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Bragg diffraction of atoms by light waves can create high momentum components in a Bose-Einstein
condensate. Collisions between atoms from two distinct momentum wave packets cause elastic scat-
tering that can remove a significant fraction of atoms from the wave packets and cause the formation
of a spherical shell of scattered atoms. We develop a slowly varying envelope technique that includes
the effects of this loss on the condensate dynamics described by the Gross-Pitaevski equation. Three-
dimensional numerical calculations are presented for two experimental situations: passage of a moving
daughter condensate through a nonmoving parent condensate, and four-wave mixing of matter waves.

PACS numbers: 03.75.Fi, 67.90.+z, 71.35.Lk
A light-induced potential applied to a Bose-Einstein
condensate (BEC) can be used to make high momentum
daughter BEC wave packets which propagate through the
parent condensate [1–3]. High momentum means very
large in relation to the mean momentum in the parent wave
packet and the momentum mys where ys is the sound ve-
locity in the parent. Such techniques have been used to
make an atom laser [4], to study the coherence properties
of condensates [3,5,6], and to study nonlinear four-wave
mixing (4WM) of coherent matter waves [7,8]. As ex-
plained in this Letter, elastic scattering between condensate
atoms from different momentum wave packets can remove
copious numbers of atoms from these moving wave pack-
ets. Recently, profuse elastic scattering of atoms between
daughter and parent BEC wave packets has been observed
at MIT [9]. Such losses will be an important consideration
for atom optics applications. Figure 1 schematically shows
wave packets in momentum space where the high momen-
tum wave packet with central momentum P2 � 2h̄kph
was produced by optically induced Bragg scattering from
the P1 � 0 initial wave packet. Here h̄kph � h�lph is the
photon momentum for light with wavelength lph. The
spherical shell in Fig. 1 (excluding the condensate wave
packets) results from elastic scattering between atoms from
the P1 wave packet and atoms from the P2 wave packet.
The elastically scattered atoms in the spherical shell can
neither be described as part of the mean field of the BEC,
nor can the formation [10] or evolution of the spherical
shell be modeled using the usual Gross-Pitaevskii equa-
tion (GPE) [11], Eq. (1). In what follows we use the term
“elastic scattering” to mean only those nonforward elastic
scattering processes not accounted for within the GPE.

Here we provide a simple means of describing the loss of
atoms from the condensate wave packets due to the elas-
tic scattering mechanism. This is made possible by (a)
using the appropriate momentum dependence of the non-
linear coupling constant in the GPE [12,13] and (b) using
a newly developed slowly varying envelope approximation
(SVEA) for the condensate wave function in systems with
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both slow and fast momentum components [14]. Since the
SVEA treats each distinct momentum wave packet sepa-
rately, we can incorporate the correct momentum depen-
dence in the nonlinear coupling constants. Thus, we can
treat the effect of elastic scattering losses on the conden-
sate dynamics using the SVEA version of the GPE, even
in single spin component systems. We first outline the the-
ory for describing elastic scattering loss and then present
two examples, one applied to output coupling of atom laser
pulses from a BEC source, and the other to 4WM. A more
complete discussion of the theory and further applications
will be presented elsewhere [15].

The GPE for a single spin component BEC at zero tem-
perature can be written as [11]

ih̄
≠C

≠t
� �Tx 1 V �x, t� 1 U0NT jCj2�C , (1)

where Tx � 2 h̄2

2m =2 is the kinetic energy operator, V �x, t�
is the external trapping potential imposed on the atoms, NT

FIG. 1. Wave packets in momentum space with laboratory
frame central momenta P1 � 0 and P2 � 2h̄kph undergoing
elastic scattering to produce a spherical shell of elastically scat-
tered particles. In the CM frame moving with velocity vcm �
h̄kph�m, momenta are shifted by 2h̄kph.
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is the total number of atoms in the condensate, and C is
normalized to unity. Although the coupling constant is

usually expressed as U0 � 4p h̄2a0

m , where a0 is the s-wave
scattering length and m is the atomic mass, it is more
correct at zero temperature to express U0 in terms of the
many-body T matrix, which is often well approximated
by the two-body T matrix [12,13]: U0�k� � 2

4p h̄2T�k�
mk .

