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Ground state and excitations of a Bose gas: From a harmonic trap to a double well
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We determine the low-energy properties of a trapped Bose gas split in two by a potential barrier over the
whole range of barrier heights and asymmetry between the wells. For either weak or strong coupling between
the wells, our two-mode theory yields a two-site Bose-Hubbard Hamiltonian with the tunneling, interaction, and
bias parameters calculated simply using an explicit form of two mode functions. When the potential barrier is
relatively low, most of the particles occupy the condensate mode and our theory reduces to a two-mode version of
the Bogoliubov theory, which gives a satisfactory estimate of the spatial shape and energy of the lowest collective
excitation. When the barrier is high, our theory generalizes the standard two-site Bose-Hubbard model into the
case of asymmetric modes, and correctly predicts a full separation of the modes in the limit of strong separation
of the wells. We provide explicit analytic forms for the number squeezing and coherence as a function of particle
number and temperature. We compare our theory to other two-mode theories for bosons in a double well and
discuss their validity in different parameter regimes.

DOI: 10.1103/PhysRevA.84.033630 PACS number(s): 03.75.Gg, 03.75.Lm, 05.30.Jp, 95.30.Dr

I. INTRODUCTION

A Bose-Einstein condensate (BEC) of ultracold atoms in
a double-well potential is a model system for the study of
matter-wave coherence for atom interferometry [1–4], and
tunneling and entanglement in few-body and many-body
systems [5–7]. Its equivalence with a Josephson junction of
two superconductors separated by a tunneling barrier was
demonstrated experimentally [8,9]. As long as the two parts of
the Bose gas are well connected (i.e., the tunneling rate is high)
and the temperature is very low, most of the atoms occupy
a single spatial mode with a well-defined phase, satisfying
the Gross-Pitaevskii equation (GPE) [10], while excitations
and higher-temperature effects are described by Bogoliubov
theory [11–13]. However, when the tunneling rate between
the two wells is low, the single condensate breaks down into
separate modes occupying each of the two wells, and the GPE
and Bogoliubov theories cease to be valid. In this case, the
system is best described in terms of a two-mode theory, e.g., the
Bose-Hubbard model or the Josephson model [14–22], giving
rise to many-body effects such as squeezing, entanglement [6],
and phase diffusion [23–25].

The standard two-mode model for a Bose gas in a double
well [14,16] replaces the single condensate wave function by
a superposition of two mode functions,

ψ(r,t) = c1(t)φ1(r) + c2(t)φ2(r), (1)

where φ1 and φ2 are taken to be time-independent spatial
modes, and c1,c2 are time-dependent amplitudes which carry
the mutual phase and occupation probability of the two modes.
This theory has proven to successfully describe effects such as
Josephson oscillations and self-trapping. A second-quantized
version of this theory, where the wave function ψ is replaced
by the field operator, and c1,c2 are replaced by bosonic
annihilation operators, is capable of describing many-body
effects beyond the GPE, which involve phase uncertainty
between the two wells, and number squeezing in the steady-
state properties or in the time evolution of a Bose gas.

If interactions between the particles at each well are weak
compared to the splitting between the single-particle energy
levels in each well, then the two mode functions φ1 and φ2

may be taken to be the two lowest-energy single-particle
eigenmodes in the double-well potential. For two symmetric
wells, their even and odd superpositions will mainly occupy
each of the two wells. However, in usual traps of ultracold
atoms in a BEC, the repulsive interaction drastically changes
the spatial shape of the condensate, so that single-particle
modes are not really relevant. It was first suggested to take
the two modes as solutions of the GPE in the two isolated
traps [14], but then it is not clear how the tunneling rate should
be calculated based on the overlap between these modes.
Later it was proposed to use the symmetric and antisymmetric
solutions of the GPE in the total potential [16,20,26]. This
choice is applicable only to the case of weak coupling between
the two wells and a nearly symmetric potential, because in a
potential with an arbitrary symmetry, different solutions of the
GPE are nonorthogonal.

In general, the standard two-mode theories are valid only
for weak tunneling between the two wells, while the GPE
together with Bogoliubov excitations allow a good description
of the Bose gas in the case of a low barrier. A self-consistent
two-mode method based on Hartree-Fock (HF) mean-field
theory was developed in the last few years [27–33] and applied
to various steady-state and time-dependent physical situations.
This theory purports to provide a calculation method that is
applicable to the case of double wells with either low or high
barriers and to describe, for example, the process of splitting a
single harmonic trap into a double well. However, results using
this method have not been validated by a quantitative compari-
son with either experimental results or with results using other
existing theories in the regimes where they are known to be
valid. Furthermore, reports on these results often concentrate
on specific numerical examples and do not provide a more
general picture which extends over a large range of parameters.

Here we address the steady-state properties of a zero-
temperature and low-temperature quantum gas, where only the
ground state and lowest excitations of the gas of interacting
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bosons in a double-well potential are populated, and develop
a two-mode theory, which is applicable over the whole range
of barrier heights. Our theory shows satisfactory agreement
with the Gross-Pitaevskii and Bogoliubov theories for low
barrier heights or large particle numbers, and agrees with the
standard Bose-Hubbard or Josephson theories in the case of
symmetric double wells with weak coupling. However, it also
provides a continuous picture of the properties of the Bose gas
over the whole range of parameters, including an asymmetric
double-well potential with an arbitrary level of asymmetry.
Numerical examples in one and three dimensions are presented
that cover the whole range of barrier heights.

The structure of this paper is as follows. In Sec. II, we set
up the general framework and define the essential criteria for
validating a theory of a Bose gas in a single and double well.
In Sec. III, we describe the Bogoliubov theory of a Bose gas
and justify its reduction to a two-mode theory to describe the
condensate and the lowest-energy excitation. In Sec. IV, we
show how the two-mode Bogoliubov theory transforms into
the two-mode Bose-Hubbard model that satisfies the validity
criteria over the whole range of parameters. We give explicit
expressions for the parameters of the Bose-Hubbard model.
In Sec. V, we derive the Josephson form of the Hamiltonian
and describe the excitation spectrum, number squeezing, and
coherence properties of a Bose gas at low temperatures, with
emphasis on a complementary description in the condensate-
excitation basis and in the left-right mode basis. In Sec. VI, we
compare our theory with the standard approach to a weakly
coupled double-well system and the two-mode HF theory, and
discuss their ranges of validity. A summary and discussion are
presented in Sec. VII.

II. GENERAL FRAMEWORK

Here we introduce the full theory of a Bose gas in a trapping
potential using a multimode representation, and specify the
validity criteria for a theory with a reduced number of
modes. We examine its results in the two extreme limits of
a single harmonic trap and a double-well potential with large
separation.

A. The second-quantized Hamiltonian

We consider N bosons of mass m in a trapping potential
V (r). At low temperature, collisions between the particles are
described by s-wave scattering and the Hamiltonian can be
written as

H =
∑

i

[
p2

i

2m
+ V (ri)

]
+ 1

2

∑
i �=j

U (ri − rj ), (2)

where we take the usual contact interaction potential U (ri −
rj ) = gδ(ri − rj ) with g = 4πh̄2a/m, and with a being the
s-wave scattering length. A field-theoretical form of the
Hamiltonian uses the field operator �̂(r),

Ĥ =
∫

d3r�̂†(r)
[
H0 + g

2
�̂†�̂

]
�̂(r), (3)

where H0 = p2/2m + V is the single-particle Hamiltonian.
�̂(r) can be expanded in single-particle spatial modes φj (r)
and annihilation operators âj ,

�̂(r) =
∑

i

âiφi(r), (4)

to yield the multimode form of the Hamiltonian,

Ĥ =
∑
ij

εij â
†
i âj + 1

2

∑
ijkl

Uijkl â
†
i â

†
j âkâl , (5)

where εij = ∫
d3rφ∗

i H0φj and Uijkl = g
∫

d3rφ∗
i φ

∗
j φkφl . As

long as the mode functions φi form a complete orthogonal
set spanning the relevant space, Hamiltonian (5) is exact.
However, a realizable numerical solution of such a system is
possible only for a few particles (up to ∼10 particles) [34–37],
so that for applications using a large number of particles, one
must assume that only a single mode or a restricted number
of modes is macroscopically occupied. It is then important
to know how to choose these mode functions and make the
appropriate assumptions in a way that at least reproduces the
correct behavior of the system at some important limits.

