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Coherent Output, Stimulated Quantum Evaporation, and Pair Breaking
in a Trapped Atomic Bose Gas
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We investigate the spectrum and coherence of an atomic beam slowly coupled out of an atomic trap
which contains a partially condensed Bose gas at a finite temperature. The spectrum contains a coherent
fraction emerging from the condensate and a thermal fraction emerging from the thermal excitations
in the trap. We show the existence of a remarkable process involving the simultaneous creation of an
output atom and an elementary excitation (quasiparticle) inside the trap. This process, which can serve
as a probe to pair correlations in the condensate, can become dominant for a suitable choice of the
coupling parameters. [S0031-9007(98)08353-7]
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The experimental realization of Bose-Einstein conde
sation of evaporatively cooled trapped alkali atoms [1–
makes possible the generation of coherent atomic bea
[4]. Previous papers have addressed the output coup
of a single-mode noninteracting condensate [5] or an
teracting trapped condensate atT ­ 0 [6,7]. Under these
conditions the output beam is a coherent matter wa
packet which can be described by a single complex fun
tion of space and time. However, at finite temperatur
one expects thermal excitations to play a major role. O
the one hand, it is of interest to quantify and optimize th
coherence properties of the output coupled atomic bea
as in the case of continuous wave and pulsed optical la
sources. On the other hand, an analysis of the prop
ties of the output may serve as a probe of the nature of
ground state and excitations in the atomic gas, as quan
evaporation from the surface of4He is used to probe its
internal dynamics [8]. Here we study a weak output co
pling of a trapped atomic gas at finite temperatures bel
the critical temperatureTc. A qualitative analysis and a
numerical illustration of the general analytical results r
veal the following three mechanisms contributing to th
output coupling: (i) coherent coupling of the condensa
fraction, (ii) stimulated quantum evaporation of the the
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mal excitations, and (iii) the simultaneous appearance
an output atom and an internal excitation, indicating t
existence of pair correlations in the ground state. T
last process predicted here occurs even atT ­ 0 and may
serve as a probe of the deviation of the ground state fr
a direct product of single atom states.

Here we consider output coupling by electromagne
cally (EM) induced transition between the trapped atom
level jtl and a free output levelj fl with different angu-
lar momentum, which is not confined by the trap. Typic
mechanisms are a direct (one-photon) radio-frequency
transition and an indirect (two-photon) stimulated Ram
transition. In the dipole and rotating wave approximatio
the EM coupling mechanism is described by the followin
Hamiltonian:

Hcouple ­ h̄
Z

d3r lsr, tdĉy
f srdĉtsrd 1 H.c. (1)

Here ĉtsrd describes the annihilation of a trapped ato
at r, while ĉ

y
f srd describes the creation of a free atom

at the same point with amplitudelsr, td. In the EM in-
duced processes the coupling amplitude can be written
lsr, td ­ l̃sr, tdeiskEM?r2DEMtd where l̃ is slowly varying
in space and time. HerēhkEM and h̄DEM measure the
© 1999 The American Physical Society 1079
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momentum and energy transfer from the EM field to a
output atom. In an rf coupling scheme,l is the Rabi
frequencyVsr, td ­ k p̂lE sr, tdyh̄ [or km̂lBsr, tdyh̄] cor-
responding to the flipping of the atomic electric (or mag
netic) dipolek p̂l (or km̂l) in the electric (or magnetic) field
E sr, td [B sr, td], DEM is the detuning of the EM field
frequency from the transition frequency, andkEM is neg-
ligible compared to the initial momentum distribution o
the atoms. In the stimulated Raman coupling, where tw
laser beams are used to induce a transition fromjtl to j fl
through an intermediate leveljil, l ­ V1V2yDi , where
V1,2 are the Rabi frequencies corresponding to the inte
mediate transitions andDi is their detuning from reso-
nance with the two beams [9]. In this caseDEM andkEM
are the differences between the frequencies and mome
associated with the two laser beams.

Here we consider a small rate of output from the tra
so that the output atoms are dilute enough to negle
the interactions between them outside the trap. It is s
necessary to take into account their interaction with th
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trapped atomic gas left behind. The coupled equations
the field operatorŝct andĉf take the form

ih̄ Ù̂
c tsrd ­ Ltĉtsrd 1 U0ĉy

t srdĉtsrdĉtsrd
1 h̄lpsr, tdĉf srd , (2)

ih̄ Ù̂
cfsrd ­ Lfĉf srd 1 h̄lsr, tdĉtsrd . (3)

Here Lt,f ; 2h̄2=2y2m 1 Vt,fsrd, where Vtsrd is the
magnetic trapping potential,Vfsrd ­

1
2 U1kĉy

t srdĉtsrdl
is the effective potential induced by the collisions wi
the trapped gas, andUi ­ 4p h̄2

m Ai are proportional to the
s-wave scattering lengthsAi for collisions between
the atoms. Equations (2) and (3) have been previou
treated [6,7] in the Gross-Pitaevskii approximation, wh
the field operators are replaced by their mean valu
This approximation neglects the existence of elemen
excitations at finite temperatures and the fluctuatio
around the mean value even atT ­ 0, which are shown
below to have an important effect.

