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T-shaped quantum wires in magnetic fields: Weakly confined magnetoexcitons beyond
the diamagnetic limit

Garnett W. Bryart* and Y. B. Band®'
INational Institute of Standards and Technology, 100 Bureau Drive, Stop 8423, Gaithersburg, Maryland 20899
’Departments of Chemistry and Physics, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel
(Received 18 August 2000; revised manuscript received 4 December 2000; published 22 February 2001

Optical excitations of magnetoexcitons in T-shaped wires are calculated and compared with experiment. We
find the single-particle states for electrons and holes confined to a wire in a magnetic field and use these states
as a basis for calculations of magnetoexciton states. We accurately reproduce the field dependence of the
exciton states and explain the small, field-induced, energy shifts that are observed for these states. The shifts
are small because the T-junction provides weak confinement, rather than strong quantum confinement. Dia-
magnetic shifts calculated from perturbation theory fail to describe the experimental results. We determine
when perturbation theory is valid for these nanostructures and which gauge should be used to give the
diamagnetic shift that best reproduces the field dependence at low fields.
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[. INTRODUCTION tons in ideal wires, lateral confinement is usually defined by
a high-barrienthard wal) potential. In this case, the electron
The development of semiconductor quantum wires andnd hole have similar lateral wave functions that are deter-
dots has progressed rapidly in recent years. Quantum wir@ined by the geometry of the confinement and are not sen-
nanostructures can be fabricated now with monolayer precisitive to the particle masses. The 1D, strong-confinement
sion, with dimensions of a few nanometers, free from damlimit is approached by reducing the lateral dimension of the
age due to lithographic processing, and in high density by théVlre._Such a S|mpI<_a model cannot bel used to despnbe exci-
use of all-growth fabrication processes based on epitaxidPns in T-shaped vylre@.ln T-shaped wires, the confinement
techniques. One of the most successful all-growth techniqud® the wire region is determined both by the geometry of the
for fabricating wires has been cleaved edge overgrdufth. barriers that define the structure and by the differences be-

In this approach, T-shaped wires are created at the intersef/eeN the confl_nement energy m_the T-shaped intersection
region and confinement energies in the arm and stem wells.

tions between orthogonal quantum wells with the wire axis . . !
. . - I;Because the energy differences are small, the confinement is
perpendicular to the cross section shown in Fig. 1. For GaASWeak, i.e., quasi-1D, and electron-hole correlation in the lat-

AlGaAs wires, these intersections are made by growing 2ral directions, as well as along the wire axis, must be
[110] GaAs quantum wellthe arm wel) on the cleaved j,q,4eq?® In simple models for quantum wires, one geo-
edge of a multiplg 100] GaAs/AlGaAs quantum well sys-  metrical parameter, such as the wire radius, defines the size
tem (the stem wells Electrons and holes are trapped at thegcgle for the confinement. In simple wires, the particles are
T-shaped intersections because the single-particle confinggueezed inside the wire as the confinement increases. In
ment energy is lower in the intersections of the stem and arny_shaped wires, the confinement is a complicated competi-
wells than in either the stem or arm wells. tion between confinement along the stem and arm wells. The

In this paper we present the first calculation of confinedconfinement is squishy. When the confinement along one
magnetoexciton states and energies in T-shaped wires. Weell is increased, either by decreasing the well width or by
use an extension of the theory developed to calculate excitoallowing more pair correlation in that direction, confinement
states at vanishing magnetic fi#ido B#0. Exciton states along the orthogonal well can decrease, i.e., squeezing the
for interacting electron-hole pairs confined to a T-shaped inexciton in one well pushes the exciton out of the wire into
tersection in a finite magnetic field are calculated by deterthe other welf®
mining exactly the single-particle states confined to the T To understand the effects of this squishy confinement on
intersection in a magnetic field and then using these singlethe electron and hole confinement energies and on the exci-
particle states as a basis for a configuration-interaction caton binding energies, exciton states in these structures must
culation to include the pair interaction. We then compare oube characterized fully. T-shaped wires have been character-
results for magnetoexciton energies with experinteatsd  ized extensively by photoluminescence (PL)
with the previous interpretation of these experiménts. spectroscopie’. Typical exciton PL spectra exhibit peaks