B. Validity criteria

We are interested in the steady-state properties of a Bose
gas at very low temperatures over the whole range of potentials
from a single (harmonic) trap to a deep double-well trap.
Under these circumstances, it is known (as we demonstrate
below in Sec. V) that a single condensate satisfying the GPE
provides an accurate approximation for the single-particle
density n(r) = 〈�̂†(r)�̂(r)〉. However, we seek a theory that
will also correctly reproduce the excitation energies and the
two-particle correlations. These correlations determine the
coherence of the Bose gas when the condensate is split into
two weakly coupled parts by a tunneling barrier. Hence we set
three requirements:

(a) Excitation energy of a harmonic trap. In an external har-
monic potential V (r) = m

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2), the lowest
excitation along each of the major axes involves motion of
all the particles as a rigid body. This excitation mode follows
from the fact that Hamiltonian (2) with an external harmonic
potential V can be separated into the motion of the center of
mass and the motion relative to the center of mass, which has
exactly the same form as in (2). As shown previously [38],
this kind of motion is expected when a fully harmonic trap is
shaken while the trapping frequency is unchanged. The lowest
excitation energy along axis i should then be h̄ωi , regardless
of the strength of the interparticle interaction. In the limit
where {ωi} → 0 (a homogeneous Bose gas), this requirement
is equivalent to demanding a gapless excitation spectrum at
the limit of the long wavelength. This requirement leads to the
Popov approximation in the Bogoliubov theory of bosons at
finite temperature [11]. It has raised a good deal of dispute, as
it implies abandoning full self-consistency. We do not require
that our two-mode theory reproduce the exact value of the
excitation energy, but that it predict results close to the exact
value, even as the interaction strength is increased.

(b) Fragmentation at high barrier separation. In a double-
well potential with high barrier separation, theory should
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predict the existence of two spatial modes (“left” and “right”
modes), such that the overlap between them decreases with
increased barrier height and vanishes in the limit of very large
barrier separation (vanishing tunneling rate). For a symmetric
potential, this implies that the symmetric and antisymmetric
modes, which are even and odd superpositions of the left and
right modes, become degenerate in the high barrier limit.

(c) Mode orthogonality. The theory should be valid also in
the case of an asymmetric potential. The two main modes
should stay orthogonal, even in the case where each of
them has no definite symmetry. A natural way to achieve
such orthogonality is to take the modes to be eigenstates of
an effective Hamiltonian, rather than solutions of nonlinear
equations.

While the Bogoliubov theory for trapped bosons accurately
fulfills the first and third requirements, it breaks down in
the high barrier separation limit where more than one mode
becomes macroscopically occupied. On the one hand, as we
show in Sec. VI, the standard two-mode theory does not yield
accurate predictions for a low barrier, or no barrier, and it also
does not yield accurate spatial modes in the asymmetric case.
On the other hand, the self-consistent Hartree-Fock two-mode
theory does not satisfy the first two requirements. Here we will
show how a two-mode theory that fulfills the above validity
criteria can be constructed.

III. BOGOLIUBOV THEORY

A. Multimode theory

In a gas of many trapped bosons at very low temperatures
(far below the critical temperature for condensation, Tc),
we may assume that most of the particles occupy only a
single mode φ0, which satisfies the time-independent Gross-
Pitaevskii equation (GPE)

(H0 + gN |φ0|2 − μ)φ0 = 0, (6)

where μ is the chemical potential. A convenient set of
orthogonal modes, which constitutes a complete set, are the
solutions of the equation

(H0 + gN |φ0|2 − μ)φj = εjφj , (7)

where φ0 is the solution with ε0 = 0, and φj with j > 0
are single-particle excitation modes. With this choice, Hamil-
tonian (5) becomes

Ĥ = EC +
∑

j

ε̄j n̂j + 1

2

∑
jk

Ujk(2â
†
j â

†
0â0âk + â

†
j â

†
kâ0â0

+ â
†
0â

†
0âj âk) +

∑
ijk

(Uijk0 − Ui000δjk)(â†
i â

†
j âkâ0

+ â
†
0â

†
j âkâi) + 1

2

(
U00 ˆ̃n

2 +
∑
ijkl

Uijkl â
†
i â

†
j âkâl

− 2
∑
jk

Ujkâ
†
j

ˆ̃nâk

)
, (8)

where n̂j = â
†
j âj , ε̄j = εj + U0000/2, Ujk ≡ U0jk0, and the

operator ˆ̃n ≡ ∑
j n̂j counts the number of noncondensate

particles. The constant energy term EC is the condensate
energy

EC = μN − 1
2U00N

2. (9)

The Bogoliubov approach, which is suitable for a high
number of particles and very low temperature, consists of
two approximations. First, terms of the order higher than
quadratic in the annihilation and creation operators âj and
â
†
j for j > 0 are omitted. Second, one defines the operators

b̂j = â
†
0âj /

√
N0, where N0 = 〈â†

0â0〉. These operators satisfy
the commutation relations [b̂j ,b̂

†
k] ≈ δjk − b̂

†
kb̂j /N0, which is

a canonical bosonic commutation relation in the limit of large
N , and one assumes relatively small occupation numbers of
the excited modes. The Hamiltonian then takes the Bogoliubov
form

ĤBog = EC +
∑

i

ε̃i b̂
†
i b̂i + 1

2

∑
ij

Uij (2b̂
†
i b̂j + b̂i b̂j + b̂

†
i b̂

†
j ).

(10)

Hamiltonian (10) is diagonalized by using the Bogoliubov
transformation

b̂i =
∑

k

(uikα̂k + vikα̂
†
k), (11)

where α̂k are operators satisfying canonical bosonic commuta-
tion relations. Note that both b̂i and α̂i are number-conserving
operators, which transfer particles from a single-particle
excited mode into the condensate mode, or vice versa. Within
the number-conserving formalism [39], the field operator �̂(r)
can then be written in terms of the new operators {α̂k},

�̂(r) =
{

φ0(r) + 1√
N0

∑
k

[uk(r)α̂k + vk(r)α̂†
k]

}
â0, (12)

where uk(r) = ∑
i φi(r)uik and vk(r) = ∑

i φi(r)vik are solu-
tions of the Bogoliubov-de Gennes equations,( L − Ek gNφ2

0

gN (φ∗
0 )2 L + Ek

) (
uk(r)

vk(r)

)
= 0, (13)

with L ≡ H0 + 2gN |φ0|2 − μ. The frequencies ωk = Ek/h̄

are the plasma oscillation frequencies of a BEC when it is
slightly driven out of equilibrium. In this case, the solutions
of the time-dependent GPE are represented by Eq. (12) with
classical amplitudes â0 → √

N0 and α̂k → αke
−iωkt , and uk,vk

satisfying Eq. (13). More generally, Ek are the energies of
collective excitations of the many-particle system when N is
large. The plasma frequencies ωk in a double-well potential
were measured in a recent experiment [40].

After performing the transformation (11), the Hamiltonian
(10) then becomes diagonal in the quasiparticle operators α̂j ,

HBog = EC −
∑

k

Ek

∑
i

|vik|2 +
∑

k

Ekα̂
†
kα̂k. (14)

The first two terms define the ground-state energy. The ground
state consists of a superposition of states where most of the
atoms are in the condensate mode, while pairs of particles
occupy the excited single-particle modes with an average
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occupation 〈n̂j 〉 = ∑
k |vjk|2 = ∫

d3r |vk(r)|2. Within the Bo-
goliubov theory, the total number of excited particles in the
ground state, or in any other state with collective excitations,
does not depend on the total number of particles. This implies
that for a given number N , the Bogoliubov approximation
may break down if the total number of excitations becomes
of the same order or larger than the total number of particles.
This may happen when the interaction coefficient g is large or,
as we shall see below, when a barrier separates two parts of
the condensate such that the excitation energy ε1 of the first
excited mode is much smaller than the collisional interaction
energy per particle.

More elaborate theories using the Bogoliubov approxima-
tion have been developed which are suitable for calculating
particle density and excitations at finite temperatures where
many excitations are thermally occupied. However, here we
concentrate on very low temperatures and in the following
we show how a two-mode theory, which yields a satisfactory
approximation to the first Bogoliubov excitation when the con-
densate is well connected (high tunneling), may be continued
to the regime where more than one mode is macroscopically
occupied.
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ω
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FIG. 1. Energies of single particle (left) and collective (right)
excitations in a double-well potential of the form (15): a harmonic
trap of frequency ω = 2π × 100 Hz, plus a Gaussian barrier of
width d = 5 μm and variable height V0. Here the particle-particle
interaction strength reduced to one dimension is g1DN = 69.7 lhoh̄ω,
where lho = √

h̄/mω, and g1DN = 4.98 × 10−36 J m for 87Rb atoms.
The dashed vertical line shows the barrier height for which V0 = μ.
(a) and (b) are for a symmetric potential (x0 = 0): when the barrier
grows, pairs of symmetric and antisymmetric modes become nearly
degenerate. (c) and (d) are for a slightly asymmetric potential
(x0 = 0.1 μm), whereas (e) and (f) have a stronger asymmetry (x0 =
0.5 μm): pairs of modes sustain a constant energy splitting when the
barrier grows, which indicates the suppression of tunneling between
higher modes in the two wells. Yet, due to collisional repulsion,
the first excited-state single-particle energy still tends to zero for
a high barrier. A two-mode approximation is justified under these
circumstances.