Here T �
S21
2i , S is the unitary S matrix, and h̄k is the

relative momentum of the colliding atoms. If we assume
no inelastic scattering and expand T �k��k in powers of k
using S�k� � e22ika0 1 O�k3�, we obtain

T �k�
k

� 2a0 1 ika2
0 1 O�k2� . (2)

In a normal condensate, the lead term in Eq. (2) gives
the usual GPE. However, if two wave packets with very
different momenta interact [cross-energy terms in Eqs. (6)
and (7)], ka0 need not be negligible (ka0 � 0.06 for the
Na condensate example given below), and the second term
in Eq. (2) must be taken into account. This term generates
the elastic scattering loss term in the GPE. If we apply
the optical theorem to the forward scattering amplitude, it
is this second term that is responsible for scattering out of
the forward direction. Suitable generalizations of Eq. (2)
allow inclusion of inelastic collision losses and treatment
of multiple spin-component condensates.

The application of an optical standing wave pulse
diffracts a fraction of the initial condensate into a high
momentum component [1–3]. To a very good approxi-
mation, the wave function immediately after application
of a set of optical pulses is given by the superposition of
wave packets,

C�x, t � 0� � c�x�
JX

j�1

aj exp�ikj ? x� , (3)

where J is the number of distinct momentum wave pack-
ets present. Here c�x� is the initial wave function of the
parent condensate before application of the optical pulses;
it is the solution to the GPE with a harmonic potential
centered around x � 0. We assume the momentum dif-
ferences h̄jki 2 kjj to be much larger than both the mo-
mentum spread in the initial parent BEC wave packet and
the momentum mys associated with the speed of sound
ys in the BEC (hence, suppression of collisions [9] does
not occur). Since different wave packets do not overlap in
momentum space,

PJ
j�1 jajj

2 � 1.
The SVEA is made by writing the wave function as

C�x, t� �
X
j

Fj�x, t� exp�ikjx 2 ivjt� . (4)

Equation (4) explicitly separates out the fast oscillating
phase factors representing central momentum h̄kj and ki-
netic energy Ej � h̄vj � h̄k2

j �2m and defines the slowly
varying envelopes Fj , which vary in time and space on
much slower scales than the phases. Consequently, full
three-dimensional (3D) calculations of the envelopes are
numerically tractable, as we describe in more detail else-
where [6,14]. In the first example we consider below, we
take only two components, i.e., j � 1, 2 and the initial
condition is Fj�x, t � 0� � ajc�x�. In the 4WM process,
j � 1, . . . , 4, with Fj�x, t � 0� � ajc�x� for j � 1, 2, 3,
and the j � 4 envelope is initially unpopulated, F4�x, t �
0� � 0. This envelope becomes populated as a result of the
coherent 4WM process. Substituting the SVEA form for
the wave function into the GPE, collecting terms with the
same phase factors, multiplying by the complex conjugate
of the appropriate phase factors, and neglecting terms that
are not phase matched (those for which momentum and en-
ergy are not conserved) we obtain a set of coupled SVEA
equations for Fj�x, t�:µ

≠

≠t
1 �h̄kj�m� ? = 1

i
h̄

∑
2

h̄2

2m
=2 1 V �r, t�

∏∂
Fj

� 2
i
h̄

U0NT

X
qrs

d�kjqrs�d�vjqrs�FqF�
r Fs . (5)

Only phase-matched terms, for which kjqrs � kj 2

kq 1 kr 2 ks � 0 and vjqrs � vj 2 vq 1 vr 2 vs �
0, are retained on the right-hand side of Eq. (5).

For simplicity, we consider explicitly the SVEA equa-
tions for the case where only two central momentum
components, 0 and 2h̄kph, are present. Then, only
“phase-modulation” nonlinear self- and cross-energy
interaction terms are present, as opposed to the case when
three central momentum components are present and
4WM terms also arise. It is convenient to go to a center
of mass frame moving with velocity vcm � h̄kph�m (see
Fig. 1). In this frame, wave packet 1 has momentum
2h̄kph, wave packet 2 has momentum h̄kph, and elastic
scattering from the 6h̄kph wave packets creates a spheri-
cal shell expanding in 4p steradians with momentum
jh̄kelasj � jh̄kphj. The SVEA equations in this frame are
given explicitly by
∑