A wire nanostructure is considered to be in the one-due to PL from the stem and arm wells and from the wires.
dimensional(1D) quantum limit when the electron-hole in- Spatially resolved Pt®'#'8has been measured to separate
teraction can modify the electron-hole pair relative motionthe wire PL from stem and arm well PL. The lowest-energy
along the wire axisZ axis in Fig. 1 but is not strong enough PL peak is due to excitons trapped in the wires. Redshifts
to mix the single-particle lateral sublevels. In a 1D quantumbetween the wire and well PL as large as 34—54 meV have
wire, the interacting electron and hole occupy individualbeen observe@!®”-?*This redshift is due partly to the re-
single-particle lateral sublevels. In simple models for exci-duction in single-particle confinement energy when the elec-
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trons and holes are trapped at the T-shaped intersections and This discrepancy between theory and analysis of the ex-
partly to the enhancement of the electron-hole binding enperimental data could be explained in two ways. Either the
ergy when the exciton is trapped in a wire. Binding energiesero-field theory provides a description of the exciton size
as large as 26 me\six times the bulk binding energphave  that is not as good as suggested by the good description of
been estimatetf These large redshifts strongly suggest thatthe zero-field confinement-induced PL redshifts, or the
the excitons have been trapped into 1D wire states. Measur@halysis of the experimental data is not adequate. The experi-
ments of the optical polarization anisotrdpy” provide ad- mental data was taken for magnetic fields up to 12 T. How-
ditional evidence for the crossover from 2D to 1D statesever, the analysis of the data was done assuming a weak field
upon confinement of the exciton into the wires. limit, where perturbation theory for the magnetic-field in-
Exciton PL peak energies and transition strengths giveluced energy shiftAE determines the diamagnetic contri-
information about excitonic confinement in T-shaped wiresbution to the quadratic energy shift of the PL peak. The only
that depends on the combined effects of the squishy lateraiontribution to the quadratic energy shift included in the
confinement and the enhanced binding. To fully assess thanalysis was the diamagnetic contribution. The second-order
degree of 1D quantization and better separate confinemenontribution that arises from the paramagnetic van Vleck
and binding effects, complementary information about thecontribution, that is important when the exciton is not sym-
spatial extent of the exciton wave functions is required. Reimetric about the magnetic field axis, was not included.
cently, Someya, Akiyama, and Sakaii*’studied the mag- To better understand excitons in T-shaped wires, we pro-
netophotoluminescence of T-shaped wires. They measuredde in this paper a detailed theory for these magnetolumi-
the energy shifAE of PL peaks with magnetic fiel@ ap- nescence experiments. To develop a theory for magnetoex-
plied perpendicular to the wire axis and parallel to the stentitons in T-shaped wires, we extend the model that we used
well (as shown in Fig. )l They related the measured energy for zero-field excitons to finite magnetic field. We find the
shift AE to a quadratic shift AE=8B?, and extracted the single-particle states exactly, now at finite field, and we in-
lateral size of the exciton by assuming thtwas the dia- clude the electron-hole binding in a configuration interaction
magnetic coefficient appropriate for excitons which are symapproach. This allows us to find exactfpr our mode) the
metric about the magnetic field axig€e?r?/8u wherey  trapped exciton states at each magnetic field and to calculate
andr = {(x2+22) are the exciton reduced mass and radiughe exciton energy shifts with applied magnetic field without
perpendicular tB). They analyzed wires made with large recourse to perturbation theory.
wells (wire S;: a=10 nm, b=12.5 nm and wireS,: a This paper is organized as follows. In Sec. Il, we describe
=5.8 nm, b=6.8 nm) and wires made with smaller wells briefly the theory that we previously used for the zero-field
(wire S;: a=5.1 nm,b=5.6 nm and wireS,: a=5.1 nm, case and discuss the results that show that three-dimensional
b=5.1 nm). Excitons trapped at the T intersections have3D) correlation is needed to describe excitons in T-shaped
much smaller field-induced energy shifts than the excitons ifVires. We then present the extension of the theory to finite
the arm well. The weaker response of the trapped exciton tg/agnetic field. A key feature for any theory at finite field is
the applied magnetic field suggests that the the trapped exciP?€ choice of gauge used to describe the magnetic field. In an
ton has a smaller lateral size than the exciton in the arm welXact calculation for the magnetic field effects, the results

The extracted values of for the wire excitons in wireS,  cannot depend on the choice of gauge. In perturbation
and S, are smaller than the lateral size of an exciton in ant€ory, the choice of gauge can be important if the perturba-

ideal, strictly 2D quantum well. The analysis of Someya,tion theory is not done completely. We show why perturba-
Akiyama and Sakaki suggests that excitons in T-shapeaon theory based on the diamagnetic contribution fails for
wires can be squeezed below the minimum size realized b;l,’-shaped wires. In Sec. lll, we present our results. We first

2D excitons in GaAs quantum wells. In this limit, the wires discuss exact calculations for single-particle states of the
must be 1D quantum wires. T-shaped wire in a magnetic field. We also provide an exact

Previously, we developed a theory for excitons in calculation from perturbation theory of the second order con-