Figure 1 shows the single-particle energy levels εj and the
collective Bogoliubov excitations for a one-dimensional (1D)
trap of the form

V (x) = 1
2mω2(x − x0)2 + V0 exp[−(2x/d)2], (15)

i.e., a harmonic oscillator potential (ω = 2π × 100 Hz) with a
Gaussian barrier (1/e-width d = 5 μm). The trap is symmetric
if x0 = 0, and asymmetric otherwise. The barrier height V0

varies from V0 = 0 (harmonic trap) to about twice the chemical
potential (vertical dashed line). The interparticle coupling
constant g is replaced by a 1D parameter g1D = g/A, where
A is the area of the transverse mode. For the demonstration,
we take g1DN = 4.98 × 10−36 J m. When V0 = 0, the energy
of the first collective excitation is exactly E1 = h̄ω. With
increased barrier height, the single-particle energy ε1, as well
as the energy of the first Bogoliubov excitation, decreases
until it becomes very small when the height of the barrier
exceeds the chemical potential μ. This implies that even at
very low temperature, the first Bogoliubov excitation becomes
populated. The fact that the single-particle energy ε1 becomes
very small implies that the ground state becomes an entangled
state with high occupation of the first excited spatial mode,
while the higher spatial modes’ population stays small. In what
follows, we show how these properties enable us to develop
a two-mode model for low energies which involves only the
condensate mode and the first excitation.

B. Two-mode approximation

In general, the quasiparticle wave functions uk(r) and vk(r)
do not have the same spatial form. Let us write these functions
as

uk(r) = ũkφu,k(r), vk(r) = ṽkφv,k(r), (16)

such that ũ2
k − ṽ2

k = 1, and φu,k and φv,k are normalized
functions of space which may be found by solving the
Bogoliubov-de Gennes equations. The well-known theory of
a homogeneous Bose gas [V (r) = 0] with periodic boundary
conditions yields the form φu,k ∝ eik·r and φv,k ∝ e−ik·r. In
that case, or any case where |φu,k| ∼ |φv,k|, the Bogoliubov-
de Gennes equations yield (see [41] for an experimental
demonstration)

Ek ≈
√

εk(εk + 2NUkk), (17)

ṽk ≈ −
√

1

2

(
εk + NUkk

Ek

− 1

)
, ũk ≈

√
1 + ṽ2

k . (18)

Here we show that the approximation φv,k ∼ φu,k is relevant
for the lowest-energy solution of the Bogoliubov-de-Gennes
equations (k = 1) and becomes more and more accurate when
the barrier height V0 increases.

The top panels of Fig. 2 show the deviation of φu1 and
φv1 of the first Bogoliubov excitation from φ1, which is the
lowest positive energy solution of Eq. (7). Both for a symmetric
potential (a) and an asymmetric potential (b), the deviation 1 −
|〈φ1|φu,v〉|2 is small, even for a harmonic potential (<0.3% for
φv1 and <3% for φu1) and reduces significantly with growing
barrier height, such that both φu1 and φv1 become similar to φ1

at large well separation. A more rigorous analytical derivation
of this deviation is given in the Appendix.
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FIG. 2. Comparison of the multimode Bogoliubov theory to
the two-mode approximation. Top panels show the deviation 1 −
|〈φu,v|φ1〉|2 of φu,v (normalized u1 and v1 quasiparticle functions)
in the multimode theory from the single-particle modes φ1 used
for the two-mode approximation: (a) for a symmetric trap and
(b) for an asymmetric trap (x0 = 0.5 μm). The bottom panels
compare the first excitation energy in the two-mode theory to the
multimode Bogoliubov theory for the two cases: (c) symmetric and
(d) asymmetric. The maximum deviation is ∼19% in the harmonic
case (V0 = 0).

In the bottom panel of Fig. 2, we present a comparison
of the first excitation energy obtained from the Bogoliubov
theory with the excitation energy of Eq. (17), which is obtained
when the Hamiltonian (10) is reduced to contain only the
lowest single-particle excitation mode (b̂1 and b̂

†
1 only). The

difference between the two calculations is not larger than 20%
for a harmonic potential (V0 → 0) and reduces to zero for high
barrier separations.

Based on the observations of Figs. 1 and 2, we now restrict
ourselves to the second-quantized Hamiltonian (5) with only
two modes satisfying Eq. (7); the condensate mode φ0 with
ε0 = 0 and the first excited mode φ1 with corresponding energy
ε1. On the one hand, the resulting Hamiltonian is a reduction of
the Bogoliubov Hamiltonian (10) to only one excitation mode,
but on the other hand, we include terms involving this excited
mode to all orders, so as to take into account situations when
this mode becomes macroscopically occupied. We then obtain
the two-mode Hamiltonian

ĤT M = EC + ε̃1n̂1 + U11

2
(2n̂1n̂0 + â

†
0â

†
0â1â1 + â

†
1â

†
1â0â0)

+K(â†
0n̂1â1 + â

†
1n̂1â0) + Fn2

1, (19)

where ε̃1 = ε1 + (U0000 − U1111)/2 is the slightly corrected
single-particle energy of the lowest excited mode, K =
U0111 − U0001 is an interaction term that vanishes if the
potential is symmetric, and F = 1

2 (U0000 + U1111 − 2U11)
gives the self-interaction of the excited mode.

It is clear that retaining terms to all orders in the excitation
φ1, while neglecting the effect of all other modes (j > 1), is
justified only in the high barrier limit, where ε1 is much smaller
than the energies of the other modes. On the other hand, we

0 100 200 300
0.5
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1.5

2

2.5

3

3.5

g1D N/lh h̄ω

E
j
/
h̄

ω

 N=500

 N=1000

 N=3000

 N=10000
 N=∞

Full
 F=0, N=500

FIG. 3. First excitation energy following from the Hamiltonian
(19) as a function of the interaction energy for a harmonic trap.
For relatively low particle numbers (N = 500), the excitation energy
grows linearly with the interaction energy. The excitation energy
stays close to the correct value E1 = h̄ω only in the limit N → ∞.
Neglecting the last term in Hamiltonian (19) leads to an excitation
energy that stays close to the correct value, h̄ω, with less than 19%
deviation (curve with solid circles).

have demonstrated that a single-mode form of Hamiltonian
(10), where mixed terms Ujk (j �= k) are neglected, provides
a reasonable approximation to the energy and shape of the
first Bogoliubov excitation, even in the limit of no barrier.
We therefore seek an approximation that neglects the self-
interaction of the excitation when the barrier is low, but takes
into account the full Hamiltonian in the high barrier limit.

Let us first examine the effect of the self-interaction
of the mode φ1 on the eigenstates and eigenvalues of the
Hamiltonian (19) for N particles in a harmonic trap as a
function of the interaction constant g. In the thermodynamic
limit, where N → ∞, with gN kept finite, we expect that
the last two terms of the Hamiltonian will be negligible and
the lowest eigenvalues of the Hamiltonian will correspond
to the two-mode solutions (17) of the Bogoliubov Hamiltonian.

Figure 3 shows the first excitation energy, which is the
energy difference between the two lowest eigenvalues of the
Hamiltonian (19) for a harmonic trap with varying interaction
strengths g1DN for different values of N . It shows that the
excitation energy stays close to the correct value of h̄ω only
in the limit N → ∞. However, if the last term, which is
proportional to F , is dropped, then the excitation energy
stays close to the correct value for all interaction strengths.
Neglecting F makes the Hamiltonian similar to the Bogoliubov
Hamiltonian with a single excitation mode. In the next section,
we show how this insight can be continued to the whole range
of barrier heights in a way that satisfies the validity criteria in
Sec. II B.