The formal solution of Eq. (3) for̂cf in terms ofĉt is
ĉf sr, td ­ ĉ
s0d
f sr, td 2 i

Z t

0
dt0

Z
d3r0 Gfsr, r0, t 2 t0dlsr0, t0dĉtsr0, t0d , (4)
t
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where ĉ
s0d
f satisfies the time-dependent Schrödinge

equationih̄ Ù̂
c

s0d
f ­ Lf ĉ

s0d
f and the “free” Green’s func-

tion Gfsr, r0, t 2 t0d can be written in terms of the
solutions wksrd of the corresponding time-independen
equation h̄vkwksrd ­ Lfwksrd: Gfsr, r0, t 2 t0d ­P

k wksrdwp
ksr0de2ivkst2t0dust 2 t0d. The field operator

ĉtsr, td in thermal equilibrium can be written in terms
of the annihilation operatorŝa0 of the condensate state
and âj of the elementary excitations, obtained from
Hartree-Fock-Bogoliubov approximation that puts th
many-body Hamiltonian of the interacting system into
diagonal form [10]

ĉtsr, td ­ e2imty h̄

(
Ct

0srdâ0

1
X

j

fut
jsrdâj 2 ytp

j srdây
j g

)
. (5)

Herem is the chemical potential,Ct
0srd is the wave func-

tion of condensate atoms, andut
jsrd, y

t
jsrd are the steady-

state solution of the equations obtained from Eq. (2)
the absence of output coupling [10]. In thermal equilib
rium â0 can be replaced by

p
N0, N0 being the macro-

scopic mean number of condensate atoms [11], and
population of the excited modes is given by the Bos
Einstein distributionN

eq
j ; kây

j âjleq ­ feh̄vjyT 2 1g21.
Equation (5) implies that the annihilation of a trapped pa
ticle at r is equivalent to the annihilation of a particle in
the condensate [with amplitudeCt

0srd] or the annihilation
of an elementary excitation (with amplitudeut

j) or thecre-
ation of a new excitation (with amplitude2y

tp
j ). The last

amplitude is associated with the noncondensate comp
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nent of the ground state of the system, which contains e
tangled pairs of correlated atoms in excited single-partic
states, formed by binary collisions. The net effect of th
annihilation, whose traces can be clearly seen in the o
put spectrum, as shown below, is the creation of a ne
quantum of excitation while the total number of trappe
atoms is reduced by one. The wave functionsut

jsrd of
a dilute weakly interacting Bose gas are nearly the e
ergy eigenfunctionsfnsrd of a single particle in the effec-
tive trapping potentialVtsrd 1 2U0N0jC

t
0srdj2, whereas

an expression for the functionsyt
jsrd in terms ofut

jsrd is
obtained by a formal solution of the equation fory

t
j in

Ref. [10]

yjsrd ­ U0N0

X
n

R
d3r0fp

nsr0d fCp
0sr0dg2ut

jsr0d
En 1 h̄vj

fnsrd ,

(6)

implying that the function2y
p
j srd describes collisional

scattering of two atoms in the condensate into two excit
states. Such virtual processes are the essence of pa
effects in the ground state of a Bose gas.

Here we assume that the output rate is small compa
to the energy separationdvj between the trap states. In
this case the energies and wave functions of the co
densate and elementary excitations do not vary sign
cantly from their initial equilibrium values and the main
contribution to the time dependence ofĉtsr, td comes
from the operatorsâ0, âj. Moreover, for short times
we may assume that the system stays close to equi
rium and the population of the trap states decays exp
nentially with decay coefficientsg0, gj. For dv

21
j ø

t ø g
21
0 , g

21
j we thus assumêa0std ­ â0s0de2g0ty2 and
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âjstd ­ âjs0de2ivj te2gj ty2 [12], where g0, gj are esti-
mated below. As shown below the exponential decay a
sumption is not always correct, and, in some cases,
number of excitations may even grow.

