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optimizing the performance of the interferometers at low frequen-
cies, where both equations (4) and (6) become more signi®cant. It
appears natural to perform such studies in the quiet environment of
space, perhaps through future re®nements of LISA-type set-ups27.

The above discussion of gravity-wave interferometers shows that
the smallness of the Planck length does not preclude the possibility
of direct investigations of space-time fuzziness. This complements
the results of studies28,29 which have shown that indirect evidence of
quantum space-time ¯uctuations could be obtained by testing
the predictions of theories consistent with a given picture of these
¯uctuations. Additional encouragement for experiment-driven
progress in understanding the interplay between gravity and quan-
tum mechanics comes from recent studies30,31 in the area of
gravitationally induced phases, the signi®cance of which has been
emphasized in refs 32 and 33. M
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The advent of the laser as an intense source of coherent light gave
rise to nonlinear optics, which now plays an important role in
many areas of science and technology. One of the ®rst applications
of nonlinear optics was the multi-wave mixing1,2 of several optical
®elds in a nonlinear medium (one in which the refractive index
depends on the intensity of the ®eld) to produce coherent light of a
new frequency. The recent experimental realization of the matter-
wave `laser'3,4Ðbased on the extraction of coherent atoms from a
Bose±Einstein condensate5Ðopens the way for analogous experi-
ments with intense sources of matter waves: nonlinear atom
optics6. Here we report coherent four-wave mixing in which
three sodium matter waves of differing momenta mix to produce,
by means of nonlinear atom±atom interactions, a fourth wave
with new momentum. We ®nd a clear signature of a four-wave
mixing process in the dependence of the generated matter wave on
the densities of the input waves. Our results may ultimately
facilitate the production and investigation of quantum correlations
between matter waves.

The analogy between nonlinear optics with lasers and nonlinear
atom optics with Bose±Einstein condensates can be seen in the
similarities between the equations that govern each system. For a
condensate of interacting bosons, in a trapping potential V, the
macroscopic wavefunction ª satis®es a nonlinear SchroÈdinger
equation7

i~
]ª

]t
� 2

~2
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=2

� V � U0jªj
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where M is the atomic mass, U0 describes the strength of the atom±
atom interaction (U0 . 0 for sodium atoms), and jªj2 is propor-
tional to atomic number density. The nonlinear term U0jªj2ª in
equation (1) is similar to the third order term x(3)|E|2E in the wave
equation for the electric ®eld E describing optical four-wave mixing
(4WM; where the susceptibility x(3) depends on the nonlinear
medium). We therefore expected 4WM with coherent matter
waves, analogous to optical 4WM. In contrast to optical 4WM,
the nonlinearity in matter-wave 4WM comes from atom±atom
interactions; there is no need for an additional nonlinear medium.

The ®rst theoretical study of nonlinear atom optics was reported
in 19936, and the idea of 4WM using condensates prepared in
different electronic states to enhance the nonlinearity was discussed
in 19958. A recent calculation9 showed that the nonlinearity asso-
ciated with the interaction between ground-state atoms is large
enough to observe 4WM with wavepackets created from existing
Bose±Einstein condensates. To produce matter-wave mixing, we
create three overlapping wavepackets with momenta Pn (n � 1; 2; 3)
and observe the creation of the 4WM wavepacket P4 that satis®es
energy, momentum and particle-number conservation (Fig. 1).

In our experiment, we use Bragg diffraction of atoms from a
moving optical standing wave10 to create the necessary three
wavepackets, starting from a Bose±Einstein condensate. Brie¯y,
we ®rst form a condensate of ,2 3 106 sodium atoms in the
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3S1/2, F � 1, m � 2 1 state using a combination of laser cooling
and radio-frequency-induced evaporative cooling in a TOP (time-
orbiting-potential) trap11, without a discernible non-condensed
fraction. We then adiabatically expand the potential10 in 4 s by
simultaneously reducing the magnetic ®eld gradient and increasing
the rotating bias ®eld. This reduces the trap frequencies in the xÃ , yÃ
and zÃ directions to 84, 59 and 42 Hz, respectively. The asymptotic
r.m.s. momentum width of the released condensate after adiabatic
expansion is measured to be 0.14(60.02)~k (all uncertainties
reported here are one standard deviation combined statistical and
systematic uncertainties). Because this is small compared to

���
2

p
~k,

the smallest momentum imparted to the condensate with the Bragg
diffraction, the wavepackets will spatially separate as the system
evolves.