T-shaped quantum wires at zero magnetic ffél@ihe theory tribytion to the single_—particle energies. We show that pertur-
used an anisotropic effective-mass model for the electrongation theory, even if done correctly, fails f&=>2 T. We
and holes. Electron and hole single-particle states trapped Bfesent results for the field dependence of the single-particle
the T-shaped intersections were found exactly. The electrofvave functions to show that perturbation theory fails because
hole pair binding in the exciton state was determined throughh® confinement provided by the T-shaped junctions is
a configuration interaction approach. A good description offguishy. We then present results for excitons in T-shaped
exciton ground states was obtained. We found that includingVirés in a magnetic field. We show that we get good agree-
lateral electron-hole correlation as well as correlation alongnent with experiment when we go beyond perturbation
the wire axis was necessary to describe zero-field PL shiftfeory and include magnetic field effects exactly in our
observed for wire excitor? For the wires that we modeled, Model. In Sec. IV, we present our conclusions.

lateral wave function mixing was important. The wires could
not be treated as strictly 1D. We also calculated the lateral
size of the exciton state from the calculated exciton wave
function?® The calculated lateral sizes were much larger than Various theories have been presented for zero-field exci-
the sizes extracted from the analysis of the magneto Pkon states in T-shaped wirés?~33 Typically, the single-
experiments. particle electron and hole states trapped at a T-shaped inter-

IIl. THEORY
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bound states. The grid covers the area occupied by the states
bound to the wire array. Typically, an array withwires has
N bound states.

These bound single-particle states are used to define
electron-hole pair states for configuration-interaction calcu-
lations to account for the pair binding. We find the exciton
ground state by solving,

2 2
1%
HSEWe = | H5p+Hbp—5— — +V§p | U= E®Wwex,
3D 2D 2D 2/“’2 522 3D
@

where z=z,—2z, and 1ju,=1l/m.+1/m,, are the pair
relative-coordinate and reduced mass along the wire axis.
VSl is the static, screened Coulomb interaction,

FIG. 1. Cross sectional view of an array of T-shaped wiegs.
the width of the[ 100] stem wells and is the width of the[ 110]
arm well. The direction of the applied magnetic fidddused for
magnetophotoluminescence is shown.

section are found by use of a single- or multi-band effective- Gen

mass model and the Coulomb effects are included either eV(Xe—Xp) 2+ (Yo—Yp) 2+ 22
variationally, in the Hartree-Fock approximation, or in a

multiconfigurational approach. Our calculation for magne-Whereq, andqp are the electron and hole charge and the
toexcitons in T-shaped wires is based on an extension of th@ielectric constant. We expand the exciton wave function
theory that we used to calculate exciton state®at0 to Ve as

finite field?® We calculate exciton states for interacting,

VSR (Xe Xp) = &)

electron-hole pairs confined to a T-shaped intersection in a e _ e

- T . L : W Xe , Xp) = X

finite magnetic field by first determining exactly the single- (e Xn) nvm,gny,nz an,m,ﬂx’”y’”z¢n( e)
particle states confined to the T-intersection in a magnetic N

field and then using these single-particle states as a basis for X m(Xn) X 3, my n(Xe Xn) (4)

a configuration-interaction calculation to include the pair in- ) o
teraction. In the next section we briefly review the calcula-Where the sum extends over the two-dimensi¢@a) lateral
tion of exciton states @8=0. states bound to the wire array a)@qx g1y accounts for any

pair correlation in each direction
A. Exciton states atB=0 Xo,.n ,nz(xe,xh)zeXF[— m(Xe—Xp)2
Our calculation proceeds in two st&bFirst, we find the /
electron and hole single-particle states bound to a finite array — 1y(Ye—Yn)?— n,2°]. (5
of T-shaped wires, as shown in Fig. 1. We use an isotopic
single-band, effective-mass Hamiltonian for the electron We diagonalize the Hamiltonian in this basis to find the
single-particle states. To find hole single-particle states, wéowest exciton state and vary thg included in the sum to
use an anisotropic, single-band, effective-mass Hamiltoniarininimize the ground state energy. We include a sufficient
We ignore the effects of band-mass discontinuity at the wellhumber of#’s to obtain the 3D limit in large structures and
barrier interfaces and use the well masses throughout tH@ correctly model both wells and wires. We use the same
structure. For these single-particle Hamiltonians, motiortheory to describe exciton states in wires and in wells so that
along the wire axis, the direction, is separable from the we can determined the energy difference between these
lateral motion, thex andy directions. We find the bound, States to compare with the measured redshifts between well
lateral, electron and hole state§ and ¢" with energiesE®  and wire PL peaks. They, determine the correlation along
and EE by solving, the wire axis. Then, and », determine any lateral correla-
tion that is not included in the sum over lateral states. To
study excitons in a single wire, the sum oveandm s over

2 2 2
HSppS=| — f ‘9_+‘9_ +VSp | pS=ESe° the electron states and hole states bound to the wire. In all
" 2me |\ gx%  gy? noonn cases that we have studied, a single wire has only one bound

(1)  electron state and one bound hole state. When there is only

one bound electron or hole state, no lateral correlation is
P=E"p". included in the sum over bound lateral states. The lateral

correlation comes from mixing unbound lateral states with

the bound state. This mixing is accounted for in our calcula-
VS, and Vi, are the two-dimensional T-shaped potentialstion by the sum of lateral correlation factors owgrand 7y -
defined by the GaAs/AlGaAs band offsets, is the isotro-  When we sety,= 5,=0, we include correlation only along
pic, conduction-band mass in GaAs ang, is the hole mass the wire axis, as would be appropriate for an ideal 1D quan-
for directioni. Fourier grid techniques are used to find thetum wire.