If at t ­ 0 all the atoms are in the trap, then, fol-
lowing from Eq. (4) with the free term̂c

s0d
t set to zero,

we many express the field operatorĉfsr, td of the free
atoms att . 0 in terms of the operatorŝa0, âj , â

y
j ap-

pearing in Eq. (5). Then̂cf has the formĉf ­ C
f
0 â0 1P

jfuf
j âj 2 y

fp
j â

y
j g, where the componentsjf of the vec-

tor $jf ; sCf
0 , u

f
j , 2y

fp
j d are obtained from Eqs. (4) and

(5) in terms of the corresponding components of$jtsrd ;
sCt

0, ut
j , 2y

tp
j d. An expansion in eigenfunctionswksrd of

a free atom gives

jfsr, td ­
X
k

j̃
f
kwksrde2ivkt eisvk2vf 2igf y2dt 2 1

vk 2 vf 2 igfy2
, (7)

where

j̃
f
k ­

Z
d3r wp

ksrdl̃srdeikEM?rjtsrd . (8)

In Eq. (7) the frequenciesvf are the components of the
vector $vf ­ svf

0 , v
f
j1, v

f
j2d, where

h̄v
f
0 ­ m 1 h̄DEM ,

h̄v
f
j6 ­ m 1 h̄DEM 6 h̄vj .

(9)

After some timet the mean number of output atoms in a
state with momentumk is given bynk ­ kb̂y

kb̂kl, where
b̂k ;

R
d3r w

p
ksrdĉf srd. From the form of the output

operatorĉfsrd and Eq. (7) we obtain

nkstd ­ jC̃
f
0kj2N

eq
0 D svk 2 v

f
0 , g0y2d

1
X

j

fjũf
jkj2N

eq
j D svk 2 v

f
j1, gjy2d

1 jỹ
fp
jkj2sNeq

j 1 1dD svk 2 v
f
j2, gjy2dg , (10)

Here the time-dependent spectral line shap
D sv, gy2d ­

j12eivt e2gty2j2

v21g2y4 tend to Lorentzians of width
gy2 in the limit t ¿ g21. However, the treatment here
applies only to timest ø g21, whereD ø sin2svtdyv2

has spectral width,1yt, which may become narrow
relative to the scale of variation of the functionsjj̃

f
kj2

appearing in Eq. (10). Then

D sv, gd ø 2pdsvdt (11)

and the output ratednkydt becomes constant in time.
The first term in Eq. (10) describes a coherent outp

component generated when atoms with energym in the
trapped condensate are excited to a free momentum s
with kinetic energy h̄vk ­ m 1 h̄DEM by absorbing
energy h̄DEM from the EM field. The second term
describes a thermal output component generated by stim
s-
the

es

ut

tate

u-

lated quantum evaporation, where an atom initially pop
lating an elementary excitation with energym 1 h̄vj

leaves the trap with kinetic energȳhvk ­ m 1 h̄vj 1

h̄DEM. The third term describes a process where
energy h̄DEM from the EM field is sufficient to excite
a ground state atom to a free momentum state w
kinetic energy m 1 h̄DEM 2 h̄vj, thereby leaving a
counterpart atom in an excited trap state with ene
m 1 h̄vj. While a quantum of elementary excitation
annihilated from the trap in the second process of quan
evaporation, the third term describes a process whe
new quantum of elementary excitation (a quasipartic
is created. The factorN

eq
j 1 1 in this term implies that

this process occurs also in the absence of excitations
T ­ 0), but it is amplified by the presence of excitation
According to the interpretation following Eq. (5) we ma
anticipate that this process points to the existence of p
of correlated atoms in the ground state in the trap, wh
are broken when one atom is forced out. This proc
occurs also in the limit of weak (adiabatic) coupling an
therefore it should be differentiated from nonadiaba
processes that may contribute to the generation of n
elementary excitations [13].

In the limit where Eq. (11) holds, the above interpr
tation of the processes described by Eq. (10) leads to
following approximation for the exponential decay rates

g0 ­ 2p
X
k

jC̃0kj2dsvk 2 v
f
0 d , (12)

gj ­ 2p
X
k

jũjkj2dsvk 2 v
f
j1d 2 hj , (13)

wherehj ­
P

k jỹ
p
kj2dsvk 2 v

f
j2d is the rate of creation

of the jth excitation. When this last process is domina
gj may become negative and the number of excitatio
grows. A more detailed analysis of the dynamics will
given elsewhere [14].

