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We calculate the four-wave mixing(FWM) in a Bose-Einstein condensate system having multiple spin wave
packets that are initially overlapping in physical space, but have nonvanishing relative momentum that causes
them to recede from one another. Three receding condensate atom wave packets can result in production of a
fourth wave packet by the process of FWM due to atom-atom interactions. We consider cases where the four
final wave packets are composed of one, two, three, and four different internal spin components. FWM with
one or two-spin state wave packets is much stronger than three- or four-spin state FWM, wherein two of the
coherent moving Bose-Einstein condensate wave packets form a spin-polarization grating that rotates the spin
projection of the third wave into that of the fourth diffracted wave(as opposed to the one- or two-spin state
case where a regular density grating is responsible for the diffraction). Calculations of FWM for87Rb and23Na
condensate systems are presented.
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I. INTRODUCTION

The realization of Bose-Einstein condensation(BEC) of
dilute alkali-metal gases has created considerable interest in
the field of nonlinear atom optics. In a BEC, pairwise atomic
collisions whose strength is characterized by the two-body
s-wave scattering lengtha gives rise to a nonlinear interac-
tion that can produce four-wave mixing(FWM) phenomena.
The FWM process allows one to study a variety of phenom-
ena ranging from Bose stimulation[1–3], elastic scattering
loss to empty modes[4], entanglement and correlations[5],
and squeezing. The first experimental demonstration of
FWM of matter waves was reported by Denget al. [1] and
involved four BEC wave packets in identical internal spin
states. The theory of single spin matter-wave FWM was de-
veloped in Refs.[2,3,6,7]. But FWM is also possible for
different internal spin states[7], where spin exchange colli-
sions may be involved.

This paper makes predictions about the strength of the
signal in multiple spin FWM experiments using a mean field
theory with arbitrary internal spin BEC matter wave packets,
including both elastic and inelastic loss processes. FWM can
occur in BEC systems containing one, two, three, or four
different internal spin components. With one- or two-spin
states, the process of FWM is analogous to Bragg diffraction
of matter waves off a density grating formed by two of the
moving BEC wave packets, from which the third wave
packet can scatter to produce a fourth wave. We show that
the three- or four-spin state case is phenomenologically dif-

ferent from the one- or two-spin state case. In particular, the
nonlinear coupling strength of the former depends on differ-
ences of scattering lengths, greatly reducing the fourth wave
generated by FWM. In this latter case the grating is no
longer a density grating but a spin-density grating, i.e., a
spin-polarization grating, and the diffraction process rotates
the spin projection of the third wave packet into that of a
fourth diffracted wave packet. This is in analogy with the
situation in nonlinear optics wherein FWM of light waves
can occur in nonisotropic media thereby producing a fourth
wave by the scattering of one of the input waves from a
polarization grating created by the two other input waves,
rather than a refractive-index grating created by the two
other input waves.

This paper is organized as follows. Section II provides a
general description of the process of FWM of multispin
Bose-Einstein condensates including the Bragg output cou-
pling technique for generating high momentum wave pack-
ets. We review general multispin wave packet coupled equa-
tions of motion within the slowly varying envelope
approximation(SVEA) and formulate phase matching con-
ditions for multicomponent spin systems. Section III de-
scribes calculations for specific cases of two-, three-, and
four-component cases. Finally, Sec. IV gives a short sum-
mary and conclusion.

II. THEORY

A. Creating a moving BEC wave packet: Initial conditions

Figure 1 schematically shows the process of creating
moving BEC wave packets via Bragg scattering wherein two
sets of Bragg laser pulses create two moving daughter wave
packets from an original condensate wave packet. Two laser
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pulses of central frequencyv andv+d and wave vectorkv

andkv+d incident on a gas of Bose-condensed atoms impart
a well defined momentum “kick” to the atoms. We assume
that the frequencyv is close to resonance with an atomic
transition, and the detuning frequencyd is very small com-
pared withv. The frequencyv is chosen to be close to an
allowed atomic transition(detuned by gigahertz), andd for
the pulse of central frequencyv+d is chosen to be in the
kilohertz range. The angle between the propagation direc-
tions of the light pulses isu (u=180° corresponds to the
counterpropagating pulses). We consider a parent condensate
with atoms in a single internal spin stateuFi ,Mil. A set of
optical light pulses incident on the parent condensate with
average momentumkP0l=0 can Bragg scatter atoms via Ra-
man scattering from the initial wave packet, thereby creating
a new daughter wave packet with momentumkPl="skv