≠

≠t
1 �2vcm� ? = 1

i
h̄

µ
2

h̄2

2m
=2 1 V �r, t�

∂∏
F1 � 2i

4p h̄a0

m
NT �jF1j

2 1 2jF2j
2�F1 2

�yrel�sNT

2
jF2j

2F1 ,

(6)∑
≠

≠t
1 vcm ? = 1

i
h̄

µ
2h̄2

2m
=2 1 V �r, t�

∂∏
F2 � 2i

4p h̄a0

m
NT �jF2j

2 1 2jF1j
2�F2 2

�yrel�sNT

2
jF1j

2F2 , (7)

where s � 8pa2
0 and yrel � 2h̄kph�m � 2ycm is the relative velocity of the two wave packets. The factor of 2 multiply-

ing the nonlinear cross-energy interaction terms results from expanding jCj2C with C�x, t� �
P2

j�1 Fj�x, t� exp�ikjx 2

ivjt� and collecting the phase-matched terms appropriately. In the self-energy term proportional to jFij
2Fi , i � 1, 2,

only the lead term in Eq. (2) is retained. However, both terms in Eq. (2) are retained in the cross-energy terms jFij
2Fj ,
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i � 1, 2, j � 2, 1, leading to the elastic scattering loss
terms proportional to yrels.

The form of the elastic collisional loss terms can also
be motivated by a classical hydrodynamic picture of elas-
tic collisions of a cloud of atoms having a central velocity
v1 � P1�m and density n1�x, t�, with a cloud of atoms
having velocity v2 and density n2�x, t�. The atomic densi-
ties can be determined from

≠n1�x, t�
≠t

1 v1 ? =n1�x, t� � 2jv1 2 v2jsn1n2 , (8)

and a similar equation for ≠n2�x,t�
≠t . Thus, elastic scat-

tering takes atoms out of both clouds. For sufficiently
slow relative atomic velocities so that only s-wave scat-
tering occurs, and both atoms have the same spin quan-
tum numbers, s � 8pa2

0. Here the relative velocity is
yrel � jv1 2 v2j � 2ycm. The extra factors of 1

2 in the
loss terms in Eqs. (6) and (7) are due to the fact that these
are equations for amplitudes (F), not densities (jFj2). In-
elastic scattering with cross section sin, if present, is easy
to include by replacing s by s 1 sin.

If we apply this theory to condensates with two spin
components, the cross section which appears in the loss
term due to collisions between wave packets of the two
different components is s � 4pa2

0, as expected from
two-body scattering theory for different spin components.
In the SVEA derivation this follows from the fact that
the cross phase modulation terms are then of the form
2

i
h̄ U0NT �jFb

2 j
2�Fa

1 , rather than 2
i
h̄ U0NT �2jFa

2 j
2�Fa

1 as
here (note the factor of 2), where the superscripts a and
b denote spin indices.

As a first example, we consider a condensate of Na
atoms in the F � 1, M � 21 Zeeman sublevel in a cigar-
shaped trap elongated in the z direction. After the trap-
ping potential is turned off, the condensate is allowed to
freely evolve for 600 ms, and a short duration Bragg scat-
tering pulse is applied that creates a 2h̄kph � �2h�lph�ẑ
momentum component. We consider the case with half
the initial atoms in the high momentum component and
half in the parent condensate. We evolve the condensate
wave packets using a full 3D implementation of Eqs. (6)
and (7) until the wave packets move apart and are physi-
cally separated. Figure 2 shows Nf�NT versus the as-
pect ratio, Raspect, of the initial elliptically shaped BEC
for two different initial total number of atoms in the BEC,
NT � 1.0 3 106 atoms and NT � 3.0 3 106 atoms, re-
spectively. Here Nf is the total number of atoms remaining
in both the 0h̄kph and 2h̄kph wave packets after the wave
packets separate. Thus, Nf�NT � 1 2 L where L is the
fractional loss of atoms from the mean field due to elas-
tic scattering. The Thomas-Fermi aspect ratio is related
to the trap frequencies by Raspect � xTF�zTF � vz�vx .
The actual trap frequencies in our calculation were nz �
30.7 Hz, and nx � ny � nz�Raspect. The figure shows
that the loss increases as the aspect ratio decreases, and
as the total number of atoms increases, reaching 60% for
5464
FIG. 2. Fraction of atoms remaining in the condensate wave
packets after the wave packets have separated. A fast daughter
wave packet with half the initial number of atoms and with
momentum 2h̄k in the z direction moves through the remaining
parent condensate with zero central momentum. The dashed line
shows the result of the heuristic model for 106 atoms.

3 3 106 atoms and Raspect � 1�20. Nf�NT rises slowly
to unity as Raspect gets large.

