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We optimize the turning on of a one-dimensional optical potential, VL�x , t�=S�t�V0 cos2�kx� to obtain the
optimal turn-on function S�t� so as to load a Bose-Einstein condensate into the ground state of the optical
lattice of depth V0. Specifically, we minimize interband excitations at the end of the turn-on of the optical
potential at the final ramp time tr, where S�tr�=1, given that S�0�=0. Detailed numerical calculations confirm
that a simple unit cell model is an excellent approximation when the turn-on time tr is long compared with the
inverse of the band excitation frequency and short in comparison with nonlinear time � /� where � is the
chemical potential of the condensate. We demonstrate using the Gross-Pitaevskii equation with an optimal
turn-on function S�t� that the ground state of the optical lattice can be loaded with no significant excitation even
for times tr on the order of the inverse band excitation frequency.
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I. INTRODUCTION

A number of competing schemes for implementing quan-
tum information and quantum computing are being explored;
five physical systems have been proposed as quantum logic
gates, ion traps �1�, high-Q optical cavities �2,3�, nuclear
magnetic resonance systems �4�, solid-state qubits �semicon-
ductor quantum-dot and Josephson-junction devices� �5,6�,
and ultracold neutral atoms in optical lattices �7,8�. The pro-
posals for using atoms in optical lattices can be implemented
by first loading Bose condensed atoms that are held by a
weak magnetic field into an optical lattice by gradually turn-
ing on the optical potential to its desired strength. Upon in-
creasing the intensity of the optical lattice to a critical inten-
sity, the Bose-Einstein condensate �BEC� will undergo a
quantum phase transition from a superfluid state to a Mott-
insulator state �9�. One thereby can obtain one atom per lat-
tice site in the ground state of the system; these atoms can
serve as qubits. This suggestion of preparing a Mott-insulator
state has recently led to a seminal experiment �12� wherein
the quantum phase transition was observed. In principle,
starting with a BEC in a trap and turning on an optical lattice
of sufficient well depth in a sufficiently adiabatic manner,
prepares the Mott-insulator state. In practice, it is easy to turn
on the optical lattice adiabatically with respect to band exci-
tation �excitation from one band to another�; however, it is
substantially more difficult to turn on the optical lattice adia-
batically with respect to quasimomentum excitation. The sec-
ond, more stringent form of adiabaticity requires that the
optical lattice be switched on slowly with respect to mean-
field interactions and tunneling dynamics between optical
lattice sites, and hence typically requires milliseconds �10�.
We refer to the first form of adiabaticity as “interband adia-
baticity” and the second form as “intraband adiabaticity.”
The intraband adiabaticity condition has been demonstrated
in one-dimensional lattices by Orzel et al. �11� and ulti-
mately led to the pioneering experimental demonstration of
the Mott-insulator transition �12�.

The goal of this paper is to investigate the loading of
atoms into an optical lattice in as short a time as possible,
while maintaining interband adiabaticity, so as to obtain
maximal atomic population in the ground state band with
minimal band excitation. We consider experiments of the
type described in Ref. �13�, which measured the interband
nonadiabaticity. We show how to optimize the turning on of
a one-dimensional �1D� optical lattice so as to minimize the
interband nonadiabaticity. We carry out calculations using
the Gross-Pitaevskii �GP� equation, as well as simplified
models. We show that an optimized lattice turn-on results in
very low nonadiabaticity even for loading times tr compa-
rable to 1/��, where ��� is the excitation energy of the
first band that can be excited. On such time scales, the non-
linear term in the GP equation is small and has little effect on
the dynamics.

Section II discusses the theoretical models used, and de-
scribes how to determine the optimized turn-on of the lattice.
It also describes a very simple unit cell model that is in
excellent agreement with the full calculations. Section III
describes our results and compares to experimental data. A
final section summarizes our conclusions.