After adiabatic expansion, we switch off the trap, wait 600 ms so
that the trapping magnetic ®elds decay away and then apply a
sequence of two Bragg pulses. Each 30-ms pulse is composed of
two linearly polarized laser beams detuned from the 3S1/2,
F � 1 ! 3P3=2, F9 � 2 transition by ¢=2p � 2 2 GHz to suppress
spontaneous emission. This large detuning makes negligible Bragg
scattering of the optical waves by the atoms, which could lead to a
spurious scattering of atoms into P4. The frequency difference

between the two laser beams of a single Bragg pulse is chosen to
ful®l a ®rst-order Bragg diffraction condition that changes the
momentum state of the atoms without changing their internal
state10. The ®rst Bragg pulse is composed of two mutually perpen-
dicular laser beams of frequencies n1 and n2 � n1 2 50 kHz, and
wavevectors k1 � k Ãx and k2 � 2 k Ãy (k � 2p=l, l � 589 nm). The
maximum intensity of each beam is ,10 mW cm-2. The intensity
was chosen so that roughly 1/3 of the condensate atoms acquire
momentum P2 � ~�k1 2 k2� � ~k� Ãx � Ãy�. The second Bragg pulse
is applied 20 ms after the end of the ®rst Bragg pulse (well before the
wavepackets are separated). This second Bragg pulse is composed of
two counter-propagating laser beams with frequencies n1 and
n3 � n1 2 100 kHz, and wavevectors k1 � k Ãx and k3 � 2 k Ãx. The
intensities of these laser beams were chosen to cause half of the
remaining atoms in the momentum state P1 � 0 to acquire a
momentum P3 � ~�k1 2 k3� � 2~k Ãx (atoms in P2 are not affected
by this pulse because of the Doppler shift of the light). We chose this
pulse sequence so that only P2 � ~k� Ãx � Ãy� and P3 � 2~k Ãx are
produced from P1 � 0. Thus we create, nearly simultaneously, three
overlapping wavepackets of the requisite momenta. Without the
nonlinear term in equation (1), one would expect only to observe
these three wavepackets after they have spatially separated. But as
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Moving frame:
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Figure 1 Momentum-energy conservation for 4WM and the bosonic stimulation

viewpoint in a moving frame. a, Momentum conservation, P4 � P1 2 P2 � P3

(equivalent to phase-matching in optical 4WM), in the laboratory frame. For clarity,

over-arrows indicate vectors. Energy conservation requires P2
4 � P2

1 2 P2
2 � P2

3. b,

It is always possible to view matter 4WM in a frame moving with velocity v such

that the three input momenta have the same magnitude, and two are counter-

propagating. Then, in our case two atoms in momentum states P91 � 2 ~k Ãx and

P93 � 2 ~k Ãx are bosonically stimulated by wavepacket P92 � 2 ~k Ãy to scatter into

momentum states P92 and P94 � 2 P92 � 2 ~k Ãy. We note that the energy and

momentum conditions are satis®ed independent of the direction of P92. The 4WM

wavepacket is a consequence of energy, momentum and particle-number con-

servation when atoms arestimulated into the momentum state P92. Thus 4WM can

be viewed as the annihilation of momentum states P91 and P93, and the creation of

momentum states P92 and P94 (the minus signs in the energy and momentum

conditions are attached to the sate that gains atoms). It is this bosonic stimulation

of scattering that mimics the stimulated emission of photons from an optical

nonlinear medium. Alternatively, by choosing a frame of reference in which

P01 � 2 P02 (or P02 � 2 P03), 4WM can also be viewed as matter-wave Bragg

diffraction of P03 (P01) from the grating produced by the interference of two others.
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Figure 2 Numerical simulation and experimental results for 4WM. a, Calculated

two-dimensional atomic distribution after 1.8ms, showing the 4WM. The

calculations were performed only until the wavepackets completely separated

due to constraints on the simulation grid-size. The momenta are those of Fig.1a.

The ®eld of view is 0:23 3 0:26 mm. We note that atoms are removed primarily

from the back-end of the wavepackets because these regions overlap for the

longest time. b, A false-colour image of the experimental atomic distribution

showing the fourth (small) wavepacket generated by the 4WM process. The four

wavepackets form a square measuring 0:26 3 0:26mm, corresponding to the

distance of 0.25mm calculated using the experimental time of ¯ight of 6.1ms and

the wavepacket momenta. We have veri®ed that if we make initial wavepackets

such that energy and momentum conservation cannot be simultaneously satis-

®ed, no 4WM signal is observed. For instance, if we change the sign of the

frequency difference between the two laser beams that comprise the second

Bragg pulse, we will create a component with momentum P3 � 2 2~k Ãx instead of

P3 � 2~k Ãx. In this case there is no 4WM signal.
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the three initial wavepackets separate, the nonlinear term will
produce an additional wavepacket that satis®es the condition
P4 � P1 2 P2 � P3 � ~k� Ãx 2 Ãy�, see Fig. 1a, as well as energy and
particle-number conservation.

We have performed a two-dimensional numerical simulation of
4WM using equation (1) and the technique of ref. 9. The interaction
energy (chemical potential) was chosen to be the same as it would be
in three dimensions with a scattering length of 2.8 nm. The
simulation releases 106 atoms from a trap with nx � 84 Hz and
ny � 59 Hz. After 600 ms, the condensate was projected into the
three initial momentum states. Figure 2a shows the atomic density
1.8 ms after this projection. The most important feature of Fig. 2a is
the new wavepacket of atoms with momentum P4 � P1 2 P2 � P3

generated by 4WM. The 4WM peak does not appear when the
nonlinear term is absent.

