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Dynamics of an electric dipole moment in a stochastic electric field
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The mean-field dynamics of an electric dipole moment in a deterministic and a fluctuating electric field is
solved to obtain the average over fluctuations of the dipole moment and the angular momentum as a function
of time for a Gaussian white-noise stochastic electric field. The components of the average electric dipole
moment and the average angular momentum along the deterministic electric-field direction do not decay to
zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the
average over fluctuations of a magnetic moment in a stochastic magnetic field with Gaussian white noise in all
three components. The components of the average electric dipole moment and the average angular momentum
perpendicular to the deterministic electric-field direction oscillate with time but decay to zero, and their variance

grows with time.
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I. INTRODUCTION

We consider the decoherence of an electric dipole moment d
in an external electric field and in contact with an environment
(a bath) that interacts with it. Examples of such systems
include heterogeneous diatomic molecules, such as RbCs [1]
and OH [2], polyatomic molecules with a permanent electric
dipole moment (i.e., a molecule, which, if fixed in space so that
it cannot rotate, has a permanent electric dipole moment, even
when no external electric field is present), or a mesoscopic
or macroscopic system, such as a colloidal particle having a
dipole moment [3]. The interaction of such systems with an
environment can be represented by evolving the system in an
effective electric field, E€ = Ej + E(¢), where E, is the
deterministic electric field (which could be time dependent),
and Ep(¢) is the electric field which models the influence of
the environment (the bath) on the dipole moment. The field
Ej(t) can be represented by a vector stochastic process &(t),
where the nature of the environment determines the type of
stochastic process. Averaging over fluctuations corresponds to
tracing out the environmental degrees of freedom. This yields
a reduced nonunitary dynamics wherein the averaged spin
decoheres in time. This approach was recently used to treat
decoherence of spin systems caused by an environment [4].
A prototype model for fluctuations is Gaussian white noise
[4-6], wherein the random process has vanishing correlation
time. We explicitly consider this prototype noise, although
it is simple to use the methods applied here to treat other
kinds of noise, e.g., Gaussian colored noise or telegraph
noise.

It might appear at first sight that the problem of an
electric dipole moment in an electric field having a stochastic
contribution is similar to that of a magnetic dipole moment in a
magnetic field having a stochastic contribution [4]. The Stark
Hamiltonian for an electric dipole moment in an electric field
is Hg = —d - E, and the torque it experiences is Ty = d x E.
This parallels the Zeeman Hamiltonian for a magnetic dipole
moment in a magnetic field, H; = —u - B, and the torque,
77 = u x B. The similarities are striking. However, there is an
important difference. The electric dipole moment of a molecule
is locked along a molecule-fixed direction (the diatomic axis
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in the case of a heterogeneous diatomic molecule), and its
evolution in an electric field is coupled to the rotational
motion of the molecule. For example, consider the case of
a heterogeneous diatomic molecule of 'Y electronic state
symmetry, where the angular momentum of the molecule
is perpendicular to the diatomic molecule axis, whereas the
electric dipole moment is along the diatomic molecule axis.
In contradistinction, the magnetic moment of a particle with
a magnetic moment is proportional to the angular momentum
of the particle. The case of an electric dipole moment in an
electric field is more analogous to the case of a magnetic needle
in the presence of a magnetic field [7]; the magnetic moment
of the needle is locked by the lattice crystal structure of the
needle along the needle axis.

The present paper considers only one particle with an
electric dipole moment in a stochastic electric field. A sig-
nificant literature exists on the dynamics of a large collection
of particles with electric dipole moments, as in ferroelectric
liquids. Ferroelectric liquids are analogous to ferromagnetic
fluids, also a well studied topic, wherein the magnetic moments
of the individual particles in the fluid can coherently lock
up, thereby resulting in a macroscopic magnetic moment [8].
The treatment of such systems in stochastic fields are com-
plicated by interparticle interactions, making them inherently
many-body problems. The goal of this work is to develop
methods to describe and analyze the dynamics and deco-
herence of a single electric dipole moment in a stochastic
field. Understanding the implications of this work to more
complicated many-body problems would require much further
study.