−kv+dd. This process is associated with absorption of one
photon from the first pulse and stimulated emission of one
photon into the second light pulse. This is a resonant transi-
tion and occurs only if conservation of energy and momen-
tum are satisfied simultaneously. If the resulting velocity ac-
quired by the atom is large compared to the speed of sound
in the condensate, the dispersion relation is quadratic, and
conservation of energy gives"d=P2/2m+EFf,Mf

−EFi,Mi
,

wherem is the atomic mass, and the subscriptsf and i indi-
cate the final and initial states, respectively. Conservation of
momentum yields the relationP=2"k sinsu /2d, where k
=2v /c; the atomic recoil momentum equals the difference
between the central momenta of two pulses. It is often con-
venient to specify the velocity of the Bragg scattered atoms
in units of the recoil velocityvR;"k/m (which equals
2.9 cm/s for23Na). The intensity and duration of the optical
pulses determine the number of atoms that receive the recoil
“kick” by undergoing the Raman process. The spin polariza-
tion and detuning of the lasers determine the final internal
spin stateuFf ,Ml. Two different sets of Bragg pulses are
used to create two separate daughter wave packets. These,

and what remains of the initial BEC, are the three nascent
wave packets that participate in the FWM process.

The duration of the Bragg pulses is taken to be short
(microsecond time scale) compared to the mean-field evolu-
tion of the BEC(typically hundreds of microseconds). As a
result, it is easy to ensure conservation of energy and mo-
mentum in the Raman process that produces Bragg scatter-
ing. The whole momentum distribution of the initial BEC
can therefore participate in the Bragg scattering process if
the Bragg pulses are sufficiently short. We therefore use a
“copy” approximation for the initial conditions of each
slowly varying envelope created by Bragg scattering[3,8,9].
When the temporal widths of the Bragg pulses are suffi-
ciently short so that the spectral widths of the Bragg pulses
covers the whole range of velocities within the condensate,
the copy approximation is an excellent approximation. The
three nascent wave packets can be represented asFrsx ,0d
=ÎNrs0d /NC0sx ,t=0d, for r =1,2,3 attime t=0, F4sx ,0d
=0, whereC0sx ,0d is the spatial component of the initial
wave function,N is the total number of atoms, andNrs0d is
the initial number of atoms in therth component. Before the
Bragg pulses are applied, all the atoms are in the same inter-
nal spin state. If the Bragg pulse sequence triggering the
FWM process is associated with a change in the internal spin
state of the atoms, the daughter wave packet has not only a
different momentum from the parent, but also a different
internal spin component. It is essential that the Raman de-
tuning from the excited hyperfine state is smaller than the
hyperfine splitting in order for Bragg pulses to change the
internal spin state.

B. SVEA equations

Our zero-temperature theoretical model for FWM in-
volves condensate dynamics described by the Gross-
Pitaevskii equation(GPE) [10]. We start our analysis of dif-
ferent multispin component FWM processes by deriving a
set of coupled GPEs for all the wave packets participating in
the process. The Hamiltonian of the system in the second
quantization can be written as

Ĥ = o
a
E Ca

†sx,tdfTx + Vsx,tdgCasx,tddx

+
1

2 o
a,b,g,d

E E Ca
†sx,tdCb

†sx8,tdUab,gdsx − x8d

3 Cgsx8,tdCdsx,tddxdx8, s1d

where the subscriptsa ,b ,g ,d denote different spin compo-
nents.Tx=−s"2/2md¹x

2 is the kinetic energy operator,Vsx ,td
is an external potential imposed on the atoms, andUsx
−x8d is the interaction between particles, which for the dilute
Bose gas is conventionally taken to be of contact form,

Uab,gdsx − x8d =
4p"2aab,gd

m
dsx − x8d. s2d

Hereaab,gd is thes-wave scattering length for the multispin
collision process(see below) andm is the atomic mass. The

FIG. 1. Bragg scattering at timet=0 creates two moving daugh-
ter wave packets from the original parent condensate. In the center-
of-mass frame in position space, shown in the figure, all three wave
packets are moving with momenta of magnitude" uku related to the
photon recoil energy. The nonlinear interaction of the three initially
created wave packets generates a fourth wave packet moving in the
direction satisfying phase-matching criteria. Att=1 ms the four
wave packets with spin statesuFj ,Mjl, j =1,2,3,4,have moved
away from one another.