A simple heuristic model helps to explain the magni-
tude of the losses. Assume a uniform atom density of n �
NT �V in a cylinder of length � � 2zTF , area A � px2

TF ,
and volume V � �A. If an equal number of atoms NT �2
is assumed to be in the daughter and parent wave pack-
ets, and depletion of n during the interaction is ignored, a
simple argument shows that the fraction of atoms remain-
ing after the packets separate is ��mfp��� �1 2 e2���mfp �,
where �mfp � � n

2 s�21 is the mean free path for the colli-
sion. For example, with nz � 30.7 Hz, Raspect � 0.1, and
NT � 106 atoms, we find that � � 120 mm and �mfp �
140 mm are comparable in magnitude. The dashed line in
Fig. 2 shows that this simple model qualitatively accounts
for our results.

In the NIST 4WM experiment [8], the Na�F � 1, M �
21� condensate is exposed to Raman scattering pulses
which create copies of the parent condensate at central
momenta h̄k2 � �h�lph� �x̂ 1 ŷ� and h̄k3 � �2h�lph�x̂,
leaving part of the atoms in the h̄k1 � 0 wave packet.
The treatment of elastic scattering from the disparate
momentum components of the wave packet in the 4WM
experiment is similar to the description above for the
two momentum component case. Now, there are three
elastic scattering loss terms for each SVE momentum
component Fj arising due to the cross-phase modulation
terms of each momentum component with the other three
momentum components. We also included the momentum
dependent correction term in Eq. (2) in the coupling
constant for the 4WM source terms on the right-hand side
of Eq. (5); it only slightly decreases 4WM at large NT . In
the experiment a trap with nx � 84 Hz, ny � 59 Hz, and
nz � 42 Hz contained a Na BEC without a discernible
noncondensed fraction. The condensate was exposed
to Raman scattering pulses 600 ms after the magnetic
harmonic potential was turned off. Figure 3 shows the
fraction of atoms in the 4WM output wave packet as
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FIG. 3. Fraction of atoms in the 4WM output wave packet,
N4�NT , versus the number of initial atoms, NT . The dots repre-
sent experimental data [8], the solid curve is the 3D calculation
without elastic scattering, and the heavy solid curve is the 3D
calculation with elastic scattering.

a function of the initial total number of atoms NT as
determined (1) experimentally (circles), (2) by calculation
without including elastic scattering loss for a ratio of
atoms in the three initial wave packets of 7:3:7, and (3)
by calculation including elastic scattering. The effects of
elastic scattering are pronounced for large values of NT ,
with the percent loss due to elastic scattering reaching
44% for 5 3 106 atoms. The discrepancy with experiment
is reduced significantly by including loss due to elastic
scattering. Possible remaining sources of discrepancy
include micromotion of the BEC in the time orbiting
trap, laser misalignment, and a small finite temperature
component of the BEC.

It is useful to put the elastic scattering discussed here
into perspective. The mean-field wave function for the
zero temperature BEC is a symmetric product of identi-
cal orbitals, each orbital being a coherent superposition
of momentum wave packets. Elastic scattering between
the various momentum components of a BEC results in
atoms which cannot be described by the mean field since
the “modes” into which the atoms are scattered (there is
an infinite number of scattering angles, or modes, to scat-
ter into) are not macroscopically populated [16,17]. The
momentum components in the spherical shell cannot be
generated using the dynamics of the GPE or the SVEA
equations since neither contains terms that produce such
momentum components. However, the SVEA equations
do allow collision losses to be treated. In contrast to the
formation of the spherical shell of elastically scattered
atoms, the fourth wave in 4WM is explicitly generated by
the GPE or the SVEA equations.

The scattering of atoms into the spherical shell and the
loss of atoms from the condensate are a result of Hamilto-
nian dynamics; no interactions with a bath, and therefore
no incoherent processes described by T1 or T2 relaxation
times, are necessary. Our treatment of the process has, for
convenience, used an imaginary potential that serves as a
mechanism to take atoms that are elastically scattered out
of the condensate. It must also be noted we were able
to carry out our procedure for modeling the loss of atoms
from the condensate only as a result of making the slowly
varying envelope approximation, by which we could track
the density of atoms in each momentum wave packet in-
dividually. As the elastic scattering loss increases, further
scattering of the elastically scattered atoms with the con-
densate atoms will become increasingly important. This
mechanism is not included in our treatment and would re-
quire following the dynamics of the elastically scattered
atoms in detail.
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