The outline of this paper is as follows. In Sec. II we consider
the classical dynamics of an electric dipole moment in the
presence of a deterministic and stochastic electric field, and
in Sec. IT A we discuss the dynamics in a stochastic field. In
Sec. III we develop the quantum equations of motion of an
electric dipole moment in an electric field, in Sec. I A we
present the Heisenberg equations of motion for the angular
momentum and direction of the dipole, and in Sec. IIIB
we discuss the mean-field dynamics, which are equivalent to
the classical dynamics. We present the calculated results in
Sec. IV, and a summary and conclusion, along with some
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comments on how to generalize the treatment beyond the
external noise assumption [5], wherein no backaction of
the system on the environment is present, is contained in
Sec. V.

II. CLASSICAL DYNAMICS

Let us begin by considering the classical dynamics of
systems having an electric dipole moment in the presence
of an electric field. For the moment, let us take the electric
field in the direction of the space-fixed z axis. The dipole
moment d in the electric field E experiences a torque, Ty =
d x E = Ed sin61, where 6 is the angle between the electric
field and the dipole moment (@ is the polar angle of the dipole
moment). T is perpendicular to the z axis, so the z component
of angular momentum, L., is conserved. If the system has
a moment of inertia 1, .its angular momentum is L = /€,
where @ = 0% + sin? 0¢7 is the angular frequency vector.
We can denote the conserved z component of the angular
momentum as /w. The kinetic energy of the system is given
by T = 11(6” + sin> 0¢?), and the Stark potential energy is
U = —d - E = —Ed cos6; hence the Lagrangian is

L£O.,¢.0,) =T — U = 116 +sin® 6¢*) + Ed cos¥.

(1)
The Euler-Lagrange equations of motion are
L d oL d . .
= — — —— = —]—(si 29 = = ’ 2
06 di 99 S0 = ¢ =g @
L d oL N Ed <in @ ? sin 20 0. @)
= — = — — — S1 — = V.
90 dr 90 I 2 sin?6

The dynamics are relatively simple since the z component
of the angular momentum, L, = z—j-; =15sin’6¢ = lw, is
conserved. The second constant of the motion is the total

energy &,

2

5=T+U=%1<92+ )-Edcose. 4)

sin? 0

Unfortunately, an analytical solution of the differential equa-

tion, 6 + ETd sinf — “’72 sin 260 = 0, is not known, although for
w = 0, the solution can be expressed in terms of the Jacobi
amplitude for Jacobi elliptic functions [9], and the solution
corresponds to pendular motion. For arbitrary w, the motion is
composed of a rotation around the direction of the electric field
E with constant angular velocity w, and a pendular motion
in the plane containing E and d (for w # 0, the 6 motion
corresponds to distorted pendular motion). Figure 1 plots 6(¢)
versus ¢ for several values of the ratio of the parameters Ed /[
and w? in Eq. (3) for 8(¢). It is clear from the figure that a finite

o keeps 6(t) away from 6 = 0.
|
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FIG. 1. (Color online) 6(t) versus time for several values of the
ratio of parameters Ed/I and w? equal to 0, 0.15, 0.3, 0.5, and 1.

A. Stochastic electric field

Suppose that, in addition to the deterministic electric field,
there is a stochastic electric-field contribution, E = &, ()X +
ey(®)y + [E + &.(t)]z, where (1), i = x,y,z, are stochastic
random variables. In what follows we explicitly take Gaussian
white noise; see Eqs. (17) and (18). Other kinds of noise can
occur, e.g., Gaussian colored noise or telegraph noise, but
this paradigm serves to illuminate the salient features of the
dynamics. Moreover, as long as the correlation time of the
noise is the shortest time scale in the dynamics, Gaussian
white noise is a good approximation for other kinds of noise.