BURKE et al. PHYSICAL REVIEW A 70, 033606(2004)

033606-2



operatorsCasx ,td satisfy equal time bosonic commutation
relations

fCasx,td,Cbsx8,tdg = fCa
†sx,td,Cb

†sx8,tdg = 0, s3d

fCasx,td,Cb
†sx8,tdg = dsx − x8ddab. s4d

The Heisenberg equations of motion for allCasx ,td fields
can be obtained by taking the commutator with the Hamil-
tonian (1). We consider the case when the total wave func-
tion consists of four wave packets moving with different cen-
tral momenta Pr ="k r ,r =1, . . . ,4. Within a mean-field
approximation we decompose the total wave function into
separate wave packets, centered about momentaPr,

Csx,td = o
r=1

4

Frsx,tdexpsik r ·x − ivrtduar , s5d

where therth wave packet with internal spinar and mean
kinetic energy"vr ="2kr

2/2m, Frsx ,td, is the slowly varying
envelope(SVE) of packetr, "kr is the central momentum of
packet r, and ual= uFr ,Mrl labels the internal atomic spin
state of the wave packetr.

Upon substituting the SVE expansion forC in Eq. (5)
back into the GPE, collecting terms, multiplying by the com-
plex conjugate of the appropriate phase factors, and neglect-
ing all terms that are not phase matched, thereby making the
slowly varying envelope approximation[3], we obtain a set
of coupled equations for the slowly varying envelopes
Frsr ,td. The SVEA was necessary to restrict the momentum
components only to those around the central momentum of
each of the wave packets in the numerical calculation; oth-
erwise, the momentum range would have been too large to
treat numerically. Solving for the SVE allows efficient nu-
merical simulations and helps in painting a clear picture of
the process since it separates out explicitly the fast oscillat-
ing phase factors representing the central momentum"k r.
The SVEsFrsx ,td vary in time and space on much longer
scales than the phases. The multicomponent SVEA equations
can be written as

F ]

] t
+ s− vrd · = +

i

"
S−

"2

2m
¹2 + Vrsx,tdDGFr

=5
−

i

"
NUrr ,rr uFru2Fr sself-phased,

−
i

"
Ns1 + dabd o

sssÞrd
Urs,rsuFsu2Fr scross-phased,

−
i

"
Nfab,dg o

s,t,qssÞtÞqÞrd
Uqr,stFq

*FsFt sFWM sourced,

s6d

wherea ,b ,d ,g are the respective spin components of wave
packetsq,r ,s,t, and fab,dg=2 if all spin components are the
same[11] (see also Sec. III A below), 1 if there are two or
four distinct spin components, andÎ2 if there are three dis-
tinct spin components. We assume here that the scattering
lengths that enter into the coupling constants in Eq.(2) are

obtained from symmetrized scattering matrix elements, as
described by Stoofet al. [12].

The interaction of the atoms with an external trapping
field, which could be magnetic or optical, results in a har-
monic oscillator potentialVrsx ,td for each spin component.
We allow for a time dependence of the potential in order to
account for the turning off of the trapping field in the experi-
ments we model.

We consider only the case of zero or extremely weak
magnetic field, such that the magnetic Zeeman shift is very
small compared to the recoil energy"k2/2m. In this case,
assuming that the kinetic energy associated with the Bragg
“kicks” is much larger than the chemical potential of the
condensate, the momentum and energy conservation condi-
tions have the form

k r + kq − ks − k t = 0, s7d

kr
2 + kq

2 − ks
2 − kt

2 = 0 sin the c.m. framed. s8d

Each of the indicesr ,q,s,t may take values between 1 and 4.
If there were a non-negligible Zeeman splitting in the ener-
gies of different spin components, then the energy conserva-
tion condition would need to be modified to take into ac-
count the energy released in the inelastic scattering process.
In general, one would expect the prospects for FWM to be
greatly diminshed if the packets have large relative veloci-
ties.

Given our assumption of zero magnetic field, Eqs.(7) and
(8) are automatically satisfied in two cases:(a) r =q=s= t (all
indices are equal), or (b) r =sÞq= t (two pairs of equal in-
dices). The corresponding terms describe what is called in
nonlinear optics self- and cross-phase modulation terms re-
spectively. The self- and cross-phase modulation terms do
not involve particle exchange between different momentum
components. They modify both the amplitude and phase of
the wave packet through the mean-field interaction.