IV. FROM BOGOLIUBOV TO THE BOSE-HUBBARD
HAMILTONIAN

As we have seen in the previous section, the full form of
the two-mode Hamiltonian (19) does not provide the right
excitation energy for a harmonic trap with a finite number of
bosons. In order to facilitate a theory that gives rise to a good
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approximation both in the harmonic and the double-well case,
we now use the two-mode representation of an ensemble of N

bosons as a system with spin N/2. First, we define the spin
operators

Ŝx ′ = 1

2
(â†

1â0 + â
†
0â1), (20)

Ŝy ′ = 1

2i
(â†

1â0 − â
†
0â1), (21)

Ŝz′ = 1

2
(n̂1 − n̂0), (22)

which satisfy the canonical commutation relations for spin
operators [Ŝi ,Ŝj ] = εijkŜk , and Ŝ2

x ′ + Ŝ2
y ′ + Ŝ2

z′ = N/2(N/2 +
1). In terms of these spin N/2 operators, the Hamiltonian (19)
becomes

ĤT M = (ε̃1 + NF )Ŝz′ + 2U11Ŝ
2
x ′ + K(N − 1)Ŝx ′

+K(Ŝx ′ Ŝz′ + Ŝz′ Ŝx ′ ) + F Ŝ2
z′ . (23)

This Hamiltonian can be transformed into a simpler form by
performing a rotation by an angle θ about the y ′ axis: Ŝi →
eiŜy′ θ Ŝie

−iŜy′ θ . This is equivalent to(
Ŝx ′

Ŝz′

)
=

(
cos θ sin θ

− sin θ cos θ

) (
Ŝx

Ŝz

)
, (24)

while Ŝy ′ = Ŝy . We require that the mixed products of Ŝx and Ŝz

in the transformed Hamiltonian vanish. This implies a rotation
angle θ that satisfies

tan 2θ = − K

U11 − F/2
. (25)

The following Hamiltonian is then obtained:

ĤT M = εŜz − J Ŝx + UŜ2
z + GŜ2

x , (26)

where

G = 2U11 cos2 θ − K sin 2θ + F sin2 θ, (27)

U = 2U11 sin2 θ + K sin 2θ + F cos2 θ, (28)

ε = (ε̃1 + NF ) cos θ + K(N − 1) sin θ, (29)

J = (ε̃1 + NF ) sin θ − K(N − 1) cos θ. (30)

We find that F and K can be expressed in terms of the new
parameters U and G as

F = U cos2 θ + G sin2 θ, (31)

K = (U − G) sin θ cos θ, (32)

such that the parameters J and ε can now be written as

ε = [ε̃1 + (N − sin2 θ )U + sin2 θ G] cos θ, (33)

J = [ε̃1 + (N − cos2 θ )G + cos2 θ U ] sin θ. (34)

Note that in the case of a symmetric potential, such that
K = 0, the rotation angle is θ = π/2 and the parameters of
the Hamiltonian become much simpler,

U = 2U11, G = F,
(35)

J = ε̃1, ε = 0.

The rotation by an angle θ that led to the Hamiltonian
(26), which has a diagonal quadratic form in the spin
operators, is equivalent to a rotational transformation into
linear superpositions of the annihilation operators â0,â1 by
a rotation angle of θ/2. This transformation corresponds to a
change of wave-function basis, such that the condensate mode
φ0 and the first excitation φ1 are transformed into a left-right
basis, (

φ0

φ1

)
=

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

) (
φL

φR

)
, (36)

where φL and φR are called the “left” and “right” modes,
respectively. One can verify by direct calculation that the same
rotation angle θ that satisfies Eq. (25) is the one that minimizes
the overlap integral∫

d3r |φL(r)|2|φR(r)|2 = G

2g
, (37)

where G is defined in Eq. (27). It follows that the mode func-
tions φL and φR are those that exhibit maximum separation,
namely, they can be interpreted as the best choice of modes for
which each mode occupies the opposite side of the trap. The
transformed spin operators can now be defined in terms of the
annihilation operators of the left and right modes as

Ŝx = 1
2 (â†

RâL + â
†
LâR), (38)

Ŝy = 1
2i

(â†
RâL − â

†
LâR), (39)

Ŝz = 1
2 (n̂R − n̂L). (40)

In our last step, we examine the role of the left-right overlap
parameter G in the two limits of a harmonic trap and a
well-separated double-well potential. In the case where there
is no barrier and the potential is harmonic, the potential is
symmetric, so θ = π/2 and G = F . As we have shown at the
end of the previous section, a correct scaling of the excitation
energy is obtained only when F , which is the self-interaction of
the excited state, is dropped from the Hamiltonian. In the other
limit, Eq. (37) and the demonstration of Fig. 4 show that G as an
overlap integral between the left and right modes becomes very
small compared with other parameters. Although a two-mode
model is mostly justified in this limit, it follows that dropping G

from the Hamiltonian has a minor effect. We therefore suggest
that the final form of the Hamiltonian and its parameters should
be those given above with G → 0. Then, for the whole regime
of barrier heights, we obtain the Bose-Hubbard form for the
Hamiltonian,

Ĥ = εŜz − J Ŝx + UŜ2
z . (41)

Here the parameters U , J , and ε are given in terms of the left
and right modes by

U = g

2

∫
d3r (|φL|2 − |φR|2)2, (42)

J = ε1 sin θ = 〈φL|h0|φR〉, (43)

ε = [ε1 + NU ] cos θ

= 〈φR|h0|φR〉 − 〈φL|h0|φL〉 + UN cos θ, (44)

where h0 ≡ H0 + gN |φ0|2 − μ is the effective single-particle
Hamiltonian that leads to Eq. (7) for the modes. Here U follows
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FIG. 4. Parameters of the Bose-Hubbard Hamiltonian (41) as a
function of barrier height V0, asymmetric case (x0 = 0.1 μm), with
N = 1000, and other parameters as used in Fig. 1. The ratio UN/J

determines the degree of number squeezing (see Sec. V). The ratio
U/NJ determines ground-state coherence, which drops significantly
when J ∼ U/N . The parameter G, which measures the overlap
between the left and right modes, was neglected in the Hamiltonian.
At low barrier heights, its neglect is justified by compatibility with the
Bogoliubov theory when most of the particles are in the condensate,
which satisfies requirement (a) in Sec. II B. At high barrier heights,
G drops quickly to negligible values. The dashed line denotes the
energy difference between the two minima of the double well, which
does not coincide with the bias parameter ε.

directly from Eq. (28) and the definition of φL,φR , while J and
ε follow, respectively, from Eqs. (34) and (33) by setting G = 0
and neglecting terms of the order unity relative to terms of the
order N (implying ε̃1 → ε1).

For later comparison, we also note that the condensate-
excitation interaction energy can be written in terms of U

(neglecting G) as

U11 = 1
2U sin2 θ. (45)

Figure 4 shows the parameters of the Bose-Hubbard
Hamiltonian (41) as a function of the height of the barrier,
V0, for the asymmetric example of Fig. 1. The parameter
GN , which was dropped from the Hamiltonian, seems to
be important at low barrier heights, but neglecting it in that
region was justified by the requirement of compatibility with
the scaling of the excitation energy, as correctly predicted by
the Bogoliubov theory. In the region where the Bogoliubov
model fails, i.e., at high barrier heights, this parameter drops
very quickly to zero, which justifies its neglect in that region.
The ratio between J and U/N determines the coherence of
the Bose gas at the two wells. The coherence drops near the
intersection point between J and U/N . The relative number
of particles in the two sides of the barrier is determined by
the ratio between the parameter ε and UN . The parameter ε

vanishes in the symmetric case, or in the case where V0 = 0
(a single trap).

In order to demonstrate that our method is valid for
realistic three-dimensional potentials, we present in Fig. 5
the parameters of the Hamiltonian for a symmetric re-
alistic trap with 87Rb atoms and the single-particle and
collective-excitation energies. Again, the collective excitation
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FIG. 5. (a) Parameters of the Bose-Hubbard Hamiltonian as in
Fig. 4 for a gas of 87Rb atoms in a three-dimensional harmonic poten-
tial with longitudinal frequency ωx = 2π × 500 Hz and transverse
frequencies ωy = ωz = 2π × 1.5 kHz. The barrier parameters are as
in Fig. 1. (b) Single-particle (dashed) and collective (solid) excitation
energies as a function of barrier height. As in the one-dimensional
example, the excitation energy for the harmonic potential (V0 = 0)
differs from the expected value E1 = h̄ωx by ∼20%.

for the harmonic trap (V0 = 0) differs from the exact value by
∼20%.