Energy conservation requires̄hvk ­ m 6 h̄vj 1

h̄DEM and momentum conservation follows from Eq. (8
In the first two processeskf ­ kt 1 kEM, i.e., the mo-
mentumkt of an initially trapped atom plus the momen
tum kEM supplied by the EM field equals the momentu
kf of a free output atom at the trap, before it is acc
erated by the repulsive interaction with the atoms left
the trap. Far from the trap its momentum is given

jkj ø
q

k2
f 1 mU1NyV , U1Ny2V being the effective

repulsive potential. In the third processkf 1 kt ­ kEM,
implying that the total momentum of the resulting outp
atom-quasiparticle pair is equal to the momentum s
plied by the field. The contribution of a specific term
Eq. (10) to the output rate of atoms with a correspon
ing asymptotic kinetic energȳh2k2y2m ­ m 6 h̄vj 1

h̄DEM is proportional to the number of atoms with mome
tum h̄kt satisfying h̄2skt 6 kEMd2y2m 1 U1Ny2V ­
m 6 h̄vj 1 h̄DEM in the initial momentum distribu-
tion of the corresponding trap state and to the dens
1081
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of free states with the corresponding output mome
tum. The main contribution of the condensate wav
function C

p
0 is near kt ­ 0, corresponding to an EM

field detuning h̄DEM ­ h̄vk 2 m , U1Ny2V 1

h̄2k2
EMy2m 2 m. The width of this distribution asDEM

is varied is governed by the widthDkt of the initial
atomic distribution and the additional momentumkEM.
The contribution of processes revealed in the seco
and third terms in Eq. (10) is dominant at field detun
ing h̄DEM , U1Ny2V 1 h̄2k2

EMy2m 2 m 6 h̄vj . By
tuning the value ofDEM we can select one of the three
processes discussed above to be dominant. Low
negative) values ofDEM give rise to a thermal output
leading to an evaporative cooling of the trapped gas. Hi
values ofDEM give rise to an increase in the number o
excitations. Output atomic beams with the best coheren
properties are expected for medium values ofDEM, where
the condensate atoms are coupled most efficiently out
the trap.

The output rates corresponding to the different term
are demonstrated in Fig. 1 for a one-dimensional syst
of N ­ 2000 atoms in a harmonic trapping potentia
of frequencyvtrap and a repulsive interaction strength

NU0 ­ NU1 ­ 10
q

h̄3vtrapy2m. The corresponding criti-
cal temperature isTc ø 300h̄vtrap.

The coherence properties of the output atomic beam
characterized by the correlation functions of the outp
field operator like the first order coherence functio
gs1dsr, r0, td ­ kĉy

f sr, tdĉf sr0, tdl. The output beam at a
finite temperature is a mixture of quasimonochromat
partial beams whose energies are given in Eq. (9). W
thus have gs1dsr, r0, td ­ N0C

fp
0 srdCf

0 sr0d 1
P

jfNj 3

u
fp
j srduf

j sr0d 1 sNj 1 1dyf
j srdyfp

j sr0dg. Far from the
trap, each componentjfsrd [see Eq. (7)] is roughly
given by a wave of finite spatial extentjfsrd ,
usr 2 yftd

P
k dsh̄k2y2m 2 vkdjf

keik?r, where yf ­p
2h̄vfym. The two-point coherence atr, r0 is de-

termined by the number of terms withyf . ryt and
yf . r 0yt appearing ings1d. The coherence is maximal
if only one of the terms is dominant. Higher orde
coherence involves higher order correlation functions.
the term originating from the condensate is dominant a
point r, then the beam is expected to be coherent to a h
order, while it will not be coherent if terms originating
in thermal excitations are significant. The significanc
of the different terms is visualized in Fig. 1. It show
that the best separation between the different terms
achieved forkEM ­ 0, where the width of the output
rates as a function ofDEM reflects the initial momentum
distribution inside the trap.

Optimal coherence properties may be achieved
tuning the spatial shape of̃lsrd in Eq. (8) by focusing
the laser beams used in the stimulated Raman transition
overlap with the condensate wave functionC0srd.
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FIG. 1. The relative output rate from the condensate (thi
solid), thermal excitations (thin solid), and pair breakin
(dashed) for 2000 atoms in a harmonic 1D trapping potent
as a function of the detuningDEM of the coupling EM field
from the atomic transition. The detuning and temperatures
given in units of the trap frequencyvtrap for (a) kEM ­ 0 and

(b) kEM ­ 2
q

2mvtrapyh̄. A constant density of free states
was used. Inset: illustration of the main effects contributing
the output.

To conclude, this Letter shows that the measuremen
the spectrum of a weakly coupled output as a function
the coupling parameters may be an excellent tool for t
analysis of the quantum state of a trapped atomic Bose
at a finite temperature. The remarkable effect of outp
from pair breaking in the ground state demonstrates t
the output spectrum may as well reveal properties of t
condensate that are not included in mean field theories
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