II. THEORY

Our theoretical investigation was stimulated by experi-
mental work to load a BEC into a one-dimensional optical
lattice so as to create the ground state of atoms in the optical
lattice �13�. We first briefly describe the optical potential and
its turn-on, then consider the mean-field description of the
process, develop the simple unit-cell model, and finally de-
scribe the optimization procedure used.

A. The optical potential

We start with a condensate of N atoms in a trap with
frequencies �x, �y, and �z. At time t=0, a 1D optical lattice
with potential
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VL�x,t� = − S�t�V0 cos2�kx� �1�

is turned on along the x direction. The lattice periodicity
equals � /k, where k=�L /c and �L /2� are the wave vector
and frequency of the laser beams that form the optical lattice.
The lattice beams are sufficiently far-detuned so that sponta-
neous emission is negligible on the time scale of the dynam-
ics described here. The parameter V0 is the final lattice depth
after completion of the turn on process at ramp time tr. The
ramp turn-on function S�t� has only two constrains, S�0�=0
and S�tr�=1. For diagnostic purposes the lattice is held on
with fixed depth V0 until time tf = tr+ thold, then turned off to
allow for condensate expansion and imaging. Figure 1 shows
two examples of ramp functions with tr=20 �s, a piecewise
cubic function with function and derivative matched at tm
=16 �s and a fit to the experimental ramp function used in
Ref. �13�.

B. Mean-field description

The GP equation for the BEC wave function ��r , t� �the
order parameter of the condensate� is

i�
��

�t
= −

�2

2m
�2� + V�r,t�� +

4��2a

m
���2� , �2�

where V�r , t�=Vtrap�r� for times t	0 and V�r , t�=VL�x , t� for
t
0, and the nonlinear term is proportional to the two-body
s-wave scattering length a, and m is the atomic mass. We
assume the trap is turned off at t=0. The lattice turn on time
tr is assumed to be very short compared to the time needed
for the condensate to expand significantly.

The initial condensate wave function at t=0 is that for a
trap with time-invariant potential Vtrap�r�. Although the mo-
mentum distribution of the initial condensate wave function
��r ,0� is sharply peaked close to zero, the final condensate
wave function ��r , tr� in the lattice has developed momen-
tum components peaked near 0 , ±2�k , ±4�k , . . .. These
components appear even if only the ground state band of the
lattice is occupied. Consequently, the subsequent free evolu-
tion of the condensate after tf results in the further physical
splitting of the condensate wave packet into spatially sepa-
rate parts having central momenta 2n�k, where n

=0, ±1, . . .. The experiment consists of measuring the frac-
tion pnk�tf� of the initial total number of condensate atoms N
that appear in the nth wave packet. As we describe below, the
signature of nonadiabatic excitation during the turn-on of the
ramp is oscillatory behavior of pnk�tf� with varying hold
times thold.

The central goal of this paper is to determine the opti-
mized ramp function Sopt�t� for a given tr and V0, i.e., the
function S�t� which leads to minimal oscillatory amplitude of
pnk�tf�, and hence minimal excitation of the final condensate
wave packet at time tr �see Eq. �9��. Our optimization will be
carried out using the GP equation. We do not require that our
system remain adiabatic during the whole time interval be-
tween t=0 and tr, but only that the interband excitation be as
small as possible at the final time tr. It should be noted that
the mean-field treatment used here cannot be used upon in-
creasing the optical lattice potential to the point where the
BEC undergoes a quantum phase transition from its BEC-
like superfluid state to a Mott-insulator state. Once the num-
ber of atoms in each optical potential well becomes small
�i.e., no longer large compared with unity�, a field theory
description must be used.