1%
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TABLE I. Experimental and calculated exciton redshifs€ at zero field for wiresS, — S,. Experimental
quadratic coefficienﬁexp9 and the calculated diamagnetic coefficight

Wire AE ¢y (MmeV) Bexp (neVIT?) Calculation AE o Bt
S, 6 31 isotropic hole, 3D correlation 4.0 57
S, 11 23 isotropic hole, 3D correlation 10.8 37
S; 13 18 anisotropic hole, 3D correlation 11.8 77
n 16 13 anisotropic hole, 3D correlation 16.2 69

To model GaAs/AlGaAs structures, we use13.1m,  significantly higher than the experimentadnd are above the
=0.067 and a conduction band/valence band offset ratio a2D limit for each wire. As we will show, the field depen-
62:383* Other similar choices foe to model polarization dence of the exciton states can be described if the field de-
effects and form, to model band parabolicity give similar pendence is determined exactly. We will also show that per-
results for the exciton redshifts provided that the same modédlrbation theory fails to describe the field dependence of the
is used to find the exciton states in both wells and wires. WeXxciton energies and cannot be used to extratbm the
consider two models for the hole states. In the simpleexperimental data. In the next section we describe the exten-
model, we assume that the hole has an isotropic, heavy masspn of ourB=0 theory to include a magnetic field.
m;,= 0.33. This model should work best for structures made
from larger wells, such a$; and S,, where confinement
effects are weaker and the splitting of hole states by the
confinement is less important than the mixing of states by the TO study magnetoexcitons, we extend the zero-field
Coulomb interaction. We also consider a model with an anmodel defined by Eqsi1)—(5) to include a magnetic field.
isotropic hole-mass, appropriate for a hole in [a@0] arm  The kinetic energy operator is
well, with m,,=my,=0.13 and m,,=0.34. This model

B. Magnetoexcitons

should be most appropriate for structures made from small ng‘: §D+T2D
wells, such a$; andS,, where the strong arm-well confine- 5
ment splits the degenerate hole-states into heavy and light Qe
holes. (pe_?A(XE) On
We find that the PL peak energy shift is well described in :2—me+ E. Ph— ?A(Xh))l
wires S; and S, by the model with the isotropic hole-mass :
and in wiresS; and S, by the model with the anisotropic 1 an
hole-mass. Results are listed in Table I. This is consistent Xm—hi(Ph— ?A(Xh)) : (6)
' 1

with our expectation that the isotropic model should work
better for larger structures and the anisotropic model should L
work better for smaller structures. We find the exciton must! N€ total electron-hole Hamiltonian is

be modeled as a 3D exciton even though it is confined to the

wire. Correlation must be included in all three dimensions to HEB= §D+T§D+V§D+V2D+V§B. 7
get a good description of the exciton energy shifts. Including

only 1D correlation along the wire axis does not provide the 14 proceed further, we must choose a gauge for the vector
enhanced pair binding when the exciton is trapped in thgystential. In principle, the results must be gauge invariant.
wire. For S; and S,, the calculated binding provided by 1D Any gauge should be appropriate to use. In practice, the
correlation is even weaker that the calculated binding for thepgjce of gauge is important. Exact calculations can be sim-
exciton in the arm well. These results are described in detaB”ﬁed by a choice of gauge which is consistent with the
in Ref. 26. _ _ symmetry of the problem, in our case, the 1D translational
From the exciton ground state wave function, we calcusymmetry of the wire. A perturbative calculation to second
late the lateral spread of the exciton state  qrder inB is necessarily gauge invariant only if all second-
= V{(Xe—xp)“+2%) and the diamagnetic contribution, found order contributions are determined exactly. Again, the sym-
in the symmetric gauge by perturbation the¢sge the next metry of the problem determines which gauge to use to cal-
section, for the quadratic shift of the exciton energy with cylate all of the second-order contributions or which gauge

applied magnetic fieldg"=e’r*/8u. A comparison of the  to use for the most accurate approximate calculation of these
experimental quadratic coefficient and the diamagnetic coefeontributions3®3¢

ficient calculated at zero field is given in Table I. The energy  The symmetric gauge,
shifts atB=0 are well described by the theory. However,
perturbation theory gives a poor description of the quadratic
coefficient. Ther extracted from experimentg@' for S; and

S, fall below the lower limit for the size of an exciton con-
fined to an ideal 2D wefl. This suggests tha®; andS, are is oft(?n used. In this gauge, the electron kinetic energy for
small enough to be 1@uantumwires. The calculated are B=By is

