6�, and have the
benefit of allowing compact optical light sources.

Specifically, we consider a BEC in a magnetic trap and
investigate a clock based on the Ramsey separated field spec-
troscopy method �7� in a highly elongated trap. The quasi-1D
geometry of an elongated trap has the advantage of further
reducing the inelastic ultracold collisions as shown in Ref.
�9�. As in Refs. �5,8�, we consider a two-photon microwave
transition between two 87Rb hyperfine states with an atomic
frequency �0�6.8 GHz. We treat the dynamics of the clock
in mean field and consider the amplitude and phase of the
order parameters for the ground and excited clock states of
the system, solving the coupled set of one-dimensional �1D�
Gross-Pitaevskii equations to analyze the microwave clock
frequency shift due to collisional and magnetic field effects.
We determine the clock frequency shift introduced by the
external magnetic potential and the kinetic energy of the
Bose condensed gas, both of which are influenced by the
difference in the size of the two atomic wave packets. The
clock is designed to run with 87Rb atoms in a magnetic field
regime where the two hyperfine levels correlating with
5 1S1/2�f =1,mf =−1� and 5 1S1/2�f =2,mf =1� experience the
same first-order Zeeman shift �5,8,10�. The collisional fre-
quency shift from the resonance frequency �0 can be calcu-
lated as in Ref. �8�. As we shall see, the collisional shift can
be cancelled by using the Zeeman shift �8� and by optimizing
the population difference in the ground and excited states
�11�. The latter is possible for an interstate interaction
strength larger or smaller than both the ground and excited
intrastate interaction strength. The clock run time is limited
by atom loss due to collisional spin dipolar collisional relax-
ation of the excited state �8�. For a 87Rb condensate at high
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density �12.6�1013 cm−3�, the collisional dipolar loss in the
excited state has been experimentally measured �8�. Atom
loss led to a total density to drop by 3% in 20 ms. Neverthe-
less it is important to have a reasonable atomic number den-
sity n to compensate the effects of quantum fluctuations; the
uncertainty, as quantified by the Allan standard deviation �
scales as n−1/2. So an optimization of the density of atoms is
necessary to reduce the quantum fluctuations and the colli-
sional dipolar relaxation in order to increase the clock time.
The first experiment with this type of clock using a trapped
thermal cloud of 87Rb atoms containing about 1.5�104 at-
oms with a density of atoms less than 5�1012 cm−3, yielded
an Allan standard deviation

���� = 1.7 � 10−11�−1/2 Hz−1/2, �1�

where � is the averaging time �5�. For the trap parameters
used here, i.e., with radial frequency �r /2�=120 Hz and
axial frequency �z /2�=0.5 Hz, the Allan standard deviation
is of order of magnitude 10−12�Tc /�, where Tc is the cycle
period. This trap confines the geometry to quasi-1D and has
the advantage of further reducing the collisional dipolar re-
laxation �9�.

Some additional crucial limitations might make a mag-
netically trapped BEC unsuitable. A significant limitation is
the collisional interaction between the atoms. Particularly
problematic is the difference in the s-wave scattering length
between atoms occupying different hyperfine levels which
affects the collisional shift of the clock frequency. The colli-
sional shifts of rubidium atoms are relatively small compared
to cesium atoms �12,13�, for example, but they can still be
significant if many atoms are tightly trapped together. In or-
der to minimize collisional shifts, we shall employ a method
of overcoming collisional shifts by adjusting the ground to
excited state ratio during the Ramsey fringe spectroscopy.
Moreover, the run time of the clock is also limited by the
dynamics of the atomic cloud that can result in phase sepa-
ration of the two spin components �14–18�. We find that a
modulational instability results in the dynamics and the evo-
lution depends on both the density of atoms and the balance
between the interstate and intrastate interaction strengths.
This gives rise to phase separation and symmetry breaking of
the two-component condensate for the ground and excited
clock levels that occurs after the first � /2 Ramsey pulse that
puts the atoms in a superposition of the ground and excited
state. The modulation instability limits the clock accuracy. It
therefore appears that magnetically trapped BEC clocks on
an atom chip cannot promise to be the most accurate type of
clock. The most significant limitation to the clock stability
arises from the dynamics of the atomic cloud that creates a
phase separation of the two wave packets for the ground and
excited state. The time dependence of the phase separation
depends on the density of atoms and on the interstate inter-
action strength; the smaller the density and/or the smaller the
interstate interaction strength, the longer the phase separation
time. Hence, a very weak axial trapping frequency �e.g.,
�z /2��0.5 Hz� resulting in a lower density of the atoms,
allows an increased interrogation time and/or a greater total
number of atoms, and therefore a further increase of the sta-
bility of the clock beyond 10−12�Tc /�.