It is easy to calculate the experimental observables from
the GP wave function ��x , tf�. By performing a Fourier
transform it is easy to calculate the fraction pnk�tf� of atoms
associated with each sharply peaked momentum component
n. The degree of interband nonadiabaticity fnonad is deter-
mined experimentally by the amplitude of the oscillations in
p0k�tf� versus tf,

fnonad = p0k,max − p0k,min, �3�

where p0k,max and p0k,min are the maximum and minimum
values of pnk�tf� for n=0 over an interval tf − tr= thold which is
chosen to be long enough to include at least one oscillation
of p0k�tf�. If there is no interband excitation, then fnonad=0.

Figure 2 shows various components of the BEC energy as
they evolve in time when an optical potential with 2� /k
=590 nm, and V0=14ER, where the recoil energy ER is de-
fined as ER=�2k2 /2m, is turned on linearly over 20 �s, held

FIG. 1. �Color online� Fit to the experimental ramp function S�t�
used in Ref. �13�, and piecewise cubic S�t� with tr=20 �s. In both
functions tr=20 �s.

FIG. 2. �Color online� Kinetic, optical, mean-field and total en-
ergies versus time starting from a condensate with 104 Na atoms in
a trap with frequencies of 84 Hz, 59.4 Hz, and 42 Hz in the respec-
tive x, y, and z directions. A 20 �s linear ramp is applied ending at
a latttice depth of V0=14ER followed by a 20 �s hold time and a
20 �s linear ramp down.
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constant for 20 �s, and finally turned off over 20 �s. The
trap with frequencies �x=84 Hz, �y =59.4 Hz, and �z
=42 Hz holds 104 Na F=1, M =−1 atoms, for which a
=2.8 nm and ER /h=25 kHz. Notice that the total energy of
the system is constant when the potentials do not depend on
time. The mean field energy remains negligible in compari-
son to the kinetic and potential energies that result from turn-
ing on the optical potential. Consequently, calculations with
10 000 and 1�106 atoms are indistinguishable on the scale
of Fig. 2. We also checked that on these short time scales the
calculated nonadiabaticities from both 3D and 1D versions
of the GP equations are indistinguishable. Thus, 1D linear
Schrödinger dynamics should provide an excellent approxi-
mation to the nonadiabatic dynamics.

C. Unit-cell model

We only consider relatively short time scales tr of lattice
loading so that mean-field interactions do not play an impor-
tant role, as shown in Sec. II B. We assume tr is short com-
pared with the nonlinear time tNL�m / �4��a��peak�2�=� /�,
where ��peak�2 is the peak value of ���2 at t=0, and � is the
chemical potential. Consequently, we can develop a simple
linear “unit cell” model of the loading process that is in
excellent agreement with the full GP dynamics. In the unit
cell model, the natural units of length, energy, and time are
1/k, the recoil energy ER=�2k2 /2m, and a characteristic lat-
tice band excitation time tband=2� /��, respectively, where
�� is the trap excitation parameter defined in the next para-
graph.

Figure 3 shows the Wigner-Seitz primitive unit cell of an
infinite optical lattice of depth V0=14ER. Solving the
Schrödinger equation for the potential −V0 cos2 kx with peri-
odic boundary conditions on the interval −� /2k�x�� /2k
defines a series of eigenvalues Ei�V0� and eigenfunctions
�i ,V0� that describe the unit cell wave function for the q=0
edge of each band i, where q is the lattice momentum �14�.
The boxes in Fig. 3 indicate the width of the energy bands,
obtained by calculating the energies of the Brillouin zone
edges. The width of the lowest band is too narrow to be
observed on the energy scale of the figure. The width of the
third band extends beyond the top of the lattice potential.

Figure 4 shows the energies Ei for the q=0 levels for the first
three lattice bands as the lattice depth V0 is increased. Since
symmetry considerations only allow excitation of odd num-
bered bands from the first n=1 band during lattice turn on,
the relevant trap excitation parameter �� is �E3−E1� /�. For
the example in Fig. 3, ��=2��250 kHz� and tband=4 �s.