Particle exchange between different momentum wave
packets occurs only when all four indices in the last term on
the right-hand side of Eq.(6) are different. In this case, sat-
isfying the conservation of momentum and energy is not au-
tomatic. FWM can be viewed as a process in which one
particle is annihilated in each wave packet belonging to an
initially populated pair of wave packets and simultaneously
one particle is created in each of two wave packets of an-
other pair, one of which is initially populated and the other is
initially unpopulated. Hence, FWM removes one atom from
each of the “pump” wave packets(without losing generality
we may call them 1 and 3), and places one atom in the
“probe” wave packet(we will call it wave packet 2) and one
atom in the FWM output(wave packet 4). The bosonic
stimulation of scattering mimics the stimulated emission of
photons in an optical medium. The phase-matching condi-
tions are particularly simple in the center-of-mass frame, de-
fined by the conditionsk1=k3, k2=k4, andk2=k1. This pic-
ture is a consequence of the nature of the nonlinear terms in
the four SVEA equations.

For the case of multicomponent FWM, there is an addi-
tional degree of freedom that must be included. In this case
there is a coupling between different internal spin compo-
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nents, introducing new selection rules, namely,

F1 = F2 = F3 = F4 or F1 = F2 Þ F3 = F4, s9d

and additionally

M1 + M3 = M2 + M4. s10d

The initial wave function is obtained from the numerical
solution of the time-dependent GPE using an imaginary time
propagation in the presence of the magnetic potential[3]. In
the FWM experiments we model, after turning off the trap-
ping potential, the BEC wave packet is allowed to freely
evolve for a timeTE before the sets of Bragg pulses are
applied to produce three initial wave packets with three dif-
ferent momenta. To model this, we propagate the initial wave
packet(in real time) for a period of timeTE to provide the
initial condition in Eq.(6). This free evolution causes a spa-
tially varying phase to develop across the condensate as it
expands in the absence of the trapping potential due to the
mean-field interaction. Given the initial condition, the SVEA
equations can be used to propagate the envelope function of
each wave packet, using the same numerical method used to
propagate the ordinary time-dependent GPE.

C. Nonlinear coupling constants and loss terms

The goal of this paper is to estimate the number of atoms
in the created FWM wave packet in various realizations of
the multi spin FWM experiments. To accomplish this goal
we must first determine the nonlinear coupling constants
Uqr,st for 23Na and87Rb in theF=1 andF=2 internal spin
states that appear in the GPE. We performed the calculations
of the strength of the nonlinear coupling constantUrq,stsktsd,
which is determined by the following two-body scattering
process:

uFs,Msl + uFt,Mtl → uFq,Mql + uFr,Mrl, s11d

at relative momentumkst= uks−k tu. The nonlinear coupling
constant is defined byUqr,stskstd /"=s4p" /mds−Tqr,st/kd,
where S=1+2iT is the unitary scattering matrix. For the
elastic collisioncase, and for small values of relative mo-
mentumkst, the coupling constant is

− Tst,st

kst
< ast ; Ast − iBst, s12d

whereast is the complexs-wave scatttering length[13]. The
total elastic cross section is given byselastic=s1+dstd4psAst

2

+Bst
2 d, and the total rate constant for inelastic collisions is

sK2
totaldst=oqr sK2dst→qr=s4h/mdBst. The elastic and inelastic

collisional losses from the moving wave packets can be cal-
culated usingselastic and K2, as described in Ref.[4]. We
calculate the variousAst and Bst values for23Na and87Rb
collisions using standard coupled channel models of thresh-
old scattering.

Insight into the nature of the four-wave mixing source
terms can be obtained by using a scattering representation
that is useful at low magnetic field, where the total angular
momentumFt=F1+F3+ l = f + l of the colliding pair of atoms
is conserved in a collision. The T-matrix elements we need

are for the case when two atoms collide in the internal spin
levels sF1,M1d, sF3,M3d and with relative angular momen-
tum , ,m and end up in the levelssF2,M2d, sF4,M4d with
relative angular momentum,8 ,m8. We assume that the col-
lision energy is low enough that onlys waves contribute, so
that ,=,8=0, m=m8=0.