The paper is organized as follows. The model of the clock
based on Ramsey spectroscopy is described in Sec. II. Sec-
tion III A briefly presents the numerical approach we use to
analyze the clock. In Sec. III B we depict the quasi-1D dy-
namics in a trap that is very tight in two directions, and
describe why the spin-relaxation collision mechanism, as
well as other inelastic scattering processes, is suppressed in a
1D geometry. Section III C describes the results obtained by
numerically solving the coupled Gross-Pitaevskii equations
for the order parameters of the ground and excited clock
states. In Sec. IV we discuss two ways to improve and opti-
mize the stability and accuracy of the clock by cancelling the
collisional shift. Section V concludes the paper.

II. MICROWAVE BEC MAGNETIC CLOCK USING
RAMSEY FRINGES

We consider an atomic BEC trapped in an external mag-
netic potential. The spatial variation is harmonic about the
trap minimum. The atoms are initially in the ground elec-
tronic state, labeled �1�, and a radio-frequency field can trans-
fer atoms into an excited state labeled �2�. More specifically
the levels �f ,m�= �2,1� and �1,−1� are used, and the transi-
tion involves a combination of a microwave pulse at
6.8 GHz to transfer the atoms from �2, 1� to �1, 0� and then
another RF pulse to transfer them from �1, 0� to �1,−1�. The
�1,−1� state is trapped with the same potential as �2, 1� if the
magnetic field at the trap bottom is around 3.23 G �10�.

The clock described here uses the Ramsey separated field
method �7�. The atomic cloud interacts with two short micro-
wave pulses separated by a time T; each pulse has pulse area
close to � /2. A spatial inhomogeneity of the atomic energy
levels is due to the spatially dependent Zeeman energy due to
the magnetic field varying with position. Clearly, this can
adversely affect the clock frequency. This effect is mini-
mized by using a pair of energy levels which experience the
same trapping potential at a particular magnetic field
strength. References �5� and �8� showed that at a magnetic
field of 	3.23 G, the �1�
�f =1,mf =−1� and �2�
�f
=2,mf =1� hyperfine levels of the 5S1/2 ground state of 87Rb
experience the same first-order Zeeman shift such that the
differential shift of the two levels across the cloud was
	1 Hz. The collisional shift also contributes to the spatial
inhomogeneity of the atomic transition energy level across
the cloud since the density of the cloud varies with position.
However, as noted in Ref. �8�, it may be possible to cancel
the Zeeman shift with the collisional shift. The stability and
accuracy of the clock are further improved and optimized by
cancelling the collisional shift �as we shall see in Sec. IV�.

The initial condensate starts in the ground state �1�, and
after the first � /2 pulse, which we model by Bloch sphere
dynamics �19� assuming that the pulse duration �p is ex-
tremely fast compared to other time scales, we solve a set of
coupled Gross-Pitaevskii equations to describe the dynamics
of the two-component ��1� and �2�� wave packets. After a
time T a second short � /2 pulse is applied. For an intense
short near-resonant pulse, the solutions of the optical Bloch
equations for a two level atom gives the following unitary
transformation operator:
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U�t� =�cos��gt/2� − i
	�
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�
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�
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sin��gt/2� cos��gt/2� + i

	�
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sin��gt/2� � , �2�

where � is the Rabi frequency, 	� is the detuning and �g

=����2+	�2 is the generalized Rabi frequency. For example,
if an atom is initially in state �1� and interacts with an on-
resonant � /2 pulse, it evolves to the state ��1�+ i�2�� /�2.
This transformation can be used to describe the effects of
both the first and second Ramsey pulses.

III. MEAN-FIELD ANALYSIS OF CLOCK DYNAMICS

The performance of the clock is affected by the dynamics
of the two-component BEC after the first � /2 Ramsey pulse.
We shall see below that, because of the crossed interaction
energy of the two spin components created after the first � /2
Ramsey pulse, the system becomes unstable, and the compo-
nents eventually undergo a local phase separation that leads
to symmetry breaking. The phase separation of the spin com-
ponents limits the Ramsey interrogation time and hence the
stability of the clock.