An adiabatic basis set expansion can be used to calculate
the time-dependent amplitudes aj�t� of the instantaneous
eigenvectors during the dynamics. The basis set expansion is
taken in the form

��t� = �
j

aj�t�e−i	0
t Ej�t��dt�/��j�t�� , �4�

where �j�t��, j=1,2 , . . ., is the instantaneous eigenvector with
energy eigenvalue Ej�t� corresponding to an optical potential
strength S�t�V0. The nonadiabatic dynamics is then calcu-
lated from the coupled set of equations,

ȧi = �
j�i

aj�t�

i�t��Ḣ�j�t��
Ei�t� − Ej�t�

ei�
j�t�−
i�t��.

where we have defined the coefficient 
 j�t�=−	0
t Ej�t��dt� /�

to simplify the notation. The even index and odd index
eigenstates are not coupled because the potential and its time
derivative are an even function of x and the odd �even�
eigenstates are symmetric �antisymmetric�. We numerically

calculate Ei�t�, Ej�t�, and 
i�t� � Ḣ�t� � j�t��, and solve the
coupled differential equations by using a variable step size
integrator. We will call this method the converged unit cell
model.

We have verified by numerical calculations that a trun-
cated basis set expansion with the lowest two terms is a good
approximation unless the ramp time tr becomes comparable
to tband or less,

��t� = a1�t�ei
1�t��1�t�� + a3�t�ei
3�t��3�t�� . �5�

This leads to the following simplified two-equation unit cell
model:

FIG. 3. �Color online� Unit cell lattice potential VL�x� versus x,
showing the energy spread of the first three energy bands for a Na
lattice with 2� /k=590 nm and V0=14ER, where ER /h=25 kHz.

FIG. 4. �Color online� Energies of the first three q=0 levels
versus lattice depth V0 /h for the unit cell shown in Fig. 2. The
second and third levels are degenerate with an energy 4ER in free
space, but split into symmetric �E3� and antisymmetric �E2� states
with increasing lattice depth. Turning on the lattice rapidly couples
the symmetric i=1 ground and i=3 levels, but not the i=2 one.
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ȧ1 = a3�t�

1�t��Ḣ�3�t��
E1�t� − E3�t�

ei�
3�t�−
1�t��, �6�

ȧ3 = a1�t�

3�t��Ḣ�1�t��
E3�t� − E1�t�

ei�
1�t�−
3�t��. �7�

An even simpler one-equation approximation, which is
acceptable for sufficiently large tr, is to set a1=1+ i0 and
solve for a3�t� by integrating Eq. �7�, so that

a3�t� = �
0

t 
3�t���Ḣ�1�t���
E3�t�� − E1�t��

ei�
1�t��−
3�t���dt�. �8�

We will call this the one-equation unit cell model.
The fraction of the total number of atoms in the wave

packet with mean momentum nk, pnk�t�, can be calculated in
terms of the amplitudes aj�t�,

pnk�t� = �
2nk���t���2

= ��
j

aj�t�
2nk�j�t��ei
j�t��2


 �a1�t�
2nk�1�t��ei
1�t� + a3�t�
2nk�3�t��ei
3�t��2.

�9�

When n�0, the total population with magnitude of momen-
tum �nk� is

p�nk��t� = pnk�t� + p−nk�t� . �10�

The observable fnonad in Eq. �3� can be calculated from
p0k�t�. Using the one-equation model of Eq. �8�, where a1

=1, fnonad simplifies to

fnonad = 4
0k�1�
0k�3��a3� . �11�

The expression in Eq. �11� is evaluated for t� tr, where none
of VL, �1�, �3�, or �a3� is changing in time.

The fidelity F of the ramp can be defined as the fraction of
population that is left in the ground state after the ramp, F
= �a1�2, where a1�t� is evaluated for a time after tr. In the
two-state model, F=1− �a3�2. Using the result in Eq. �11�, we
can get a relation between F and fnonad,

F = 1 −
1

16�
0k�1�
0k�3��2
fnonad

2 . �12�

For the case of the V0=14ER Na lattice discussed in the
figures, F=1−0.28�fnonad�2.