To conclude this section, we summarize the algorithm for
obtaining the Bose-Hubbard Hamiltonian (41) for an arbitrary
potential similar to the form (15): (i) Solve the GPE for the
condensate φ0 and find the lowest positive energy solution
φ1 of Eq. (7). (ii) For a symmetric potential, φL and φR are
obtained right away as φL,R = 2−1/2(φ0 ± φ1) (θ = π/2). For
an asymmetric potential, the left and right modes are obtained
by the transformation (36), with θ obtained either from Eq. (25)
or by minimizing the overlap integral (37). (iii) Calculate
the parameters U , J , and ε of the Hamiltonian by using
Eqs. (42)–(44).

In the next section, we give a brief derivation of the solutions
of the Hamiltonian and add some more insight concerning
coherence and squeezing of the ground state and lowest
excitations over the whole range of barrier heights.

V. PHYSICAL PROPERTIES

The steady-state properties and time evolution due to the
Hamiltonian (41) were extensively studied in previous works
in the weak-coupling regime, where the tunneling between the
wells is small. Here we extend the description to the full range
of barrier heights and provide a direct connection between
the shape of the potential and these properties. However, we
restrict ourselves to the ground state and the lowest excitations
at very low temperatures. In this context, we also provide
two complementary descriptions of the transition from a state
where most of the particles occupy a single condensate mode,
with a well-defined relative phase when the barrier is low, to the
fragmented state when the barrier is high. The fragmented state
is a product state of two modes, one in each of the two wells,
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with no phase correlation between particles in the two wells.
One complementary description relies on the condensate-
excitation representation and shows how, with increasing
barrier height, the condensate depletion, i.e., the occupation of
the first excited mode, grows until the Bogoliubov description
breaks down. The other complementary description is based
on the left-right representation, and shows how, for low barrier
heights, most of the particles are in a coherent superposition
of the left and right modes, and how this superposition state
becomes a fragmented state through number squeezing when
the barrier grows.

A. The Josephson model

Hamiltonian (41) can be solved numerically for a given
number of particles. However, to facilitate an intuitive un-
derstanding of the solutions, together with analytical approx-
imations for the solutions, we first transform Hamiltonian
(41) into the Josephson form. We introduce two conjugate
operators: the number operator n̂ ≡ Ŝz, which measures the
difference between the occupations of the two modes, and the
phase operator ϕ̂, which measures the phase between them.
These operators are defined in the Fock basis of eigenestates
of the operator n̂, namely, |n〉 ≡ |nL,nR〉, with nR = N − nL

and n = (nR − nL)/2, as follows:

n̂|n〉 = n|n〉, eiϕ̂ |n〉 = |n + 1〉, (46)

except for the state |N/2〉, which is transformed as eiϕ̂ |N/2〉 =
| − N/2〉. The number and phase operators satisfy (as long as
the extreme state |N/2〉 is excluded) canonical commutation
relations [ϕ̂,n̂] = i, similar to the position and momentum
operators.

As we shall see below, the lowest-energy eigenstates of
Hamiltonian (41) are superpositions of Fock states |n〉 around
a central value n̄, such that the width of the probability
distribution in the Fock space is of the order of

√
N/2 or

less, and the average phase between the modes in the ground
state is 〈ϕ̂〉 = 0. For large N , we may therefore approximate
Ŝx ≈ √

n̂Ln̂R cos ϕ̂ and estimate n̄ of the ground state and
lowest-energy excitations by minimizing the energy 〈Ĥ 〉. This
yields the equation

n̄ = − ε/2

U + J/Nη
, (47)

with

η =
√

1 − 4n̄2/N2. (48)

It follows from Eqs. (43) and (44) that

η = sin θ, n̄ = −N

2
cos θ. (49)

By expanding the Hamiltonian around the central value n̄, we
then obtain the Josephson Hamiltonian

ĤJ = Ũ (n̂ − n̄)2 + 1
2JNη(1 − cos ϕ̂), (50)

where

Ũ = U + J/Nη3. (51)

The eigenstates of the Josephson Hamiltonian are well
known. When J < Ũ/N , the Hamiltonian is governed by
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FIG. 6. Energy of the lowest excitation as a function of barrier
height for a slightly asymmetric double well, as in Fig. 1, and
the Bose-Hubbard parameters of Fig. 4. The Josephson excitation
energy h̄ωJ of Eq. (52) (thin solid curve) is similar to the two-mode
Bogoliubov energy in Fig. 2(d). It is higher, by ∼18% at V0 = 0 and
∼10% at high V0, than the multimode Bogoliubov energy (dashed
curve), which predicts the lowest oscillation frequency of a slightly
perturbed initial particle distribution around the equilibrium state,
as measured in Ref. [40]. The thick solid curves give the excitation
energy obtained numerically by averaging over the eigenvalues of the
Hamiltonian (41) over few values of N around N̄ = 100, 200, 500,
and 1000 (top to bottom), such that UN is fixed. In the low tunneling
regime J < U/N , the ground state becomes a Fock (number) state
with average excitation energy Ē1 ≈ 1

2 U . In this case, oscillations
around ground-state populations of the two wells are suppressed
because all number states are eigenstates of the Hamiltonian.

the first term, whose eigenstates are the Fock states |n〉, for
which there is no phase relation between the two sides of the
barrier. However, when J > Ũ/N , it follows that the lowest
eigenstates of the Hamiltonian satisfy 
ϕ � 1, so that the
second term may be approximated by 1 − cos ϕ̂ ≈ 1

2 ϕ̂2. The
quadratic form of the Hamiltonian suggests that its eigenstates
are similar to harmonic oscillator states with constant energy
splitting h̄ω, where ω is the Josephson frequency,

h̄ωJ =
√

JNηŨ. (52)

It may be verified by using Eqs. (43) and (45) that h̄ωJ = E1

from Eq. (17), which is the excitation energy of the two-mode
Bogoliubov theory in Sec. III.

In Fig. 6, we compare the Josephson energy h̄ωJ , which
is similar to the two-mode Bogoliubov excitation energy in
Fig. 2(d), to the excitation energy of the full Bogoliubov model
that gives the lowest plasma oscillation frequency when a BEC
is slightly driven out of equilibrium. As in Fig. 2, the excitation
energy following from the two-mode model is higher by ∼18%
than the exact result in the case of a harmonic potential, and
by ∼10% in the high barrier regime. Together with the results
in Fig. 3, this indicates that the two-mode model provides a
satisfactory estimate to the lowest excitation frequency for the
full range of barrier heights and interaction strengths, but yet
the effect of higher modes on this frequency does not become
negligible, even in the limit of weak coupling between the
wells. For a relatively small number of particles and strong
particle-particle interaction, Fig. 6 shows that the excitation
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energy averaged over odd and even numbers N stays fixed on
Ēex ≈ 1

2U in the weak tunneling regime. In this regime (the
Fock regime), the eigenstates of the Hamiltonian are number
states and oscillations between the wells can occur if the
initial state is a superposition of two different number states,
whereas an initial imbalanced number state will not lead to
oscillations between the wells. This effect may be interpreted
as self-trapping for a population imbalance as small as a single
particle.

B. Number squeezing

By analogy of the quadratic form of the Josephson Hamilto-
nian with a harmonic oscillator Hamiltonian in the conjugate
number and phase operators, the number uncertainty in the
kth excited state of the Hamiltonian [including the ground
state (k = 0)] is

〈
n2〉k = σ 2

(
k + 1

2

)
, (53)

where

σ 2 =
√

JNη/4Ũ . (54)

In the noninteracting case U = 0, we have h̄ωJ = J/η and
σ 2

0 = Nη2/2, which yields the usual Poisson number distri-
bution. However, when the interaction is finite, the number
uncertainty is squeezed with squeezing factor

ξ ≡ σ

σ0
= 1

(1 + NUη3/J )1/4
, (55)

so considerable squeezing appears when UN/J > 1. This
regime covers, in our example of Fig. 4, all the range of barrier
heights.

In a noninteracting system (U = 0), the ground state is the
state where all the particles occupy the condensate mode φ0.
In the left-right representation, this ground state is represented
by a coherent state with Poissonian number distribution. Left-
right number squeezing due to interactions is equivalent, in
the condensate-excitation representation, to the appearance of
pairs of particles in single-particle excited modes. In the two-
mode Bogoliubov model, these pairs are represented by the
quasiparticle nonzero coefficient ṽ1, whose square v̄2

1 measures
the average occupation of the excited mode. Note that the
quasiparticle factors of Eq. (16) may be written explicitly in
terms of the squeezing factor as

ṽ1 = 1
2 (1/ξ − ξ ), ũ1 = 1

2 (1/ξ + ξ ). (56)

The Bogoliubov approximation breaks down when v̄2
1 ≈

1/4ξ 2 ∼ N/2, which corresponds to the limit where
Uη3/NJ ∼ 1. As we show below, this limit is characterized
by a drop of the coherence and the transition to a fragmented
left-right state.