AL(x)= 3 Bxx 8
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L‘e:[pe_quL(Xe)/C]z A more useful gauge for studying T-shaped wires with

T3p 2m, B=By is a gauge which preserves translational symmetry
along the wire axis,

_Pe 9Bl GeBXetZ) ©
2me  mgC 8mec? AP(x)=—Bxz (12

Here L, is the yth component of the angular momentum In this gauge, the electron kinetic energy is
operator. The hole kinetic energy is similar. This gauge is

useful for studying interacting particles where the imposed [Pe— QeAP(Xo)/C]?

symmetry, for example due to confinement, does not break T8s= om

cylindrical symmetry about the field axis. In this case, the €

states are eigenstates lof. Typically the ground state has pﬁ JeBXeP, quzxg

Ly,=0 and the only second-order contribution to the energy == + (13

. . . . : 2"
is the diamagnetic term. For an electron, the diamagnetic 2me MeC 2mec

contribution in the symmetric gauge is o o ) )
The hole kinetic energy is similar. In this gauge, the single-

particle electron and hole Hamiltonians are separable into
(10) lateral, ,y), and axial,z coordinates since the single-
8mec? particle states are eigenstatespof The quadratic contribu-
ion to the ground-statep,=0) single-particle energies for

. . t
The expectation value for the lateral size of the electrone glectron and hole can be found exactly from the diamag-
ground-state determines the diamagnetic coefficient. Similatatic contribution in this gauge. For the electron

expressions apply for the hole and the exciton.
For a T-shaped wire witf applied perpendicular to the 2002702
wire axis, translational symmetry along the wire axis is in- Z_qu (Xe)
| : Y ) ; BPB=—7-.
consistent with the cylindrical symmetry about the field axis 2m,c?
that is needed to simplify calculations done in the symmetric

gauge. Nonetheless, the diamagnetic contribution in the synFhis exact expression for the quadratic contribution is differ-
metric gauge has been used to interpret the experimentght from the diamagnetic contribution given I8} in the

datag ThUS, |t is importan.t tO know hOW-We” this apprQXi- Symmetric gaugéEq (10)] ﬂp is proportiona' to the expec-
mation describes magnetic field effects in T-shaped wires. tation value ofx?/2, while ' is proportional to the expecta-

In the symmetric gauge, the single-particle Hamiltoniantjon value of &2+2%)/8.

for a T-shaped wire is not separable into lateral and axial Tg find magnetoexciton states in T-shaped wires, we pro-
coordinates and each single-particle eigenstate must be four@ed as we did before in finding the zero-field states. We first
as a 3D state rather than as the product of a 2D lateral stajgd the electron single-particle 2D lateral states by use of the
and a 1D axial ;tate. In a T-shaped wire, the single-particlgeparame Hamiltonian given by E€L3). We use a similar
states are not eigenstateslgf. Perturbation theory is gauge equation to find the hole states. These 2D states are found on
invariant if the perturbation theory is done exactly. In thethe same 2D grid used for the zero-field states. The 2D states
symmetric gauge, th_e first order contribution is proportionaldepend onp,. We could define exciton states by mixing
to (L) and typically is zero for the ground state. There aresingle-particle states with differept,. Instead, we define the
two contributions in second order, the positive diamagnetiGyxciton states in terms of the 2D, lateral, single-partiple,
term given by Eq.(10) and the paramagnetic Van Vieck —q states by use of Eq¢4) and (5). The mixing of other
_contribu_ti_on. The paramagnetic contribution for an e|eCtr°”singIe-particIe states with,+ 0 into the exciton state is in-

In statel Is, cluded by the use of the exponential correlation factors. We
diagonalize the Hamiltonian for the interacting electron-hole

g )

(14)

2
’ i 9eBLy i pair in this basis to determine the magnetoexciton states.
Bt . B2= VT Mee /T (1D
bparat o Eog—Eq Ill. RESULTS
where Ey; is the zero-field energy of stafe A similar ex- Two issues are addressed to analyze the magnetophotolu-

pression holds for the hole. The paramagnetic contributiominescence of T-shaped wires. First, we determine the
vanishes if the stateis an eigenstate df, with L,=0. The = magnetic-field dependence of single-particle energies in
single-particle wire states are not eigenstates pbind the  T-shaped wires. We compare the exact single-particle ener-
paramagnetic contribution is finite. For a ground state, theies with the exact quadratic contribution obtained fr8fh
paramagnetic contribution is negative, giving a total secondto determine the accuracy of the quadratic approximation.
order contribution which is less than the diamagnetic termWe compare th& dependence for wells and T-shaped wires
Consequently, a determination of the exciton size by relatingo show why the quadratic approximation is worse for
a measured quadratic shift to the diamagnetic contributiod-shaped wires. Second, we determine the magnetic-field de-
will underestimate the exciton size. pendence of exciton energies in T-shaped wires.
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B (T) FIG. 3. Magnetic-field dependence of the electron energy in the

T-shaped wireS;. The field is applied perpendicular to the wire and
FIG. 2. Comparison of the field dependence for the electrorparallel to the stem well. The exact energy is compared with the
energy in the T-shaped wirg,, stem well ofS;, and arm well of  exact quadratic approximation. Other possible quadratic approxima-
S,. B is applied perpendicular to the wire and parallel to the stemtions are shown also.
well. The stem-well width is 10 nm. The best quadratic fit and the

exact quadratic contribution for an electron in the stem well are . ) .
shown. The energy of a free, 3D electron is also shown. small B. Thg quadratic approximation is gt_)od_only for small
B and only if the exact diamagnetic contribution is used.