Figure 5 compares the numerical solutions for the two-
equation model of Eqs. �6� and �7� and the one-equation
model of Eq. �8� for a V0=14ER lattice with the cubic ramp
function in Fig. 1. Clearly, the simpler one-equation model
provides a very good approximation in this case. Figure 5
shows that the degree of nonadiabaticity at the end of the
ramp can be much smaller than during the turn-on portion of
the ramp. This suggests that we might be able to optimize the
ramp so that the final value of �a3�2 at the end of the ramp is
small, even if it becomes large during the ramp.

Figure 6 shows the populations of the free space momen-
tum states, p0k�t� and p�2k��t�, for several different calcula-

tions. The V0=14ER lattice is turned on with the cubic ramp
function in Fig. 1. Figure 6 shows the momentum state popu-
lations that correspond to the adiabatic eigenstates,
�
2nk � j��2, as well as those obtained with dynamical calcula-
tions based on the GP equation and the two-equation unit cell
model of Eqs. �6� and �7�. Figure 6 demonstrates the very
good agreement between the GP and unit cell model. The
oscillations of the dynamical populations around the adia-
batic ones are due to nonadiabatic excitation because of the
fast ramp. The amplitude of these oscillations correspond to
fnonad=0.07 and a fidelity of F=0.9985.

D. Optimization

The oscillations evident in Fig. 6 are due to the small but
finite value of excitation at the final time tf that reduces the
fidelity F of the ramp. We will use an unconstrained nonlin-
ear optimization to minimize the degree of nonadiabatic ex-
citation at the end of the ramp and thus maximize the fidelity
F. For this purpose we use an Nth order polynomial form for
the ramp function S�t�, with S�0�=0 and S�tr�=1. The form
of S�t� is given by

S�t� = �
i=0

N+1

cit
i, �13�

where cN+1= �1−�i=0
N citr

i� / tr
N+1 insures that S�tr�=1. We then

can use a standard computer code that does unconstrained

FIG. 5. �Color online� Time evolution of the real and imaginary
parts of a3 calculated with the 14ER deep, 20 �s cubic ramp shown
in Fig. 1. The results are shown for the two-equation model and the
one-equation model. Equations �6�, �7�, and �8�, respectively.

FIG. 6. �Color online� Population of the 0k and �2k� momentum
components versus time. The optical lattice is turned on to a depth
of 14ER with the 20 �s cubic ramp shown in Fig. 1.
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nonlinear optimization to optimize the polynomial coeffi-
cients ci, i=1, . . . ,N to give the minimal fnonad. We can mini-
mize fnonad calculated from the GP equation, or from the
one-or two-equation unit cell models. We will use the GP
equation, since this allows us to work with very short ramps,
where the nonadiabaticity is large during the ramp. We will
use the simpler models for interpreting the results. The poly-
nomial form we have chosen for S�t� is arbitrary. Any fitting
function which meets the boundary conditions that S�t� van-
ishes initially and goes to unity finally could be used, and the
parameters in the function can be optimized so as to mini-
mize fnonad. We also note that different types of optimization
algorithms, such as simulated annealing algorithms, could
have been used instead of the algorithm we choose.

III. RESULTS

A. Comparison to experiment

In the experiment of Ref. �13�, a BEC with 3�106 so-
dium atoms in the 3S1/2, F=1, mF=−1 state with no discern-
ible thermal component is prepared and held in a magnetic
time-orbiting potential �TOP� trap with trapping frequencies
in the x, y, and z directions of 27 Hz, 19 Hz, and 13.5 Hz.
After production of the condensate, an optical lattice consist-
ing of two counter-propagating laser beams along the x di-
rection is turned on. The lattice beams are detuned about
60 GHz to the blue of the sodium D2 line at 589 nm. The
spontaneous emission rate is negligible on the time scale of
the experiments. The polarization is linear and parallel to the
rotation axis of the TOP trap bias field �the y axis�. The
condensate is located in the focus of the beams, which have
a 1/e2 beam diameter of about 600 �m.