In this section, we first describe the numerical methods
used to investigate the clock dynamics in mean field. Many-
body effects can also be included as formulated in Ref. �20�,
but we shall not do so here. Then we discuss the advantage
of operating the clock in a highly elongated trap configura-
tion. We present numerical results for this configuration and
analyze them.

A. Numerical method

We investigate the clock dynamics in mean field. The ini-
tial zero temperature condensate wave function �order pa-
rameter� is obtained by numerically determining the lowest
eigenstate 
�r� of the time-dependent Gross-Pitaevskii equa-
tion for particles of mass m, confined in an external potential
Vext�r� and a mean-field interaction energy due to contact
two-body interactions with coupling strength g11
=4��2a11/m where a11 is the s-wave scattering length for
atoms in the ground state. This is accomplished with an
imaginary time split-step Fourier transform method. The ef-
fect of the first pulse that couples the two atomic spin states
is modeled using a unitary transformation on the zero tem-
perature ground state wave function and gives two wave
functions representing the ground state and the excited state
atoms:


i�r,0� = Ai
�r� , �3�

where i=1,2 correspond to ground and excited state labels,
respectively, and Ai is the complex amplitude of state i ob-
tained using Eq. �2�. We take the normalization of the initial
condensate wave function such that 
�
�r ,0��2dr=N, where
N is the total number of atoms, and the amplitudes Ai are

determined by the Bloch sphere dynamics for the two levels
in the presence of the microwave field inducing the transition
�19�. The amplitudes Ai satisfy 0� �Ai�2�1 and �i=1

2 �Ai�2=1.
The two component condensates evolve according to

i�
�
i�r,t�

�t
= �−

�2�2

2m
+ Vext�r� + �− 1�i��21

2

+ �
j=1,2

gij�
 j�r,t��2�
i�r,t� , �4�

where the atomic resonance transition frequency is denoted
as �21. The interaction strength gij =4��2
ij

�2�aij /m, with
i , j=1,2, is defined in terms of the s-wave scattering length
for particles in states i and j, aij, and the two-particle corre-
lation parameter for particles in states i and j at zero separa-
tion between particles, 
ij

�2� �8,21–25�. The latter quantity is
often denoted as gij

�2�. The values of the two-particle correla-
tion parameter 
ij

�2� is such that 0�
ii
�2��2 and 1�
ij,i�j

�2�

�2 for bosons. For a condensate, 
ii
�2�=1. For the interstate

�two-component� two-particle correlation at zero separation,

12

�2� in a condensate we considered two values, 
12
�2�=1 and


12
�2�=2. We have learned recently that 
12

�2� was measured to
be nearly unity for 87Rb �26�, but to we shall present results
of calculations for both values.

We propagate the two BEC components for a time T be-
tween the Ramsey pulses by solving the coupled time-
dependent Gross-Pitaevskii equations using the split-step
Fourier transform method. During the propagation for a time
T, the phase and amplitude of the component wave functions
evolve with time. After the time T, we apply again the uni-
tary transformation operator corresponding to a � /2 pulse.
We then integrate the component wave functions over space
to obtain the probabilities for finding the atoms in the two
states.

B. Dynamics of the clock in a highly elongated trap

The effects of the mean-field collisional dipolar relaxation
are important to investigate in order to optimize the accuracy
and the stability of the clock. As we shall see, phase separa-
tion of the two spin components due to mean-field dynamics,
and loss of excited state atoms due to the collisional dipolar
relaxation between atoms in the excited state are two factors
that can significantly reduce the performance of the clock.
The collisional dipolar loss of the excited state for a 87Rb
condensate at high density �12.6�1013 cm−3� has been ex-
perimentally measured �8�. Atom loss caused the total den-
sity to drop by 3% in 20 ms. In order to reduce this effect,
we propose to run the clock in a highly elongated trap; in a
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quasi-one-dimensional condensate the spin-dipole relaxation
collisional loss can be made much smaller than in three di-
mensions �9�. The inelastic rate coefficient for going from
the incident channel � to a final inelastic channel �� for
strong confinement Kconf,��� is related to the 3D inelastic rate
Kfree,��� by �9�,