C. Phase uncertainty and coherence

The spatial density of particles is given by

n(r) = nL|φL|2 + nR|φR|2 + 2Re(〈Ŝ+〉φ∗
LφR), (57)

where Ŝ+ = Ŝx + iŜy ≈ √
n̂Ln̂Reiϕ̂ . The last term in Eq. (57)

represents interference between the two modes φL and φR ,

whose contribution is proportional to 〈eiϕ̂〉, which we call the
coherence [18]. If the trapping potential is turned off, then
the two modes expand and overlap, so that φL and φR become
expanding wave packets with spatial phase dependence. Under
conditions where particle-particle interaction is not significant
during this process, the many-body dynamics will stay frozen
and the visibility of the interference pattern that follows from
the last term in Eq. (57) is determined by the initial expectation
value 〈eiϕ̂〉.

In general, the coherence 〈eiϕ̂〉 is related to the phase
uncertainty as follows [42]:

〈eiϕ̂〉 = ei〈ϕ̂〉 e−〈(
ϕ)2〉/2. (58)

The phase uncertainty in the quadratic approximation is equal
to

〈(
ϕ)2〉k = σ−2

(
k + 1

2

)
. (59)

This implies that in a thermal state, where the excitation
probability of the kth excited state is Pk ∝ e−kh̄ωJ /kBT , the
phase uncertainty is

〈(
ϕ)2〉T = σ−2
[
nT (h̄ωJ /kBT ) + 1

2

]
, (60)

where

nT (h̄ωJ /kBT ) = 1

eh̄ωJ /kBT − 1
(61)

is the total occupation of collective excitations. It follows from
Eq. (58) that for 〈ϕ̂〉 = 0, the coherence is

〈eiϕ̂〉T = exp

[
− 1

2σ 2

(
nT + 1

2

)]
. (62)

Figure 7(a) shows the coherence as a function of barrier
height for the ground state (T = 0) for different total number
of particles N , while g1DN is kept constant, and Fig. 7(b)
is for a fixed number of particles (N = 1000) at different
temperatures. The level of coherence may be attributed to
either ground state [in Fig. 7(a)] or thermal relative population
of the excited single-particle mode φ1 [in Fig. 7(b)].

The results presented in Fig. 7 and the above equations
are valid whenever the phase uncertainty is small compared
to unity, in which case the quadratic approximation for the
Josephson Hamiltonian is appropriate. However, for states
in which 
ϕ ∼ 1 (or equivalently 
n ∼ 1), the system is
close to the Fock regime, where eigenstates are number states
for which, in general, 〈n̂〉 �= n̄ and the number and phase
uncertainties differ from those given in the above equations.
It follows that the coherence plots of Fig. 7 in the regime
where they drop below ∼1/2 should be taken as rough
estimations that demonstrate the general behavior as a function
of number and temperature. It is easy to calculate the more
exact values by numerically solving for the eigenstates of
the full Bose-Hubbard Hamiltonian (41). Discussion of this
regime is beyond the scope of this paper and therefore we do
not present these results here.

Note also that in the opposite limit of noninteracting
particles, the coherence as defined above does not identically
become unity, but rather 〈eiϕ̂〉 = e−1/2Nη2

. This follows from
the fact that the expression 〈eiϕ̂〉 for the coherence is only a
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FIG. 7. Coherence 〈eiϕ̂〉 between the left and right modes as
follows from the parameters of the Bose-Hubbard Hamiltonian in
Fig. 4 according to the quadratic approximation for the Josephson
model [Eq. (62)]. (a) At zero temperature, for different numbers
of particles, such that g1DN is kept constant. (b) For N = 1000 for
different temperatures (in units of h̄ω/kB ). At low barrier height, most
of the particles are in a superposition of the left and right mode and the
coherence is close to 1. The deviation from 1 indicates the existence of
single-particle excitations in the ground state (condensate depletion).
When the barrier grows, the ground state in (a) becomes incoherent
due to the growth of the population of the excited single-particle mode
in the ground state or due to thermal excitation of this mode in (b).

large N approximation for the more accurate definition of the
coherence as 〈Ŝ+〉/√nLnR .

D. Particle density

It is important to examine the deviation of the particle
density in steady state from the value n0(r) = N |φ0|2 that
was used here for the mean-field interaction. In terms of the
condensate and excitation modes, the density is given by

n(r) = N0|φ0|2 + N1|φ1|2 + 2Re(〈â†
0â1〉φ∗

0φ1). (63)

We find that within the Josephson approximation,

N1 ≡ 〈â†
1â1〉 = N

2
η2(1 − 〈eiϕ̂〉), (64)

which tends to 0 for a fully coherent gas and to Nη2/2 in the
limit where the coherence vanishes. In the asymmetric case,
where cos θ �= 0, coherence forms between the condensate and
excitation modes,

〈â†
0â1〉 = n̄η(1 − 〈eiϕ̂〉) = −cot θ N1. (65)

This coherence explicitly goes beyond the Bogoliubov approx-
imation, as it implies that 〈b̂〉 �= 0, following from a third-order
term in the Hamiltonian (19). The resulting spatial density is

n(r) = N |φ0|2 − 2

η
N1φLφR. (66)

If the separation between the two wells is not too large and the
temperature is not too high compared to the excitation energy
h̄ωJ , then N1 � N , so the deviation from the condensate
density is negligible. If the separation is large, the overlap
between the modes is quite small and occurs only in the

middle of the barrier, where the density is exponentially
small. It follows that the particle density deviates from that
of the condensate only in the overlap region, such that at
full separation, when N1 → N/2, the density at the center
becomes N |φ0|2/2, but otherwise the density stays that of
the condensate even when the many-body state is fully
fragmented.

VI. COMPARISON WITH ALTERNATIVE THEORIES

Let us now compare our theory with the standard approach
to a weakly coupled double-well system and with the two-
mode HF theory, and discuss the various ranges of validity of
these theories.

A. Eigenmodes of the Gross-Pitaevskii equation

Since the beginning of the coupled-mode theory of bosons
in a double well, suggestions have been made to use solutions
of the GPE in each separated well [14] or to use two
stationary solutions of the GPE in the full double-well potential
[16,17,26]. In a symmetric double-well potential, it is possible
to use the symmetric and antisymmetric solutions of the GPE:[

p̂2

2m
+ V (r) + gN |φ±(r)|2

]
φ± = E±φ±. (67)

The orthogonality of these modes is ensured by their symmetry.
The left and right modes φL,R = 2−1/2(φ+ ± φ−) are then
used even when the potential is not symmetric, under the
assumption that the shape of these two modes is not sensitive
to their occupation. This assumption is valid as long as the
asymmetry is weak enough so that the interaction energy is
not significantly different on the two sides of the barrier. A
theory based on these modes may be valid when the tunneling
rate is low and the coupling between the modes is weak.

In Fig. 8, we compare the tunneling rate J that follows
from this theory [20] with our theory. The two approximations
coincide in the deep tunneling limit but differ considerably in
the low barrier regime, where the value predicted by our theory
matches the calculation based on the semiclassical Josephson
theory [15]. It follows that the theory based on the stationary
eigenmodes of the GPE does not fulfill requirement (a) in
Sec. II B. Further demonstration of the compatibility of this
approach in the two regimes of weak and strong coupling
between the wells is presented in Fig. 9. The shape of the
asymmetric solution of the GPE is very different from the
shape of the asymmetric Bogoliubov excitation in the low
barrier regime, but it becomes very similar to it and to the
mode calculated by our theory in the high barrier regime.

Regarding the treatment of asymmetric potentials, our
calculations show that the tunneling rate for asymmetric
potentials does not significantly differ from that of a symmetric
potential with the same parameters except x0 of Eq. (15) [10%
difference for x0 = 0.5 μm, where the population difference is
(nL − nR)/N ≈ 22%]. This implies that for medium asymme-
try levels, the parameters of the Bose-Hubbard that result from
the symmetric- antisymmetric basis modes may serve as a fair
approximation for the asymmetric case. However, as shown
in Fig. 4, the bias parameter ε is not equal to the potential
bias (energy difference between potential minima), so that it
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FIG. 8. Tunneling rate J in a symmetric double-well potential as
in Fig. 1: The result of our theory (solid curve) is similar to the results
of the semiclassical approximation [15] (circles) over most of the
range where that approximation is applicable, namely, a symmetric
potential with two minima. The theory based on eigenmodes of the
GPE (dashed curve) coincides with the last two methods at the deep
tunneling limit, while the HF calculation (dots) produces different
results in both the deep tunneling regime and the low barrier regime.

might be necessary to calculate it with a model that can bare
asymmetric modes, as provided by our theory.