In order to directly measure the adiabaticity, i.e., the effi-
ciency of transfer into the lattice ground state, an experiment
was carried out in which the intensity of the optical potential
was ramped up to a stationary lattice potential strength V0

14ER �13�. The BEC was held in the lattice for a time thold,
typically between 0 and 10 �s, before suddenly switching
off the light. The plane-wave decomposition of the lattice
wave function at the switch-off time t depends on the previ-
ous history of the ramp prior to time t. The populations of the
various momentum components at t is measured by allowing
the atomic cloud to expand after the switch-off, since each
2nk momentum component eventually separates from the
others in an individual cloud that can be imaged. Figure 7
shows calculated and observed oscillations for the population
of the 0k component following a ramp of 20 �s. This beating
signal has a small amplitude, indicating that most of the
population was in the lowest band. However, if only the
ground state were populated, there would have been no beat-
ing at all.

Figure 7 also shows our calculation of p0k�t� using the GP
equation with the experimental lattice potential having the
ramp shown in Fig. 1. The figure shows the original data of
Ref. �13� as well as data that has been shifted in phase and
magnitude to coincide with the calculation. These adjust-
ments are consistent with an experimental uncertainty in the
lattice depth V0 of about 10% and the uncertainty in the ramp
function. Even without the adjustments, it is clear that our

calculation gives the right magnitude of the effect of nona-
diabatic dynamics as measured by the oscillations in the sig-
nal after tr.

B. Ramp optimization results

Although the degree of nonadiabaticity in Fig. 7 is small,
it can be made even smaller by optimizing the ramp turn-on
function. We used a numerical optimization algorithm to
minimize fnonad as defined in Eq. �3� versus the polynomial
fit parameters in Eq. �13�. We calculated the dynamics with
the GP equation, the one-equation unit cell model, the two-
equation unit cell model, and the converged unit cell model.
The one-equation unit cell model works very well except for
short ramps with tr on the order of tband. Only the GP and the
converged unit cell model work well in this limit, due to
excitation of higher bands that are not modeled within the
one-or two-equation unit cell model.

Figure 8 shows the optimal ramps obtained for several
different ramp durations, tr=6, 10, 15, and 20 �s, using
ramp polynomial functions of order N=6 and N=12 in Eq.

FIG. 7. �Color online� Comparison of theory and NIST experi-
mental data �closed circles� �13� on the population of the 0k mo-
mentum component versus time for the experimental 20 �s ramp
shown in Fig. 2 for a V0=14ER deep optical lattice. The open circles
shows data shifted to have the same peak magnitude as that of the
calculation.

FIG. 8. �Color online� Optimal ramp functions for 6, 10, 15, and
20 �s ramps for a 14ER lattice. The solid and dotted-dashed curves
were calculated in the GP equation and N=12 and 6, respectively,
while the dashed curves were calculated with the two-equation unit
cell model with N=12.
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�13�, starting the optimization with a linear ramp function.
Clearly, the optimal ramp shape depends strongly on the
ramp duration. All the fidelities obtained using optimized
ramps were very close to unity for all ramp durations �much
closer to unity than those obtained without optimization�. In
order to show the sensitivity to the order of the polynomial
function used, we plot the optimal ramps obtained with the
GP equation for N=6 and N=12 ramps as dotted-dashed and
solid curves, respectively, as indicated in Table I which tab-
lulates fnonad for all the GP results shown in Fig. 8. The
fidelity is calculated from fnonad using Eq. �12�. Although the
fidelities obtained are very close to unity for both values of N
�and all tr�, the resulting optimized ramps for a given tr can
vary with N. There are often many minima in parameter
space with fidelities that are very close to unity, and the
optimization routine we used can get stuck in a local mini-
mum.