Kconf,��� =
a�

4 p0
2

4�2�aeff�2
Kfree,��� =

2�a�
4 E0

�2 �
��

�U����2

p��
. �5�

Here p0 is the relative collision momentum and E0
= p0

2 /2�r is the relative collision energy in the incident chan-
nel, p��=�2�r�E0+E���� is the relative momentum in the
final inelastic �� channel, where E��� is the asymptotic en-
ergy difference of the two channels, �r=m /2 is the reduced
mass, and the parameter U��� is the coupling between the
channels �� and �. This quasi-1D rate is reduced by a factor

of
a�

4 p0
2

4�2�aeff�2
from the 3D rate, and is small for ultracold colli-

sion energies. For high anisotropy of the trap, the 1D inter-
action strength is given by

gij
1D =

2�2
ij
�2�aij

ma�
2 , �6�

where a�=�� /m�r is the radial harmonic oscillator length
and �r /2� the radial trap frequency �27�. For sufficiently
large �r, radial profile is harmonic oscillatorlike, and the
motion of the atoms are frozen in the radial direction. We
assume that the magnetic field is such that the first-order
Zeeman shift is the same for the two atomic internal states.
Now, if the frequency �z /2� is also made small, so the 1D
density is small, the nonlinear interaction term gij

1Dn can be
made very small.

Using a magnetically trapped thermal cloud can signifi-
cantly reduce the mean-field collisional shift compared to a
BEC, however, a thermal cloud has a Doppler width that
increases the bandwidth of the clock transition and can there-
fore limit the clock accuracy. Indeed the clock bandwidth at
half-maximum is in our case inversely proportional to the
interrogation time T; the larger the interrogation time, the
smaller the transition bandwidth of the clock, and the Dop-
pler effect on the bandwidth becomes more significant. With
our interrogation time �0.5 s�, the Doppler width must be
much smaller than 1 Hz to be negligible. Hence, the tem-
perature of the thermal cloud must be well below 2.5 �K so
as to be competitive with a BEC. For a 500 nK 87Rb thermal
cloud �i.e., above condensation� the Doppler width is 0.4 Hz
which is smaller than the bandwidth of the clock transition.
Moreover, in a BEC the energy is determined by the chemi-
cal potential that is uniform across the BEC and very well
specified; this helps in lowering the variance of the clock
frequency. The collisional frequency shift calculated with
104 atoms in a highly elongated BEC corresponding to a
density of 3�1014 atoms/cm3 for our trap geometry, is
about 3 Hz, but the uncertainty in this collisional shift �due
to the uncertainty in the number of atoms and the uncertainty
in the value of the scattering length� is very much smaller
than 3 Hz, and hence the collisional shift can be largely com-
pensated for as far as the clock frequency is concerned. Al-

though the collisional shift for a 500 nK thermal cloud is at
least 100 times smaller than that for the BEC, the Doppler
width of the thermal cloud is 0.4 Hz, and this is presumably
much larger than the uncertainty in the collisional shift of the
BEC.

C. Numerical results

Our numerical calculations have been carried out with an
axial ��z� and radial ��r� trap frequency of 0.5 Hz and
120 Hz, respectively, so the anisotropy ratio �
�r /�z=240.
The three scattering lengths are taken to be a11=100.44a0,
a22=95.47a0, and a12=98.09a0 �8�, where a0 is the Bohr ra-
dius. In order to better understand the effect of the modula-
tional instability on the clock, we carry out the calculation
with 
11,22

�2� =1 and 
12
�2�=2. The optimization of the number of

atoms for the frequencies given above that gives the best
Allan deviation is of the order of magnitude 104 atoms. The
two pulses used for the Ramsey separated field method are
taken to be � /2 pulses, i.e., �A1�2= �A2�2=1/2.

Figure 1 shows the phase �i�z , t� of the ith condensate
wave function, 
i�z , t�= �
i�z , t��exp�i�i�z , t��, as a function of
position, z, in the magnetic trap for 
12

�2�=2. Immediately af-
ter the first � /2 pulse, the phase of the two spin components
is spatially uniform and their difference is � /2 �Fig. 1�a�� as
is easily understood from the transformation in Eq. �2�. Fol-
lowing the � /2 pulse, mean-field effects begin to create a
spatially varying phase across the two condensate wave
packets �Figs. 1�b� and 1�c�� �28�. Beyond t=0.24 s, the spa-
tially dependent variations in the phase appears completely
chaotic; the mean-field treatment has not only reached the
point of numerically limited accuracy but has actually lost its
regime of validity.

Figure 2 shows the evolution of the position dependent
density of the two atomic states for a sequence of interpulse
times T=0 s �Fig. 2�a��, T=0.18 s �Fig. 2�b��, T=0.22 s �Fig.