B. Semiclassical functional theory

Reference [15] presented a calculation of the tunneling rate
in a double-well potential using a semiclassical functional
theory and suggested an expression in the form of an integral
based on the particle density calculated using the GPE. This
method of calculation, which is unambiguous for the case of a
one-dimensional potential, was used in Fig. 8 for a symmetric
potential. It shows good agreement with the results of our
method over most of the regime where it is valid, namely, when
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FIG. 9. Comparison between the shape of the first excited mode
φ1 within different theories in two regimes: (a) no barrier and (b) high
barrier. (a) In a harmonic potential, our theory yields a mode function
φ1 fairly close to the normalized Bogoliubov quasiparticle function
v1(r), while the eigenmode of the GPE and the Hartree-Fock mode are
different. (b) For a high barrier, the eigenmode of the GPE coincides
with our theory and v1, whereas the HF mode is still different.

the potential has two distinct minima. However, the full shape
of the modes and the solution for asymmetric potentials was
not provided in Ref. [15]; the method appears to be appropriate
only for symmetric or nearly symmetric potentials.

C. Two-mode Hartree-Fock method

A two-mode Hartree-Fock method for bosons, which
was termed the multiconfigurational time-dependent Hartree
method (MCTDH) was developed several years ago
[27–29,31,32] and applied to several steady-state and time-
dependent situations [30,33]. This approach is derived in a
straightforward manner from the assumption that the multi-
particle wave function can be written as a superposition of
Fock states of particles in one of two modes φ1 and φ2,

�(r1,r2, . . . ,rN ) =
∑

n

cn�n,N−n(r1,r2, . . . ,rN ), (68)

where

�n,N−n = Ŝφ1(r1), . . . ,φ1(rn) φ2(rn+1), . . . ,φ2(rN ) (69)

is the state with n particles in mode φ1 and N − n particles
in mode φ2, and Ŝ denotes the symmetrization over all
permutations of {rj }. This is equivalent to assuming that the
field operator in Eq. (3) is written as

�̂(r) = φ1(r)â1 + φ2(r)â2, (70)

where, in contrast to Eq. (1), both φi and âi are time dependent
or subject to variation. This ansatz is used in the Heisenberg
equations of motion for the field operator. Upon multiplying
this equation by either â

†
1 or â

†
2 from the left and taking

the expectation value 〈â†
i ∂�̂/∂t〉, the following equations of

motion for the spatial modes are obtained:

ih̄
∂φi

∂t
= P

⎡
⎣H0φi + g

∑
mjkl

(ρ−1)imρmjklφ
∗
j φkφl

⎤
⎦ , (71)

where P ≡ 1 − ∑
j |φj 〉〈φj | is a projection operator that

ensures the orthogonality of the mode functions. ρij = 〈â†
i âj 〉

and ρijkl = 〈â†
i â

†
j âkâl〉 are the one-particle and two-particle

reduced density matrices.
For two modes, the tensor ρijkl has 24 = 16 components,

so that in general the equation of motion for each mode
function involves 6 different combinations of φ∗

j φkφl and the
16 components of ρijkl .

The two-mode Hartree-Fock theory has been demonstrated
to give physical results in some of the situations examined
so far. However, it is not able to obtain splitting into a
fully separated double well that leads to full fragmentation
where coherence is totally lost even when the splitting time
is very long and the barrier height very large [27,33]. Here
we suggest that this result might be due to a fundamental
problem that occurs in the two-mode HF method when the
interaction strength is large, as we explain below. This problem
is demonstrated in Fig. 8, where we show the tunneling rate
predicted by the two-mode HF theory using imaginary time
propagation of the self-consistent equations for converging
into a steady-state solution [43]. It is clear that these results
are not comparable with the physically reasonable results
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provided by the other theories, and indicate that the two-mode
HF method cannot predict full fragmentation under these
circumstances even when the barrier separation is large.

In order to explain the origin of this failure, we first note
that Eq. (71) is invariant under a SU(2) transformation of the
modes, as in Eq. (36). Let us now examine the case of a
symmetric potential and choose the symmetric-antisymmetric
mode representation. When the separation between the wells
is not too large (or the number of particles is high enough),
most of the particles will occupy the symmetric mode (the
“condensate” φ0), while only a small number of particles
occupy the first excited mode φ1. Within the ground state, the
density matrix components with odd number of antisymmetric
field operators must vanish. We then obtain the following
equations for the modes:

ih̄
∂φ0

∂t
= (H0 − μ)φ0+g[(n̄0|φ0|2 + 2n̄1|φ1|2)φ0+m̄1φ

2
1φ

∗
0 ],

(72)

ih̄
∂φ1

∂t
= (H0 − μ − E1)φ1+g

N0

N1
(2n̄1|φ0|2φ1 + m̄∗

1φ
2
0φ

∗
1 ).

(73)

Here N0 and N1 (N0 + N1 = N ) are the expectation values of
the number of particles in the two modes, n̄0 ≡ ρ0000/N0 ≈
N0, n̄1 = ρ0110/N0 ≈ N1 and m̄1 = ρ0011/N0, and we have
omitted the term proportional to ρ1111, which is third order
in φ1. The chemical potential μ and excited-mode frequency
follow from the action of the projection operator P .

When the well separation is not too large, so N1 � N0, the
terms proportional to n̄1 and m̄1 can be omitted from Eq. (72),
and the GPE is recovered. Equation (73) takes the form of a
Schrödinger equation for a single particle in a potential,

Veff = V + g
N0

N1
(2n̄1 + m̄∗

1)|φ0|2. (74)

Note that in terms of the b̂ operators defined just before
Eq. (10), the coefficients n̄1 and m̄1 are given by n̄1 =
〈b̂†1b̂1〉 and m̄1 = 〈b̂1b̂1〉, respectively. According to the two-
mode reduction of the Bogoliubov theory in Sec. III, these
coefficients are given by

n̄1 = |ṽ1|2 = N1, (75)

m̄1 = −ũ1ṽ1 = −
√

N1(N1 + 1). (76)

It follows that Veff ≈ V + gN |φ0|2[2 − √
(N1 + 1)/N1]. Un-

less N1 � 1, as expected in the limit where J/U → 0
[see Eq. (64)], the effective potential turns out to be more
attractive than the effective potential V + gN |φ0|2 that is
experienced by the condensate mode φ0. This leads to a
considerable difference between the mode φ1 calculated by
the HF method compared with calculations using the other
methods, as demonstrated in Fig. 9. When the two wells are
separated by a high barrier, the shapes of φ0 and φ1 in the two
wells are significantly different, as demonstrated in Fig. 10.
In the left-right basis, this yields that the mode φL retains
a nonvanishing tail in the right well, and vice versa. This
effect, in turn, is responsible for keeping the tunneling rate
high even when the separation between the wells is large,
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FIG. 10. Spatial modes obtained with the two-mode HF method
for a strongly separated double-well potential with a slight asymmetry
as in Fig. 1. (a) In the condensate-excitation representation, the
excitation has a narrower profile compared to the condensate mode at
each well, due to an effective attractive potential [Eq. (74)]. (b) This
gives rise to considerable tails of the left mode φL in the right well,
and vice versa, so that even in the limit of complete separation, the
overlap between φL and φR does not vanish.

so that, in a self-consistent manner, N1 does not grow with
growing separation and fragmentation is not achieved. This is
clearly an unphysical result which violates requirement (b) in
Sec. II B. For similar reasons, requirement (a) is violated as
well.

Equations (72) and (73) are calculated self-consistently
with the solution of the many-body Hamiltonian (5). This
self-consistent calculation yields the shape of the modes and
the values of n̄1 and m̄1. Because of the self-consistency
requirement, it is difficult to derive an analytic estimate of
these values for a given shape of the potential and interaction
strength. However, our numerical calculations show that when
the barrier height is increased to form a potential with large
well separation, the tunneling rate hangs up at a certain
value and does not decrease further when the barrier height
is further increased. This problem occurs only at very high
barrier heights and low tunneling rates when the interaction
is relatively weak. However, when the interaction strength is
comparable to that used in our example, the problem appears
at relatively low levels of separation: the left-right overlap
remains large and the tunneling rate hangs up at a high value,
as in Fig. 8.