To obtain the relevant quantum numbers, first vector
couple theuF1M1l and uF3M3l levels to obtain the resultant
angular momentumuF1F3f ,M1+M3l states, then vector
couple the relative angular momentumu, ,ml to get the total
angular momentum statesuF1F3f ,, ,Ft ,Mt=M1+M3+ml.
The desired symmetrizedT-matrix elements[12] are given in
terms of the indiceshF1F3f,Ftj and are independent of the
projection quantum numbersM1,M3,m,Mt.

The only significant collisions we need to consider are
spin exchange collisions. These are possible only if the fol-
lowing selection rules are obeyed:,=,8, m=m8, f = f8, and
M1+M3=M2+M4; for s waves,=0 andf8= f =Ft. The four-
wave mixing source term is proportional toasst→qrd
=−Tqr,st/kst. Using the transformation ofT-matrix elements
to the total angular momentum basis[14–16], assuming,
=,8=0, we obtain

asF1M1,F3M3

→ F2M2,F4M4d

= S 1 + dF1F3

1 + dF1F3
dM1M3

D1/2S 1 + dF2F4

1 + dF2F4
dM2M4

D1/2

3 o
f

sF2F4f uM2M4,M2 + M4d

3sF1F3f uM1M3,M1 + M3dasfdsF1F3 → F2F4d,

s13d

wheresud are Clebsch-Gordan coefficients. Clearly four-wave
mixing is possible only if the collisions are energy degener-
ate:F2=F1 andF4=F3.

For one- and two-component four-wave mixing, where
M1=M3=M2=M4 or M2=M1 andM4=M3, respectively, the
product of Clebsch-Gordon coefficients is positive definite,
and the sum will be of the same magnitude as the individual
elements. On the other hand, for three- or four-component
four-wave mixing, there will be terms with the product of the
Clebsch-Gordon coefficients being positive and terms with
the product being negative. In this case, the scattering length
that controls the FWM source term in Eq.(6) will involve
differencesof scattering lengths of comparable magnitudes,
and will tend to be much smaller than for the one- or two-
component case. For example,

as1 − 1,11→ 10,10d =
Î2

3
fas2ds11→ 11d − as0ds11→ 11dg,

s14d

as1 − 1,2 − 1→ 10,2 − 2d

=
Î2

3
fas3ds12→ 12d − as2ds12→ 12dg. s15d

Inelastic energy-releasing exchange collisions are possible
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only for the caseshF1F3fj=h122j, h220j, andh222j for 23Na
and87Rb. For87Rb, these loss collisions are anomously small
[17–19] and we can setBsfdsF1F3d=0.

Table I gives our calculated scattering lengths, based on
coupled channel models of threshold collisions, which
should be used in theUqr,st coupling constant that gives the
source term for FWM in Eq.(6), i.e., Uqr,st=4paqr,st"

2/m.
We include several cases for23Na and87Rb involving one,
two, three, and four spins. The three- and four-spin cases
have significantly larger coupling constants for23Na than for
87Rb, because scattering length differences in Eq.(15) tend
to be much larger for the former case. The imaginary part of
the complex scattering length for the source term is small
compared to the real part, even for23Na collisions, and is not
shown.

III. RESULT OF CALCULATIONS

A. One- and two-spin component FWM

In the numerical simulations we model a condensate com-
prised of magnetically trapped atoms without a discernible
noncondensed fraction. We assume trap frequencies in thex,
y, andz directions of 84, 59, and 42 Hz, as in Ref.[1]. After
the magnetic trap is switched off, the condensate expands
freely during a delay timeTE. Then the sequence of two sets
of Bragg pulses creates two moving wave packets 2 and 3 in
the laboratory frame, in addition to the initial stationary
wave packet 1. One can change the momentum of the wave
packets by changing the angle between the laser beams used
for the Bragg outcoupling or by changing the laser frequen-
cies. Our simulations neglect the detailed dynamics during
the application of the Bragg pulses; instead, we assume that
after the Bragg pulses are applied, each wave packet is a

copy of the parent condensate wave function. This is a good
approximation for Bragg pulses that are in the microsecond
regime[9]. We shall consider the case where the initial three
wave packets contain an equal number of atoms(except for
the case corresponding to the original experiments[1] where
the ratio is 3:7:3).