FIG. 1. �Color online� Phase of condensate ground state �solid
curve� and excited state �dashed curve� components for the inter-
state two-particle correlation parameter at zero separation 
12

�2�=2,
after the first � /2 pulse as a function of position, z, in the magnetic
trap at times �a� t=0 ms, �b� t=6.3 ms, �c� t=180 ms, and �d� t
=500 ms. az=�� /m�z is the axial harmonic oscillator length.
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2�c��, T=0.26 s �Fig. 2�d��, T=0.5 s �Fig. 2�e��, and T=1 s
�Fig. 2�f��, and 
12

�2�=2. The density of the two components
are almost identical at T=0 s and T=0.18 s and are smoothly
varying with position. The density profiles begins becoming
irregular at the center of the condensates at about T=0.20 s.
At later times a spiked structure whose amplitude increases
with time develops and some local phase separation occurs
�Figs. 2�c�–2�f�� due to the repulsive interaction between the
wave packet components. A similar spiked structure of the
density as a function of position has been obtained numeri-
cally in the regime of strong excitation of the BEC loaded in
a 1D optical lattice plus an asymmetric external magnetic
trap by instantaneously giving a large displacement to the
initial position of the center of the magnetic trap in Ref. �29�.

The dynamics is different for 
12
�2�=1. Figure 3 shows the

evolution of the position dependent density of the two atomic
states for a sequence of interpulse times T=0 s �Fig. 3�a��,
T=0.36 s �Fig. 3�b��, T=1 s �Fig. 3�c��, T=2 s �Fig. 3�d��,
T=50 s �Fig. 3�e��, and T=220 s �Fig. 3�f��. The phase sepa-

ration appears later, around 0.4 s, and evolves more slowly
than the case of strong interstate interaction strength �
12

�2�

=2�. Since the interaction strength of the ground state is
larger than in the excited state, the ground state density pro-
trudes beyond the excited state density �T=1 s�, and at later
times the phase separation evolves in a complex way under
the effect of the instability �T=2 s and 50 s� and eventually a
symmetry breaking occurs �T=220 s�.

A rough estimate of the time scale at which the system
becomes sensitive to the phase-separation instability, �ps, can
be obtained by using the expression derived by Timmermans
in Ref. �17� for a homogeneous system,

�ps = 2�/��−,kf
� = 2��/m�c−�2, �7�

where

�−,k
2 = c−

2k2 + ��k2/2m�2 �8�

is the dispersion of the double condensate excitation, and the
parameter

-20 -10 0 10 20
0

100

200

300

(c)

FIG. 2. �Color online� Condensate density of
ground state �solid curve� and excited state
�dashed curve� components for the interstate two-
particle correlation parameter at zero separation

12

�2�=2, after the first � /2 pulse for a sequence of
interpulse times �a� T=0 s, �b� T=0.18 s, �c� T
=0.22 s, �d� T=0.26 s, �e� T=0.5 s, and �f� T
=1 s. At T=0 s the two spin components have
the same amplitude since the microwave pulse is
very short but dephased of � /2 for a � /2 pulse.
az=�� /m�z is the axial harmonic oscillator
length.

FIG. 3. �Color online� Condensate density of
ground state �solid curve� and excited state
�dashed curve� components for the interstate two-
particle correlation parameter at zero separation

12

�2�=1, after the first � /2 pulse for a sequence of
interpulse times �a� T=0 s, �b� T=0.36 s, �c� T
=1 s, �d� T=2 s, �e� T=50 s, and �f� T=220 s. At
T=0 s the two spin components have the same
amplitude since the microwave pulse is very
short but dephased of � /2 for a � /2 pulse.
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c−
2 =

�2

ma�
2 �
11

�2�a11n1 + 
22
�2�a22n2 − ��
11

�2�a11n1�2 + �
22
�2�a22n2�2 + �2�
12

�2�a12�2 − 
11
�2�
22

�2�a11a22�2n1n2� �9�

is the phononlike sound velocity at low momenta. For insta-
bility, c−

2 �0 and �−,kf

2 �0. The fastest growing mode has
wave number kf =�2m�c−� /�, and grows with an initial rate
of m�c−�2 /�. Equations �8� and �9� show that the local phase
separation of the two condensate components and the sym-
metry breaking are due to the cross interaction terms under
the condition c−

2 �0 which occurs when �
12
�2�a12�2

�
11
�2�
22

�2�a11a22/2. Equation �9� shows that the time at which
the symmetry breaking starts depends on the atomic density;
the higher the density �corresponding to larger parameter
�c−��, the smaller the symmetry breaking appearance time.
We obtain a value of �ps=35 ms which is smaller than the
time from which the phase separation starts in Fig. 2. This
discrepancy is probably due to the space-dependent atomic
density that locally changes the value of �ps, increasing from
the center of the clouds where the density is higher to the
edge where the density is smaller. As the instability depends
on the density of atoms, the local spiked structures start to
develop at the center of the trap and then spread throughout
the clouds.