If only E, fluctuates, we have to solve the stochastic
differential equation,

d[E + et ’
dlE +e01 g - = sin20 = 0. ®)

6+
This equation is linear in &/(¢), but nonlinear in 6. The
stochastic field €,(¢) results in a stochastic variation of the
period of the pendular motion in 6. The addition of stochastic
field components ¢, () and &,() result in an additional torque
which has a component along the z axis, i.e., L, is no longer
conserved, and there is an additional stochastic potential,
Vi=—d-E}) = —plec(t)sinf cos¢ + &,(¢)sin 6 sin¢].
Adding this potential to the potential V = —d - E, we find

% = d[—&,(t)sinf sin¢g + &,(t)sin@ cos ¢]; hence

. .. d
sin® 0¢) + 2 sin @ cos00¢ = 7[—8)(([) sinf sin ¢

+¢&,(t)sinf cosgp]l.  (6)

The second-order differential equations (5) and (6) can be
turned into a set of first-order differential equations. Defining
¥(t) = 0(t), Eq. (5) becomes

d (9(:)) B (1) -
di \9(t)) ~ \ ~4E=Oing 4 < sin26 |’

and, defining ¢(¢) = d}(t), Eq. (6) is transformed into the first-
order set of equations,

t
(1) ) ' ®

d (o)) _
dt \o(t)) \ —2995005¢ 4 L _[—g,(1)sin6 sing + &,(t) sin6 cos ¢]
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Equation (7) can be solved first for 6(¢) and ¥(¢), and these
functions can the be substituted into Eq. (8), which can then
be used to obtain ¢(¢) and ¢(¢). Alternatively, Eqgs. (7) and (8)
can be solved simultaneously as a system of four first-order
differential equations.

III. QUANTUM TREATMENT

The Hamiltonian for the system is givenby H = é—; —d-E
[10]. In spherical coordinates, if the electric field is taken to
be along the z axis, the Hamiltonian takes the form

H n? 82+t98+182 Ed cosf. (9)

=— — 4cot—+ ———| — cos .
002 00  sin? 0 0¢?

Since L. is conserved if the electric field is along the z axis,

the eigenfunctions of the Hamiltonian (9) can be written as

Vum(0,0) = €™ f,,,(8), where the functions f,,,,(6) satisfy

the stationary Schrodinger equation in one variable,

K2 [ 92 9 m?
__ + cotd— + + Ed cosO | fum(6)

21 \ 962 30 ' sin20
== nmfnm(e)- (10)

The energy eigenvalues &,,, have quadratic and higher contri-
butions in the electric-field strength.

If a degeneracy of the energy levels having different angular
momentum is present, as occurs for molecules with IT or
higher electronic symmetry, a Stark energy which is linear
in the electric-field strength can arise. We shall not consider
the dynamics for such cases here.

If, in addition to the constant electric field, a time-
dependent field (1) = &,(t)X + &,(¢)§ + &.(t)Z is present, the
time-dependent Schrodinger equation must be used. A basis
of states could be used to calculate the time-dependent wave
function that is the solution to the time-dependent Schrodinger
equation. The basis could be composed of field-free basis states
Y1:(60,0), or the eigenstates in the presence of the constant
electric field, ¥,,,(6,¢). Let us now consider the quantum
treatment of the dynamics. The approach we use below uses
instead the Heisenberg equations of motion, which will be
solved in a mean-field approximation.

A. Heisenberg equations of motion
When no internal angular momentum is present [10], we
take the Hamiltonian to be

> .
H=H+Hs=- ~d-E (11)

and we use the notation, d=dn (see Ref. [11]), where i1 is
a vector operator of unit length in the direction of the dipole

moment and d is the magnitude of the dipole moment, which
remains constant. The Heisenberg equations of motion for the

dipole moment operator, d= %[H ,fl], can be written as
fi= i[H il = i [L?.A] idE (A, A] (12)
Ch T 2l h o

Using the fact that [L,;,72;] = ife; iy, we find that [L2, /] =
2iA[L x fi + ihf]. Since [A;,7;]=0 for all i and j,
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FIG. 2. (Color online) n.(t),ny(t), and n (t) versus time for
n(0) = [sin(rr /4) cos( /4), sin(r /4) sin(r /4), cos(r /4)] and L(0) =
(10,0,0). The motion is almost periodic with period ~140, but only
about half this region is plotted to minimize congestion.

we find

1 .