In the center-of-mass reference frame, all the wave pack-
ets (including the new FWM wave packet) move with the
same velocity. In the one- and two-spin component cases the
thresholds of the incoming and outgoing collision pairs co-
incide, i.e.,Fq+Fr =Fs+Ft. Moreover,MF is a good quantum
number in the two-body collision requiringMq+Mr =Ms
+Mt for all cases. The three initial wave packets can each be
in an arbitrary internal spin state of the alkali-metal atom(for
23Na or 87Rb this is eitherF=1 or F=2). The FWM process
preferentially populates the fourth wave packet in a spin state
that satisfies the energy and angular momentum projection
constraints.

Of all the possible combinations of spin states we can
start with, we find two distinct classes of combinations:(1) at
least two of the three initial wave packets are in the same
spin state, or(2) all three wave packets are in different spin
states. In both cases, the overlap of the coherently moving
BEC packets 1 and 2 form a grating(either a density grating
or a spin-density grating) that 3 diffracts off, producing a
new wave packet 4. In the single spin case the number of
atoms in the fourth wave packet is four times larger than in
the two-spin case,sN4d1 spin,4sN4d2 spin, even if the scatter-
ing lengths and initial numbers of atoms for these cases were
exactly identical. The grating picture that explains the factor
of 4 is as follows. For the one-spin state case, wave packets
1 and 2 form a grating and wave packet 3 can scatter off the
grating to produce atoms that are in wave packet 4(see Fig.
1), andwave packets 2 and 3 form a grating and wave packet
1 can scatter off the grating to produce atoms that are in
wave packet 4. These two amplitudesadd up coherentlyso
the probability is four times the probability that would be
obtained were there only one amplitude for producing the
fourth wave. For the two-spin state case, if packet 1(or 3) is
the different spin state, it will scatter off the grating formed
by 2 and 3(1 and 2) and form the same spin state in a wave
packet with momentumk4. The gratings are dynamical ones
that change in time as atoms are removed from wave packets
1 and 3 and placed in wave packets 2 and 4.

Thes-wave scattering lengths were used to form the non-
linear coupling constantsUqr,st=4paqr,st"

2/m, and, in turn,
these were used in our numerical simulations of FWM. Fig-
ure 2 shows the fraction of atoms in the newly generated
wave packet,f4=N4/N, versus the total number of atoms in
the parent condensateN for a number of different FWM
processes. We assumed a free expansion time(i.e., the delay
time) of TE=600ms, as in the experiment[1]. The strongest
FWM conversion is obtained foru1,−1l1+ u2,0l3→ u1,−1l2
+ u2,0l4 collisions of87Rb atoms, since this case has the larg-
est s-wave scattering length in the source term. The satura-
tion (and even decrease in the87Rb case) of the FWM frac-
tion f4;N4/N with increasingN is clear from Fig. 2. The
origin of this saturation is discussed in Ref.[3] and is due to
the physical separation of the interacting wave packets, back-
conversion from the newly formed wave packet 4, and elas-
tic and inelastic scattering loss processes.

TABLE I. Scattering lengthsaqr,st in nanometers for the source
nonlinear coupling constantU13,24. The scattering lengths are given
to the nearest 0.01 nm, although these numbers are not necessarily
accurate to 0.01 nm. The small numbers, depending on differences
of scattering lengths as in Eq.(15), are, in particular, subject to
revision as improved threshold scattering models develop based on
the most recent high quality experimental data.

Spin states 23Na 87Rb

1

u1,−1l1+ u1,−1l3→ u1,−1l2+ u1,−1l4 2.89 5.63

2

u1,−1l1+ u1,0l3→ u1,−1l2+ u1,0l4 2.89 5.63

u1,−1l1+ u2,0l3→ u1,−1l2+ u2,0l4 2.78 5.51

3

u1,−1l1+ u1,1l3→ u1,0l2+ u1,0l4 0.14 −0.01

u2,1l1+ u2,−1l3→ u2,0l2+ u2,0l4 0.64 0.38

u2, +2l1+ u2,0l3→ u2,1l2+ u2,1l4 0.78 0.44

4

u1,−1l1+ u2,−1l3→ u1,0l2+ u2,−2l4 0.59 0.09

u1,−1l1+ u2,0l3→ u1,0l2+ u2,−1l4 0.36 0.06

u2,1l1+ u2,0l3→ u2,2l2+ u2,−1l4 0.35 0.22
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For reference, we included in Fig. 2 the original data from
the experiment[1]. Comparison of the experimental results
for 23Na u1,−1l with the theoretical results show that at the
highest values ofN, the calculated number of atoms in the
FWM wave packet is higher than in experiment. It is pos-
sible that stimulated elastic scattering loss may have to be
taken into account at largeN [4,20,21].