_ _ _ o The magnetic-field dependence for the electron energy in
A. Single particle states in a magnetic field a T-shaped wirdwire S,), in the corresponding stem well,
The exact field dependence for the energy of an electroand in the corresponding arm well are compared in Fig. 2.
confined in a quantum welthe 10 nm stem well ir§;) is  The largest energy shifts occur for the arm well. The smallest
shown in Fig. 2B is applied parallel to the well. The exact €nergy shifts occur for the stem well. The field-dependence
electron energy is compared with the exact diamagnetic ag®" the electron energy in the T-shaped wire exhibits a cross-
proximation[Eq. (14)] and a best quadratic fit to the exact OVer between these two cases. For sniilithe electron

calculation. From Fig. 2 we see that the exact quadratic apt_rarﬁ)pedhatfg l‘:’j—_shaped intedrsehctio? is mostly in the adrm well.
proximation and the best quadratic fit, obtainedBdrom 0 When the field is increased, the electron is squeezed perpen-

to 30 T, are nearly identical and agree very well with thed|cular to the field. This squeezing leads to an energy in-

exact result. In this case, thigfield confinement is a weak crease. In a T-shaped wire, the eleptron can leak mto'the
perturbation of the quantum well confinement and the quastem well to compensate this energy increase. Thus the field-

. Lo dependent single-particle energy-shift is weaker for a
dratic approximation is accurate to 30 T. For lafgethe T-shaped wire than for an arm well. At lar@ the single-

magnetic field confinement compresses the electron statgy icje energy for a T-shaped wire approaches the limit for
keeping the electron away from the well barriers. In this limit{ho stem well.
the effect (_)f the well confinement becomes negligible. We  gimilar results apply for the other T-shaped wires. Figure
see from Fig. 2 that the electron energy is well above the 30y shows the field dependence for the electron energy in the
cyclotron energy §w./2) even at 30 T. At 30 T, the cyclo- smallest T-shaped wireS,. Confinement is stronger i6,
tron diameter is 6.6 nm, still jUSt Sllghﬂy less than the We”than in the other wires and the quadratic approximation
width. should be best fo8,. Even forS,, the quadratic approxima-
The exact ground-state energy for an electron in$he tion fails forB>3 T. The error in the field-dependent energy
T-shaped wire wittB applied perpendicular to the wire axis shift made by the exact quadratic approximation is small
and parallel to the stem well is shown in Fig. 3. For com-only for small fields B<3 T for S;, B<0.5 T for S;). At
parison, the exact quadratic approximation given by (E4) 10 T, the error is nearly 50% f@&, and nearly 300% fos;.
and other possible quadratic approximations are shown. Thehis comparison shows that the diamagnetic approximation,
quadratic approximation given by E@.0) for the symmetric even if calculated exactly, should not be used to analyze
gauge is undefined for a wire, just as it was undefined for &nergy shifts obtained for T-shaped wires at 10 T.
well. The exact quadratic approximation dramatically over- The weak field-dependence of the single-particle energy
estimates the field-dependent energy shift for almost the ernin T-shaped wires and the poor agreement between the qua-
tire energy range oB that is shown. The exact quadratic dratic approximation and the exact energy in T-shaped wires
approximation is accurate only for small fieldB£1 T). are due to the squishy confinement provided by a T-shaped
Other quadratic approximations shown in Fig. 3 fail just aswire. The lateral confinement and any energy increase in-
dramatically at larg® and underestimate the exact energy atduced by the applied field is compensated by leakage into the

115304-6



T-SHAPED QUANTUM WIRES IN MAGNETIC FIELDS. .. PHYSICAL REVIEW B 63 115304

0T in T-shaped wires, even when the quadratic contribution is
1 ] calculated exactly. In this section we also determine how
73545 71107 2 x/ accurately the quadratic approximation describes magnetoex-
1E ] y citon energies in T-shaped wires.
@ 7105 X . . oo . L
7304 ] y The diamagnetic contribution given bhg- is the exact
71.00 . S quadratic contribution for an exciton when the exciton is an

%72'5_ 00 05 10 15 20 eigenstate of., with L,=0. However, an exciton trapped in

= B / a T-shaped wire is not an eigenstateLgf The diamagnetic
contribution given bygP is the exact quadratic contribution
for an exciton when the exciton is an eigenstate of the elec-
tron and holep, with p,=0. However, the exciton is not an

eigenstate of the single-particle momenta. The second-order

| Exact
- -X - Diamagnetic
71.5 4 =

.
x
.