—7[L x i + ihfi]. (13)
Moreover, the torque on the molecule due to the presence of
the external field is . = ;l;[H ,I:], which reduces to

L = —d(E x n). (14)

n=

The nonlinear Heisenberg operator equations of motion,
Egs. (13) and (14), must be solved simultaneously.

B. Mean-field dynamics

If the initial angular momentum of the molecule is large
compared to 7, a semiclassical treatment can be a good
approximation. Setting#z = 0in Eq. (13) allows a semiclassical
solution for the expectation values (fi(r)) and (L(z)). The
semiclassical equations,

i A) — lfJ a 15
dt<n)__l( ) x (), (15)
d . .

E<L> = —dE x (), (16)

.7'-/

=
(=]
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=

————

—

=
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|
()
(9]
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S

FIG. 3. (Color online) Parametric plot of n.(t),n,(t), and
n,(t) versus time for n(0) = [sin(rr/4) cos(/4), sin(xr /4) sin( /4),
cos(w/4)] and L(0) = (10,0,0). The motion is almost periodic (see
the slight differences in the trajectory upon making two passes) with
dimensionless period ~140.
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FIG. 4. (Color

online)
VL) + L3(1) 4 L3(r) versus time for n(0) = [sin(rr/4) cos(r /4),
sin(ir/4) sin(r /4), cos(/4)] and L(0) = (10,0,0). L.(¢) remains
identically zero throughout the dynamics. The motion is almost
periodic with dimensionless period ~140.

L,(t), Ly(t), L.(t) and L(t)=

are equivalent to the classical solution presented in Sec. II,
but are valid for arbitrary direction of E. These equations
correspond to a mean-field theory treatment obtained by taking
the expectation values of Eqs. (13) and (14), replacing the
expectation value of the product L. x i by the product of the
expectation values [12—15], and taking the limit as 7 — 0 on
the right-hand side of (13).

In what follows, we shall simplify the notation and not
explicitly write the expectation values around the dynamical
variables.

IV. CALCULATED RESULTS

We now present results for the semiclassical dynamics of
a dipole moment in the presence of an electric field, with and
without a stochastic contribution.

Figures 2 and 3 show n,(t), ny(t), and n.(t) versus time,
and Fig. 4 shows L,(t), Ly(¢), and L_(t) versus time for
deterministic dynamics (without a stochastic contribution)
of a dipole moment in an electric field. The dimensionless
parameters used in these calculations are d = 1, I = 10, and
(Ex,Ey,E;) = (0,0,1). The initial conditions are specified in
the figure captions. n,(t) undergoes periodic motion, but the

FIG. 5. (Color online) n,(t), ny(t), and n.(¢t) versus time for
n(0) = [sin(;r /4) cos(rr /4), sin(z /4) sin(rr /4), cos(rr /4)] and L(0) =
(10,0,6). The motion is almost periodic with dimensionless period
~100, but only about 70% of a period is plotted to minimize
congestion.
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FIG. 6. (Color

online) Parametric plot
and n,(¢) versus time for n(0) = [sin(mw/4)cos(rr/4), sin(r/4)
sin(r/4), cos(w/4)] and L(¢) = (10,0,6). The motion is almost
periodic (see the slight differences in the trajectory upon making two
passes) with period ~100.

of n. (1), ny(@),

ny(t) and n(t) trajectories are more complicated and are not
truly periodic. Nevertheless, the motion is almost periodic
with period t = 140 for this case. The parametric plot of
n(r) in Fig. 3 shows the holes around the north and south
poles. Figure 4 shows that the total angular momentum is not
conserved, but L, remains zero throughout the dynamics. The
only component of the angular momentum that is initially
nonzero is L,. The angular momentum components L, (¢) and
L ,(t) undergo a complicated oscillatory motion as a function
of time.