The scaling of the fraction of atom output into the FWM
wave packet withN2st0d /N for N=N1st0d+N2st0d+N3st0d
=N=1.53106 is shown in Fig. 3 for the case ofu1,−1l1
+ u1,0l3→ u1,−1l2+ u1,0l4 collisions of 23Na atoms. Note
that on the left part of the figureN1st0d=N3st0d.N2st0d,
while on the right part of the figureN1st0d=N2st0d.N3st0d.
In Ref. [3], we discussed how the fraction of atoms in the
FWM wave packet would scale with the initial number of
atoms in the three nascent wave packets. There we showed
how a simple argument predicts that the total FWM output
fraction is given by

f4 =
N4stcold

N
< f1f2f3S tcol

tNL
D2

, s16d

where f i =Nist0d /N, tcol is the time for the wave packets to
separate, andtNL is the characteristic nonlinear time scale,
tNL=" /m, wherem is the chemical potential. This is an upper
bound on the FWM output, since the mutual interaction of
the packets due to the self- and cross-phase modulation terms
(the self- and cross-interaction energy terms) and the elastic
and inelastic loss processes are not included in the estimate.
The curve labeledN1N2N3/N3 in Fig. 3 is obtained using Eq.
(16). It follows the calculated results rather well. Clearly, for
cases whereN,1.53106, one expects that the simple argu-
ment will provide as good an estimate.

The dependence of the fraction of atoms in the FWM
wave packet on the velocity of the condensate wave packets
is shown in Fig. 4 for the case of23Na u1,−1l1+ u1,0l3

→ u1,−1l2+ u1,0l4 condensate collisions where the free-
expansion timeTE between trap off and the Bragg pulses is
300 ms. The velocities of the wave packets in the center-of-
mass frame are indicated in Fig. 4 in units of the recoil
velocity vR (recall that the recoil velocity is defined asvR
="k/m which equals 2.9 cm/s for23Na). The relative veloci-
ties of wave packets 1 and 3 or 2 and 4 are twice these
velocities. As the relative velocity increases, the number of
atoms in the FWM packet decreases, since the duration of
the wave packet overlap essential to FWM decreases. For
example, for the curve labeled 1.0vR in Fig. 4 it takes about
500 ms for the centers of the moving wave packets to sepa-

FIG. 2. Fractional FWM output versus total number of atomsN,
f4=N4/N, in cases when one- or two-spin components are present.
The simulations were carried out allowing the condensate to expand
for 600 ms before applying the Bragg pulses, as in the experiment
[1]. The solid circles are the experimental results obtained for23Na
u1,−1l. In the two-spin component simulations the ratio of atoms in
the three initially populated wave packets are 1:1:1, whereas the
one-spin component simulation used the experimental ratios of
7:3:7.

FIG. 3. Fractional FWM output versusN2st0d /N. The solid
curve is the result of using the simple model in Eq.(16) and the
triangles are the result of calculations. The trap is the same as used
in Fig. 2. The Bragg pulses are applied 300ms after the trapping
potential is turned off.

FIG. 4. N4std /N versus t for N=1.53106 atoms for various
velocities"k/m of the wave packets. The trap is the same as used in
Fig. 2. The Bragg pulses are applied 300ms after the trapping
potential is turned off.

BURKE et al. PHYSICAL REVIEW A 70, 033606(2004)

033606-6



rate by the mean Thomas-Fermi diameter of the initial con-
densate. The saturation ofN4/N is evident. For very slow
relative velocities,N4/N actually begins to decrease with
time due to backconversion via FWM, as first described in
Ref. [3].

The dependence of the fraction of atoms in the FWM
wave packet on the free-expansion timeTE between turning
off the harmonic potential and applying the Bragg pulses is
shown in Fig. 5 for the case of23Na u1,−1l1+ u1,0l3→ u1,
−1l2+ u1,0l4 condensate collisions when the wave packet ve-
locity is vR=2.9 cm/s. During the free expansion of the con-
densate, a spatially varying phase develops across the parent
condensate, and this phase deleteriously affects the phase
matching required for FWM. This has already been dis-
cussed in the single component studies that were published
previously[3].