Electron: §, paramagnetic contribution is negative for the ground state, so

71.0 ————— the diamagnetic contribution overestimates the exact qua-
0 2 4 6 8 10 dratic approximation for the exciton ground state. The
BM smaller of 8- or 8P provides the more accurate diamagnetic

FIG. 4. Magnetic-field dependence of the electron energy in théPProximation for t[‘e qpuadratLic contribution. For thicker
T-shaped wireS,. The field is applied perpendicular to the wire and WIr€s (S1 and 52): B-<p" sop" gives the tL)etter approxi-
parallel to the stem well. The exact energy is compared with thénation. For thinner wires; andS,), BP< " so g gives

exact quadratic approximation. The agreement for siilshown  the better approximation. For wires made from wide wells,
in the insert. the Coulomb interaction should be dominant and the states

should be approximate eigenstatesLgf. For wires made
stem well and the resulting energy decrease. Figure 5 showgom thin wells, the single-particle confinement should be
the size of the electron state alongndy as a function oB. ~ dominant and the exciton states should be approximate
The size is taken to be the root mean square of the electrofigenstates of the single-partigle. The approximate sym-
position about the mean position of the electron. B\in- ~ Metry of the exciton state determines which diamagnetic ap-

creases, the spread alonglecreases monotonically for each Proximation is better.

wire, while the spread along increases monotonically for ~ The best diamagnetic approximation for the exciton en-
each wire. ergy shift, the exact single-particle energy shift for the

electron-hole pair and the energy shift calculated for a 3D
correlated exciton are shown in Figs. 6 and 7 for T-shaped
wires S;—S,. Exciton energy shifts calculated for the
In this section, we show that the observed magnetic-fieldsotropic-hole model are shown foB;, and S,. The
shifts for excitons trapped in T-shaped wires can be modelednisotropic-hole model works better at zero field &rand
when the single-particle energies are determined exactly an§,. We show the exciton energy shifts calculated with the
the Coulomb binding is included accurately. The quadraticanisotropic-hole model foB; andS,. The best diamagnetic
approximation fails dramatically for single-particle energiesapproximation shown in each figure is given by the smaller
of the two diamagnetic coefficients that are determined with

B. Magnetoexcitons

12 the best zero-field model for the exciton. F&randS,, the
e A best zero-field model has 3D correlation and an isotropic
w0d Hoee xS, hole. ForS; andS,, the best zero-field model has 3D corre-
lation and an anisotropic hole. For comparison, the diamag-
/ netic approximation found including only the 1D correlation

8 in the zero-field exciton state is shown. All results are plotted

b as energy shifts from the corresponding zero-field exciton
energy. Also shown is the energy shift for the pair energy in
the arm well, shifted upward for clarity by the single-particle
trapping energy of the pair at the T intersection.

The results are similar for each wire. The diamagnetic
contribution found from the model with only 1D correlation
does not provide a reasonable description for the field-
dependence of the exciton energy for any wire modeled. The
diamagnetic contribution found from the model with 3D cor-

. . . . . relation is much smaller for each wire. This is another indi-
0 2 4 6 8 10 cation that correlation in all three dimensions must be in-
B (T) cluded for a proper description of the exciton states. Even
when the correlation is included accurately, the best diamag-

FIG. 5. Magnetic-field dependence of the electron ground-stat@etic contribution does not provide an adequate approxima-
width alongx andy for T-shaped wires;, S,, andS,. tion for the exciton energy. The best diamagnetic approxima-

Wave function spread (nm)
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FIG. 6. The magnetic-field-induced energy shift for excitons
trapped atS; and S, T-shaped wires: experimental sfiftsolid
circles, calculated shift for an uncorrelated pair B (dotted
curve, calculated shift for a 3D-correlated excitgfower solid  calculated shifts for an uncorrelated pair3g (dotted curvée and
curve), and the best approximation for the diamagnetic shifin  for a 3D-correlated excitorflower solid curve, and the best ap-
(dashed curves, as indicated, for 3D- and 1D-correlated exgitonsproximation for the diamagnetic shift f@,. The best approxima-
The best approximation for the diamagnetic shift &ris given by tjon for the diamagnetic shift fo®; is given bygP. For comparison,
B“. For comparison, the electron-hole pair energy in the arm well ighe electron-hole pair energy in the arm well is shown. All calcula-
shown. tions are done for the anisotropic hole model.