Note that the case of 
12
�2�=1 with the same numerical

parameters values yields �ps�7 s and the numerical calcula-
tion yields a value beyond 120 s for the appearance of the
symmetry breaking �Fig. 6�. In this case, the phase separa-
tion appears much earlier, �0.4 s before the symmetry
breaking takes place. Indeed as the intrastate and interstate
interaction strengths are almost identical, the BEC clouds are
not strongly perturbed after the first � /2 pulse. Hence, the
two BEC components are barely unstable and phase separa-
tion and the symmetry breaking does not occur until much
later than in the case of 
12

�2�=2. This clearly increases the
stability of the clock. The smaller the difference between the

interstate and intrastate interaction strength, the longer the
interrogation time and the higher the stability of the clock.

The spiked structure and phase separation in position
space is correlated with a delocalization in momentum space
created by the strong excitation of the two BEC components
as the dynamics proceeds. Indeed the calculated density of
the atoms in momentum space is completely delocalized be-
yond 0.5 s, as shown in Fig. 4. The increased width of the
momentum distribution observed from t=0 s to t=0.22 s is
due to the fact that after the first � /2 pulse the interaction
energy converts to the kinetic energy. To monitor the sym-
metry breaking shown in Fig. 1�d�, we calculate the mean
value of the axial momentum of each spin component as a
function of time, �piz

�t��=
piz
�t��
i�pz , t��2dpz, where 
i�pz , t�

is the Fourier transform of the condensate wave function

i�z , t�. Figure 5 shows the evolution of the mean value of
momentum of the two condensates as a function of time. The
mean value of the momentum for each spin component is
zero from 0 to 0.24 s, and then the mean momentum of each
component starts oscillating in time, but the total momentum
is conserved. We note that the symmetry breaking appears
after the density starts showing an irregular profile of small
amplitude at its center. Comparison of Fig. 5 and Fig. 6
shows that phase separation occurs at much later times.

We now analyze the effect of the mean-field dynamics of
the system on the performance of the clock. Figure 7 shows
the calculated probability Pe for finding atoms in the excited
state immediately after the second � /2 Ramsey pulse as a
function of the detuning 	� of the microwave frequency
from the atomic transition frequency times the interrogation
time, 	�T. The curves in Fig. 7�a� have been calculated for
three values of the interrogation time, T=0.18 s �solid

FIG. 4. �Color online� Condensate momentum
density of ground �solid curve� and excited
�dashed curve� state component for the interstate
two-particle correlation parameter at zero separa-
tion 
12

�2�=2, after the first � /2 pulse for a se-
quence of times �a� T=0 s, �b� T=0.18 s, �c� T
=0.22 s, �d� T=0.26 s, �e� T=0.5 s, and �f� T
=1 s.
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curve�, 0.5 s �dashed curve�, and 1 s �dotted curve�. The
fringe contrast decreases as the interrogation time increases.
Figure 7�b� plots the variance of the excited population
NPe�1− Pe� �30,31�. The variance is large at time T=0.5 and
1.0 s where the condensate profiles are spiked and asym-
metrical, and this results in poor stability of the clock. The
interrogation time of T=0.18 s where the condensates show
a smooth and symmetrical profile lead to a frequency stabil-
ity of 2.6�10−12�Tc /� where Tc is the cycle period and � the
averaging time. It is important to note that the stability can
be improved by further decreasing the axial and radial fre-
quencies, keeping a high anisotropy ratio so that the
quasi-1D regime remains. The improvement will depend on
how low the axial frequency can be made without causing
fluctuations of the trapping magnetic field. The goal is to
further lower the density so as to increase the time at which
the phase separation of the two spin components after the
first microwave pulse, and hence increase the interrogation

time. The total number of atoms can also be independently
optimized. Thus, it will hopefully be possible to reach a sta-
bility beyond 10−12�Tc /�.