It is interesting to note that the quantities n̄1 and m̄1 are
equivalent to the normal and the anomalous densities of the
noncondensate single-particle excitations in the Bogoliubov
theory [11]. A self-consistent theory that fully takes these
quantities into account leads to an unphysical theory of the
Bogoliubov excitations, which predicts an excitation gap.
In order to overcome this problem, it is essential to use
an approximation such as the Popov approximation which
neglects the anomalous density, thereby obtaining a physically
reasonable theory at the price of losing full self-consistency.
Here, as well, we have shown that a fully self-consistent
theory, which assumes the existence of only two modes,
leads to unphysical results and therefore it is essential to

033630-12



GROUND STATE AND EXCITATIONS OF A BOSE GAS: . . . PHYSICAL REVIEW A 84, 033630 (2011)

abandon self-consistency for the sake of gaining an improved
approximation.

VII. SUMMARY AND DISCUSSION

We developed a theory of many interacting bosonic particles
in a double-well potential which is valid over the whole range
of barrier heights, from a harmonic (single-well) potential to
a double-well potential with large separation between the two
wells. In the two limits of high and low (or no) barrier, this
theory provides correct predictions for fundamental physical
properties; in the high barrier regime, our theory coincides
with the two-site Bose-Hubbard model with standard values
of its parameters, and in the low barrier regime, it provides
satisfactory agreement with the GPE and Bogoliubov theory
for a single excitation above the condensate.

Our theory provides a continuous description of adiabatic
splitting of a condensate all the way from a single well with
a coherent condensate to a well-separated double well with a
fragmented state of two nonoverlapping modes. In a harmonic
potential with no barrier at zero temperature, most of the
atoms are in the condensate state, while a small fraction of
particles occupy pairs of single-particle excited states. The
noncondensate fraction grows with increased particle-particle
interaction and this reflects squeezing in the system. While
the lowest single-particle excitation energy decreases with
growing interaction energy, the lowest collective (Bogoliubov)
excitation energy in a harmonic trap stays equal to h̄ω and
reflects a collective motion of the center of mass in the trap.
When the barrier grows and separates the BEC into two well-
separated wells, the fraction of noncondensate particles grows
together with the squeezing, while the lowest single-particle
excitation energy and collective excitation energy decrease.
When the barrier grows to a level where the noncondensate
fraction is macroscopic, the standard Bogoliubov approxi-
mation ceases to be valid, while our generalized two-mode
theory is better interpreted in the left-right mode representation
rather than the condensate-excitation representation. We have
also shown that a coherence measure may be defined for
the two-mode system, such that the drop of coherence is
closely related to the increase of squeezing and the growth
of noncondensate population. At finite temperatures, the
coherence further decreases due to the thermal occupation
of collective excitations. With growing barrier and decrease
of the collective excitation energy, the coherence drastically
drops when the excitation energy becomes comparable to or
smaller than the temperature.

A two-mode basis that can be used for the theory presented
here is the condensate-mode function, which is the lowest
energy solution of the GPE, and the lowest first excited
solution of the Schrödinger equation with an effective repulsive
potential due to the condensate. We have shown that there is
good agreement between the spatial shape of this first excited
mode and the quasiparticle wave functions u1(r) and v1(r).
This agreement improves with growing barrier height. This
mode basis is suitable even for highly asymmetric potentials
and may be extended into a many-mode basis.

A crucial step in our derivation was the neglect of terms in
the Hamiltonian proportional to the parameter G [see Eq. (27)],
which measures the overlap between the spatial densities of

the left and right modes. In the low tunneling regime, this
step is justified because G drops to zero much faster than
other parameters, such as the tunneling rate. The neglect of
G in the high tunneling regime yields good agreement with
the excitation energy given by the Bogoliubov theory. We
conjecture that in a full multimode Hamiltonian treatment, a
multimode cancellation effect may cancel with this term, and
this is responsible for the fact that a two-mode theory without
this term in the Hamiltonian provides better predictions than
a theory that keeps all the two-mode terms but still neglects
terms involving other modes.

We compared our theory to previous two-mode theories
with predictions both for the spatial shape of the modes and
the many-body structure of the ground state and excitations.
We showed that while the semiclassical functional theory [15]
recovers our parameters fairly well over most of the range of
barrier height, the method based on eigenstates of the GPE
gives comparable predictions only in the regime of weak
coupling between the left and right modes. The two-mode
Hartree-Fock method does not provide comparable predictions
for the tunneling rate when the interaction is relatively strong
and does not show fragmentation at large barrier separations.
This result, together with the above observation that led to
the neglect of the factor G, indicates that a self-consistent
theory does not always lead to physical results, and needs
to be fixed, similar to self-consistent theories of a Bose gas
at finite temperature, which led to a nonphysical gap in the
excitation spectrum [11].

The insight provided by this work may help to better
understand matter-wave splitting for atom interferometry.
Improved quantitative predictions for low barriers and higher
temperature may be achieved by a high-temperature Bo-
goliubov theory, which uses a multimode description of the
excitations. However, we believe that our theory is unique
in that it provides a clear connection of this regime with
the high barrier regime, where two-mode theories can provide
appropriate predictions.

We are currently working on the extension of this work into
a time-dependent two-mode theory, which will also be valid
along the whole range of coupling between the modes. Such a
theory, together with the current steady-state foundation, may
enable a more general understanding of both the spatial and
many-body aspects of matter-wave dynamics in multiple-well
structures.
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APPENDIX: ESTIMATE OF THE FUNCTIONAL FORM OF
QUASIPARTICLE WAVE FUNCTIONS

Here we estimate the deviation of the spatial form of
the quasiparticle wave functions u1(r) and v1(r) of the first
Bogoliubov excitation from the mode function φ1 satisfying
Eq. (7). We use an equivalent form of the Bogoliubov
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de-Gennes equations (13), which is based on the functions
ψ

(±)
k (r) = uk(r) ± vk(r). These functions satisfy [12]

(h0 + 2gN |φ0|2)h0ψ
(+)
k = E2

kψ
(+)
k , (A1)

h0(h0 + 2gN |φ0|2)ψ (−)
k = E2

kψ
(−)
k , (A2)

with h0 ≡ H0 + gN |φ0|2 − μ, such that h0φk = εkφk . From
Eq. (13), it also follows that

h0ψ
(−)
k = Ekψ

(+)
k . (A3)

We now use the expansion of ψ
(+)
1 in terms of the mode

functions ψ
(+)
1 = ∑∞

k=1 ckφk to obtain∑
k′

[
εk′(εkδkk′ + 2NUkk′) − E2

1δkk′
]
ck′ = 0. (A4)

Using perturbation theory, namely, assuming that c1 � ck for
all k > 1, we obtain, to the lowest order in ck ,

ck ≈ 2NUk1ε1

εk(εk + 2NUkk) − E2
1

c1. (A5)

If we expand u1 and v1 in terms of the mode functions as
u1 = ∑

k cukφk and v1 = ∑
k cv1φk , it follows from Eq. (A3)

that

cuk = 1
2 (1 + E1/εk)ck, (A6)

cvk = 1
2 (1 − E1/εk)ck, (A7)

so that the ratio between the coefficients with k > 1 and those
of k = 1 is

cuk

cu1
= Uk1

U11

ε2
1 (E1/ε1 − 1)(E1/εk + 1)

E2
k − E2

1

, (A8)

cvk

cv1
= Uk1

U11

ε2
1 (E1/ε1 + 1)(E1/εk − 1)

E2
k − E2

1

, (A9)

where E2
k = εk(εk + 2NUkk). In a shallow potential, where

|φ0|2 is flat in most of the trap region, the integrals Uk1 for
k �= 1 are small due to the orthogonality of the modes, so that
|Uk1/U11| � 1. This ratio may become higher when the trap is
tighter, but it is always much smaller than unity. In a symmetric
or slightly asymmetric potential, the main contribution from
higher modes comes from the third excited mode (k = 3) or
higher modes with odd index. The factor ε2

1/(E2
k − E2

1) is then
always smaller than 1/(k2 − 1) < 1/8. For a harmonic trap,
it follows that the magnitude of the coefficients cuk is on the
order of 1/k2 and it is even smaller for cvk . However, for a
double-well potential where ε1, as well as E1, significantly
decrease, while εk and Ek stay large as in a harmonic trap,
these higher mode contributions significantly decrease, and
the spatial shape of the quasiparticle wave functions u1 and
v1 become more and more similar to the first excited single-
particle mode φ1.
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