FIG. 7. The magnetic-field-induced energy shift for excitons
trapped aiS; andS, T-shaped wires: experimental sfiifpoints,

tion begins to deviate significantly from the experimental _ _ o
data for fields of 2—4 T and is a factor of 2 too big at 10 T.closely the experimental data. The pair correlation is needed

The data obtained at 10 T was used to determine empiricall{p correctly model the weak field dependence at low fields.
the exciton size. Our results show that such an analysis caft high fields, the squishy confinement produces the weak
not be done above 2—-4 T. response.

The experimental data can be modeled accurately pro- For large wires §; and S,), the isotropic hole model
vided that the exciton energy is calculated accurately at eaghrovides the best model for the exciton states at zero field.
B. The single-particle energigthe electron-hole pair energy The isotropic model works well because the effects of hole
shown in Figs. 6 and)7and the pair binding must be deter- subband splitting in large wires is weak, especially for exci-
mined accurately to obtain a good model for the field-ton states made from strongly correlated electron-hole pairs.
dependence of the exciton energy shittsrves labeled ex in  The B dependence for large wires obtained from the isotropic
Figs. 6 and Y. The single-particle energies overestimate themodel agrees well with the experimental data. For smaller
energy shift at lowB. The single-particle energy shifts are wires (S; and S;), the anisotropic hole model provides a
too high at low fields because the wave function compressiohetter model for the exciton states at zero field. The aniso-
that is provided by pair-correlation is not included. At highertropic model works better because it includes the effects of
fields, the single-particle energies provide an energy shifhole subband splitting that become important in smaller
that is lower than the energy shift obtained with the beststructures. Th& dependence fo8; andS, obtained with the
diamagnetic approximation. The field dependence of thenisotropic-hole mode{shown in Fig. 7 is more accurate
single-particle energies at high fields is weaker than the fieléhan the diamagnetic approximations. The isotropic-hole
dependence predicted by the diamagnetic approximation duaodel forS; andS, provides aB dependence for the energy
to the squishy confinement. The effects of the squishy conshifts (not shown in Fig. Ythat is even weaker than the shift
finement are included when the single-particle energies arebtained from the anisotropic model. The shifts obtained
calculated exactly at each field. These effects are not inwith isotropic model agree more closely with the data. At
cluded when the zero-field exciton state is used to determinkigh fields, the squeezing provided by the field becomes im-
the diamagnetic contribution in perturbation theory. Whenportant and the hole subband splitting provided by the struc-
pair correlation is included and the exciton states are foundure becomes less important. Thus the isotropic model pro-
accurately at each field, the exciton energy shift followsvides a better description at higher fields.
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IV. CONCLUSION binding. We find that accurate calculations for the exciton

Excitons in T-shaped wires typically are observed in pho_states in T wires can explain the weak field-induced shifts

toluminescence. The enerav shift between the PL peaks fc;[hat have been observed. A comparison of the accurate cal-

wire and well ex'citons revggls the effect of the wire F::onfine—&“"’1ti0n$ and the energy shifts obtained from the diamag-
. . : netic contribution shows that the diamagnetic contribution

ment on the electron and hole single-particle energies pluarastically overestimates the energy shifts in T wires. The

EZitlenhz%ﬁgqnen;Zf ;2?0 bﬁg?é?gm?ﬁgségniznﬁgf njr?g;[]'aR:'nergy shifts cannot be analyzed based on a weak-field per-
Y, g P P€irbation theory. If the T-wire confinement were 1D quan-

r:rresinrf]grsmg?i?)rr: 3%%32\/225?0?2;/;?;e}gdg'w%?%nﬁﬁme%m confinement, then the magnetic-field-induced confine-
ary | ; . - ment could be treated as a weak perturbation. This is not the
field-induced exciton energy shifts observed for wires were

smaller than the shifts for the corresponding quantum wells 23¢ 1N T-shaped wires. The T-wire confinement is weak,

: squishy confinement rather than 1D quantum confinement.

This was taken to imply strong squeezing of the exciton by.. ) . . ; )
wire confinement. The measured field-induced energy shif%rhIS weak confinement is easily disrupted by a magnetic

were analyzed assuming a quadratic field dependence detjr?ld' When a magnetic field is applied perpendicular to the

mined by the diamagnetic energy. The small sizes extracte rm well and the wire axis, the field squeezes the exciton
y gneti gy. The si .~ “State laterally in the arm well. Because the wire confinement
from the data for the wire excitons implied that the wire .

confinement was 1D quantum confinement. Our previou is squishy, the squeezed e_txciton can leak out of the wire into
calculations for exciton states in wires at zerc; fildredict ?h_e stem well along the field axis. .The leakage out of the
a much larger size for the exciton states that is inconsistent < compensates any squeezing induced by th_e field and
with the experimental analysis. To understand the magnetd:ZrOduces the small energy shifts observed experimentally.
photoluminescence experiments, we have done detailed cal-
culations of the exciton states as a function of magnetic field.
The single-particle states are calculated exactly at each field This work was supported in part by the U.S.-Israel Bina-
and used as the basis set for accurate calculations of the pdional Science Foundation.
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