We can express the Allan standard deviation for a Ramsey
fringe experiment as �= 1

��0T�N
�Tc /�, as a function of the

axial trapping frequency. The interrogation time is fixed by
the density of the atoms; the higher the density, the smaller
the interrogation time. By fixing the interrogation time Tfix to
correspond to a given density of atoms n=N / lz, where lz
= �3g11

1DN /2m�z
2�1/3, it is possible to vary the number of at-

oms and the axial frequency. By equating the density calcu-
lated for a different number of atoms and trap frequency, we
derive the number of the atoms as a function of the axial
trapping frequency,

N = Nfix
�z,fix

�z
, �10�

where Nfix and �z,fix are, respectively, the given number of
atoms and axial trapping frequency that fix the density and
the interrogation time Tfix. Then the Allan standard deviation
is

���z� =
1

��0Tfix
�Nfix

� �z

�z,fix
�1/2

�Tc/� , �11�

and varies as the square root of the axial trapping frequency.
In our case, using Nfix=104 atoms and �z,fix=0.5 Hz, we find

FIG. 5. �Color online� Evolution of the mean value of the mo-
mentum of ground �solid curve� and excited �dashed curve� state
component after the first � /2 pulse as a function of time for 
12

�2�

=2.

FIG. 6. �Color online� Evolution of the mean value of the mo-
mentum of ground �solid curve� and excited �dashed curve� state
component after the first � /2 pulse as a function of time for 
12

�2�

=1.

FIG. 7. �Color online� Excited state population �a� and it vari-
ance �b� as a function of 	�T, for a sequence of interpulse times:
T=0.18 s �solid curve�, T=0.5 s �dashed curve�, and T=1 s �dotted
curve� for 
12

�2�=2.
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Tfix=180 ms for 
12
�2�=2, and the values of the interrogation

time obtained by varying the axial trapping frequency are
within about 10% of Tfix.

The projection noise does not have a simple expression as
a function of the radial frequency because the instability of
the BEC depends both on the density and the geometry of the
cloud. Furthermore, the variation of the radial frequency
deeply affects the geometry of the cloud and changes the
interaction strength g11

1D.
Normally we should add to the projection noise, the fre-

quency noise due to the fluctuation of the density introduced
by the fluctuation of the total number of atoms. However, as
we shall see in the next section, there is a simple method to
cancel the collisional frequency shift and then the noise due
to density fluctuations will cancel too.

IV. IMPROVEMENT OF THE CLOCK: CANCELLATION
OF THE COLLISIONAL SHIFT

In this section we analyze the possibility of improving the
clock by cancelling the collisional shift. One of the advan-
tages resulting from the cancellation of the collisional shift is
that the clock becomes insensitive to the variation of the total
number of atoms. Indeed, even if the density is low, never-
theless the variation of the total number of atoms at each
cycle period creates a variation of the density of the atoms
and this introduces noise that limits the stability of the clock.
As the collisional frequency shift depends on the density of
atoms, the idea is to cancel the collisional shift so that such a
variation of the density of atoms does not affect the stability
of the clock. Note that the variation of the number of atoms
we are referring to is not due to quantum fluctuations but
rather due to experimental fluctuations in the number of at-
oms. Here we present two different proposals to overcome
this problem.

A small density of atoms in the excited state minimizes
the collisional dipolar relaxation loss. But the clock sensitiv-
ity to quantum fluctuations increases if the population of
atoms in the excited state is too small. So an optimization of
the density of atoms is necessary to obtain both good signal-
to-noise ratio and a long clock time, yet having small colli-
sional dipolar relaxation. We can use the Zeeman shift to
compensate the collisional shift. This method can be applied
both to a normal cold atomic cloud and a BEC, and has been
proposed in Ref. �8�. However, this method requires adjust-
ing two parameters and seems not to be simple to implement.
We will not use it in this paper. Instead, we study the can-
cellation of the collisional shift terms by playing them off
against each other as discussed by Gibble and Verhaar in
Ref. �11� for a thermal cesium atom clock. The expression
for the collisional frequency shift is �8,11,25,32–34�

	�int =
�

m�a�
2 �
12

�2�a12n1 + 
22
�2�a22n2 − 
11

�2�a11n1 − 
12
�2�a12n2� ,

�12�

where n1 and n2 are the density of atoms per unit length in
the ground and excited state, respectively. By equating 	�int
to zero, we obtain a simple relation between the density of
the atoms in the two states,

n2

n1
=


12
�2�a12 − 
11

�2�a11


12
�2�a12 − 
22

�2�a22
. �13�

The above relation is satisfied only if 
12
�2��
11

�2�a11/a12 and

12

�2��
22
�2�a22/a12, or 
12

�2��
11
�2�a11/a12 and 
12

�2�

�
22
�2�a22/a12. When 
11

�2�=
22
�2�=1, and a12 is only slightly

different from a11 and a22, such that a2�a12�a11, the can-
cellation of the collisional shift is possible only for 
12

�2�

�1.02 or 
12
�2��0.97. For 
12

�2�=1 the ratio n2 /n1 in Eq. �13�
is negative, and therefore cancellation of the collisional shift
is not possible. For the scattering lengths of 87Rb and 
12

�2�

=2, the density ratio is n2=0.95n1. Such a ratio should main-
tain the sizes of the two components to be almost identical.
For a ratio of densities close to unity, the Zeeman frequency
shift terms due to the size of the atomic clouds will be small.
However, a problem originates from �2�-�2� collisional dipo-
lar relaxation which can be important at high density and this
can limit the clock run time. But in a quasi-1D system, the
inelastic ultracold collisions are further reduced. To illustrate
the improvement of collisional shift, Fig. 8 shows the calcu-
lated excited state population as a function of 	�T for an
interpulse time T=0.18 s. The dashed curve is for the case of
� /2 pulses and the solid curve shows the case of the slightly
different populations suggested above. In the latter case, the
collisional shift is cancelled and this gives a better fringe
contrast and a smaller frequency shift. The improvement of
fringe amplitude is due to the fact that the difference in the
phase of the condensates is space independent as the colli-
sional shift is cancelled.

The remaining frequency shift is now due to kinetic and
Zeeman shift. The frequency shift due to the kinetic term,

	�kinetic =
�pz

2�2 − �pz
2�1

4�m�
, �14�

is −10.997 Hz and the shift due to the Zeeman terms,

FIG. 8. �Color online� Excited state population as a function of
the detuning 	� of the microwave pulse from atomic transition
times the interrogation time in the presence �dashed curve� or with-
out collision �solid curve� for an interpulse time T=0.18 s, and the
interstate two-particle correlation at zero separation 
12

�2�=2.
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	�Zeeman =
�m�z

2z2�2 − �m�z
2z2�1

4��
, �15�

is −0.266 Hz, giving a total frequency shift of 	�=
−11.263 Hz, in good agreement with the frequency shift
11.12 Hz determined from the interference pattern of the
solid curve in Fig. 8. In Eqs. �14� and �15�, the symbol �¯�i

denotes the expectation value calculated with the wave func-
tion 
i�t=T�. We see that the shift introduced by the Zeeman
terms is small because it is proportional to the difference of
the square of the size of each condensate and this difference
is small. The shift due to the kinetic terms is proportional to
the difference of the square of the width of the spectral den-
sity of each condensate. As the size of the condensates and
the width of their spectral density change in time, the shifts
are time dependent.

V. CONCLUSION

We modeled a microwave frequency atomic clock using a
configuration of BEC atoms in a highly elongated magnetic
trap. We showed that the stability of the clock for a trap
radial frequency �r /2�=120 Hz and axial frequency
�z /2�=0.5 Hz is 2.6�10−12�Tc /� and 1�10−12�Tc /� for

12

�2�=2 and 
12
�2�=1, respectively. The performance of the

clock is related to the configuration of the trap and can be
improved by running the clock with an even weaker axial

trapping frequency. We found a dynamical instability that
results in phase separation and limits the clock stability and
accuracy if a long interrogation time is used depending on
the density of atoms and on the ratio between the intrastate
and interstate two-particle correlation parameter at zero sepa-
ration. We considered that optimization of the experimental
parameters maximize the stability and accuracy of the clock.
For a 87Rb BEC, collisional shift terms can be cancelled by
playing them off against each other by adjusting the popula-
tion in the ground and excited states with the Ramsey pulses
so that the problem of density fluctuations does not strongly
affect the stability and the accuracy of the clock. This can be
done only if the two-particle correlation parameters satisfy
the relations 
12

�2��
11
�2�a11/a12 and 
12

�2��
22
�2�a22/a12, or


12
�2��
11

�2�a11/a12 and 
12
�2��
22

�2�a22/a12. The equality of
these previous relations automatically cancel the collisional
shift.
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