Figure 8 also shows optimized ramps obtained using the
two-equation unit cell model with N=12. The unit cell cal-
culation can result in the optimization routine finding a dif-
ferent local minimum than the one found using the GP equa-
tion �see the tr=20 �s curves�. Moreover, different optimal
ramps can be obtained upon starting with varying initial
functions for S�t�, e.g., a cubic rather than a linear initial
ramp function. To summarize, the optimization functional
being minimized can have several local minima so that sev-
eral different optimized functions can have similar high fi-
delities.

Figure 9 shows a3�t� versus time for the optimal 6 �s and
20 �s ramps in Fig. 8. In both cases, there is clearly signifi-

cant excitation during the ramp, however, at the end of the
ramps, the excitation is nearly zero. Hence, the dynamics is
clearly nonadiabatic for both ramps, but at the final time tr,
there is very little excitation, i.e., high fidelity is achieved for
both ramps. With the optimized ramps, the fidelity obtained
is much higher than that obtained in the NIST experiment,
even with the 6 �s ramp. However, the a3 coefficients in Fig.
9 go to zero at the end of the ramps with a high slope,
suggesting that the fidelity might not be robust with respect
to small changes in the ramp parameters. Also, for small tr,
the optimized ramp functions can vary dramatically and sud-
denly with time and therefore may be difficult to achieve
experimentally.

Figures 10 and 11 show the calculated 0k and �2k� popu-
lations versus time as determined using the full GP equation
and the converged unit cell model for the optimal 20 and
6 �s ramps, respectively. The S�t� ramp functions are also
shown in the figures. The converged unit cell model repro-
duces the GP results very accurately, even for the 6 �s ramp.
For the 6 �s ramp, there is already a small 4k population
component present. Nevertheless, the fidelity remains high.

IV. SUMMARY

We calculated the dynamics of a BEC upon turning on a
one-dimensional optical potential. Good agreement with ex-

TABLE I. Nonadiabaticities fnonad associated with the optimal
curves shown in Fig. 8.

tr N=6 N=12

6 �s 4.42�10−3 2.50�10−3

10 �s 1.10�10−3 4.92�10−4

15 �s 9.62�10−4 9.89�10−4

20 �s 9.73�10−5 1.75�10−4

FIG. 9. �Color online� Real and imaginary parts of the amplitude
a3�t� versus time for 6 and 20 �s optimal ramps, showing strong
nonadiabatic behavior as a function of time, but ending at tr with
very small excitation.

FIG. 10. �Color online� GP and unit cell populations versus time
for optimal 20 �s ramp. The fidelity is 0.999 999.

FIG. 11. �Color online� GP and unit cell populations versus time
for optimal 6 �s ramp. The fidelity is 0.9996.
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perimental data has been obtained. We showed that the opti-
mal ramp function S�t�, with S�0�=0 and S�tr�=1, for turning
on a one-dimensional optical lattice potential, VL�x , t�
=S�t�V0 cos2�kx�, can be chosen to minimize the interband
nonadiabaticity. A simple unit cell model that is in excellent
agreement with the full calculations has been developed for
cases when the turn-on time tr is relatively long. An opti-
mized lattice turn-on with very low nonadiabaticity can be
chosen even for short loading times tr comparable to 2� /��,
where ��� is the band excitation energy.

Even if the loading of a BEC into the lattice without caus-
ing interband excitation is readily achievable, as shown here,
unless one switches on an optical lattice very slowly, the
optical lattice causes a spatially varying phase to accumulate
across the condensate due to intraband excitation. Reference
�10� has shown analytically and numerically that a cancella-

tion of this effect is possible by appropriately adjusting the
harmonic trap force constant of the external magnetic trap
that confines that BEC, thereby facilitating quick loading of
an optical lattice for quantum computing purposes.
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