Figure 6 shows the total number of atoms in all the wave
packets and the number of atoms in each of the wave packets
during the FWM half collision versus time for the87Rb u1,
−1l1+ u2,0l3→ u1,−1l2+ u2,0l4 case. A substantial loss of the
condensate atoms due to elastic and inelastic scattering col-
lisions occurs, but nevertheless the newly created FWM
wave packet contains 120 000 atoms after full separation.
This number of atoms can be easily detected. In fact, for all
the cases shown in Fig. 2, the generated FWM signal is
strong enough to be detected in real experiments whenN
ù1.03106 atoms.

B. Three- and four-spin component FWM

FWM is possible with any combination of arbitrary inter-
nal spin states, providedMF is conserved in the elastic two-
body scattering process. FWM processes cannot be inter-
preted as Bragg diffraction off density gratings in three- or
four-spin FWM. Instead, a “spin-polarization grating” scat-
ters the atoms, as described above. For example, the four-
mixing output(packet 4) in the process

u1,− 1l1 + u1,1l3 → u1,0l2 + u1,0l4 s17d

can be thought of as a rotation of the “spin polarization” of
wave packet 3 due to scattering off the spin-density grating
formed by the overlap wave packets 1 and 2.

Figure 7 showsN4/N versusN for 23Na u1,−1l1+ u1,1l3
→ u1,0l2+ u1,0l4 and for 23Na u1,−1l1+ u2,−1l3→ u1,0l2
+ u1,−2l4 condensate collisions. Figure 8 shows the time-
dependent population fractions for the latter four-component
case forN=2.03106 atoms. Thes-wave scattering length in
the source term for the former process isa=0.14 nm,
whereas for the latter processa=0.59 nm. Taking an angle of
20° between the Bragg laser pulses ensures a relatively low
velocity of "k/m=1 cm/s for the moving packets. This al-
lows the packets to remain overlapped long enough to gen-
erate an observable fourth wave.

IV. SUMMARY AND CONCLUSIONS

We have developed a general theory for describing four-
wave mixing of matter-waves in arbitrary internal spin states
within the context of a mean-field theory using the Gross-

FIG. 5. N4std /N versus t for N=1.53106 atoms for various
free-expansion timesTE. The trap frequencies are the same as used
in Fig. 2.

FIG. 6. Nstd, N1std, N2std, N3std, andN4std versust for 87Rbu1,
−1l1+ u2,0l3→ u1,−1l2+ u2,0l4 collisions with N=1.03106 atoms.
The trap frequencies are the same as used in Fig. 2. The Bragg
pulses are applied 600ms after the trapping potential is turned off.

FIG. 7. Fractional FWM output versus total number atomsN
calculated upon allowing the condensate to expand for 600ms be-
fore applying the Bragg pulses for23Na u1,−1l1+ u1,1l3→ u1,0l2

+ u1,0l4 and for 23Na u1,−1l1+ u2,−1l3→ u1,0l2+ u2,−2l4. The ini-
tial ratio of atoms in the three populated wave packets are 1:1:1.
The trap frequencies are the same as used in Fig. 2.
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Pitaevskii equation. The slowly varying envelope approxi-
mation is used to write separate equations for each of the
condensate wave packets. The atom-atom interactions of the
BEC atoms result in both the mean-field interaction terms,
analogous to the self- and cross-phase modulation terms in
nonlinear optics, and the FWM source terms in the GPE. The
theory also incorporates elastic and inelastic scattering loss
processes. These processes take atoms out of the condensate
wave packets and therefore reduce the FWM. FWM with
one- or two-spin states is analogous to Bragg diffraction of
matter waves off a density grating formed by the moving
BEC wave packets. The two-spin state FWM is generally

smaller than the one-spin state case by a factor of about 4
due to the coherent addition of two amplitudes for scattering
off the density gratings formed in the one-spin case, whereas
only one scattering amplitude occurs for the two-spin state
case. FWM with three- or four-spin states is generally a
much weaker process; in the three- or four-spin state cases,
the coherently moving BEC wave packets form a polariza-
tion grating(a spin-density grating) that rotates the spin pro-
jection of the diffracted wave.

Calculations of multicomponent FWM for87Rb and23Na
condensate systems have been presented. In these calcula-
tions the three- and four-spin state FWM output signals are
lower by roughly an order of magnitude than for one- and
two-spin state FWM cases. The reduction is due to the much
smaller source term for FWM in the three- and four-spin
state cases, since the coupling strength involves differences
of scattering lengths[see Eq.(15)] of comparable magni-
tudes.
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