Figure 2b is a false-colour image showing the results of the
experiment. The atoms were imaged 6.1 ms after the second
Bragg pulse by optically pumping the atoms to the 3S1/2, F � 2
state, and absorption-imaging5 on the 3S1/2, F � 2 ! 3P3=2, F9 � 3
transition. The 4WM wavepacket is clearly visible. For this
image, the numbers of atoms in each wavepacket were measured
to be: N1 � 4:8� 6 0:5� 3 105, N2 � 5:3� 6 0:5� 3 105, N3 �

5:1� 6 0:5� 3 105 and N4 � 1:8� 6 0:2� 3 105, where the uncer-
tainties are mainly due to uncertainties in background subtraction.
The numbers of atoms in the three initial wavepackets N0

1, N0
2

and N0
3 can be deduced using particle number conservation:

N0
1 � N1 � N4, N0

2 � N2 2 N4, and N0
3 � N3 � N4. De®ning the

4WM ef®ciency to be e � N4=N , where N � S3
j�1N0

j � S4
j�1N j, we

obtain a conversion ef®ciency of 10.6(60.13)%. This is the best we
have observed, although under similar conditions we have also
observed conversion ef®ciencies of only 6%. This difference suggests
the in¯uence of some uncontrolled experimental conditions, such
as laser beam inhomogeneities, or non-zero average velocity of the
released condensate. By comparison, the calculation of Fig. 2a gives
an ef®ciency of 10%, albeit for only 106 atoms.

Equation (1) can be used to make a simple prediction about the
expected nonlinear dependence of the 4WM signal on the numbers
of atoms in the initial wavepackets. Substituting ª � S4

j�1ªj (where
ªj correspond to the individual momentum components) into
equation (1), we ®nd the initial rate of growth of the 4WM
amplitude, ]ª4=]t ~ ª1ª

p
2ª3. We estimate the number of atoms

in the fourth wave by multiplying this rate by a characteristic
interaction time t, proportional to the diameter of the condensate,
squaring and integrating over space: N4 ~ n1n2n3Vt2, where the
density nj � N0

j =V. In the Thomas±Fermi limit7, the volume of
the condensate V ~ N3=5, and t ~ N1=5. Hence we expect
N4=N ~ �N0

1N0
2N0

3�N
2 9=5, a dependence which is supported by the

numerical calculations. This nonlinear behaviour is clearly mani-
fested in the initial linear growth seen in Fig. 3, where we vary the

number of atoms in the original BEC and measure the number of
atoms in the respective wavepackets. The data also show saturation
at high N, as does the corresponding theory, although the maximum
theoretical ef®ciency is somewhat higher.

We now reconsider Fig. 1b. Here the process is seen as degenerate
4WM (where the magnitudes of all momenta are equal) in a
geometry equivalent to phase-conjugation in optics12: indeed P94 is
the momentum conjugate of P92. So this can also be considered as a
demonstration of phase conjugation with matter waves. As in the
case of optical phase conjugation, the process would work regardless
of the angle between P91 and P92 (908 in the present case). If one alters
the ®rst Bragg pulse by changing only the angle of k2 (and
appropriately changing n2) the magnitude and direction of P2 in
the laboratory frame are changed, so that in the moving frame only
the angle of P92 is changed.

We emphasize that just as optical 4WM requires coherent light
sources to coherently build up the generated wave, a condensate is
also crucial for coherent generation of matter waves. If atoms are
above the Bose±Einstein condensation temperature, the number
density is necessarily low and the phase-matching condition is
different for each velocity class. Both dramatically diminish the
4WM conversion ef®ciency.

In spite of the strong analogy between atom and optical 4WM,
there are fundamental differences. In optical 4WM, the energy±
momentum dispersion relation is E � �c=n�k��~k (where n(k) is the
dispersive refractive index), whereas for massive particles (neglect-
ing the matter-wave refractive index due to the atom±atom inter-
action energy) E � P2=2M. Because atoms are neither created nor
destroyed, the only 4WM processes allowed for matter waves
conserve particle number. This is not the case for optical 4WM
where, for example, in frequency tripling three photons are anni-
hilated and one is created. Particle, energy and momentum con-
servation limit all matter 4WM processes to con®gurations that can
be viewed as degenerate 4WM in an appropriate moving frame.

The present experiment used relatively large momenta. If we were
to use momenta small enough to couple to phonons or other
collective excitations of the condensate, we would be able to study
these excitations and their nonlinear interactions with each other
and with large-momentum excitations We could also change the
internal states by using Raman transitions4 to scatter atoms in one
internal state from the matter-wave grating formed by atoms in a
different internal state. It should even be possible to study 4WM
between different isotopes or elements. Furthermore, just as non-
linear optics can create quantum correlations between photon
beams, nonlinear atom optics may lead to the study of non-classical
matter-wave ®elds. M
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