Figures 5 and 6 show n,(t), n,(¢), and n.(t), and Fig. 7
shows L,(t), Ly(t), and L,(¢) versus time for deterministic
dynamics for the same conditions as previously, except that
now L,(0) = 6, rather than zero. Now the z component of
angular momentum, which is conserved, restricts the values of
n,(t) to be non-negative. The motion is again almost periodic,
with a dimensionless period of about 7 = 100.

We now consider the details of the stochastic electric field.
We take ¢,(f) and &,(¢) to be stochastic processes with zero
mean and correlation function x (r — t') taken to be a § function,

() =0, (17)
8i(l)8j(l/)=K([—[/)8ij 2888([—1/)8,'1', (18)
Lol L.L

-10 Ly

FIG. 7. (Color L(t) =

online)
«/Li(r) + Li(t) + Lf(t) versus time for n(0) = [sin(;r/4) cos( /4),
sin(;r /4) sin(r /4), cos(/4)] and L(0) = (10,0,6). L_(¢) remains
equal to 6 throughout the dynamics. The motion is almost periodic
with period ~100.

Lx(t)v Ly(t), Lz(t) and
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for i,j = x,y, i.e.,, we consider Gaussian white noise in
the x-y plane. The overline indicates the average over the
fluctuations, and §;; is the Kronecker § function (the noise
in the x and y directions are uncorrelated). We take the
correlation function x(z —t’) to have vanishing correlation
time, 7, = 0, i.e., Gaussian white noise. We set the strength of
the fluctuations, &, to be a tenth of the dc electric field E, with
“volatility”’(standard deviation) g9 = 0.1, and initially take the
fluctuations in the z component to vanish. The equations of
motion for the stochastic case are written as

d(fh) = —%(ﬁ) x (f)dr, (19)
d(L) = —d(Edt + dW) x (), (20)

where W(¢) is a vector Wiener process. The white noise,
&(t), can be written as the time derivative of the Wiener
process, e(t) = dW /dt, or, more formally, the Wiener process
is the integral of the white noise. The other parameters and
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FIG. 8. (Color online) n.(t), ny(t), n.(t) versus time obtained
for stochastic dynamics with e,(¢) and &,(¢) fields taken as Gaussian
white noise. The initial conditions are n(0) = [sin(;r/4) cos(w/4),
sin(7r /4) sin(rr /4), cos(ir /4)] and L(0) = (10,0,6).
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FIG. 9. (Color online) L, (), L(t),L,(t) versus time obtained for
the stochastic dynamics with ¢,(¢) and €, (¢) fields taken as Gaussian
white noise.

initial conditions are taken to be exactly as in the previous
case. The stochastic field results were obtained using the
Mathematica 9.0 built-in command [foProcess for solving
stochastic differential equations, with the stochastic field W(z)
taken as a Wiener process. Figure 8 shows n,(t), n,(t), and
n.(t) versus time and Fig. 9 shows L(7), Ly(t), and L.(1)
versus time for the stochastic dynamics. In these figures, the
mean values and the mean values plus and minus the standard
deviations are shown, and the region between the plus and
minus standard deviations are shaded. The standard deviation
of n,(t), ny(t), and n_(t) become significant for times greater
than about 70, whereas the standard deviation of L, (), m,
and L, () become significant only for times greater than about
150. The mean values of n,(¢) and n,(¢) decay to zero with
time, but m does not decay to zero (or at least not on the
time scale shown in the figure). For all n;(¢), i = x,y,z, the
standard deviation increases with time, but the increase is slow
at large times. Moreover, the mean values L,(¢) and m
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FIG. 10. (Color online) Stochastic dynamics with &,(¢), &,(¢), and
&,(t) fields taken as Gaussian white noise. There is little change from
the results shown in Figs. 8 and 9.

decay to zero at large time, but L_(7) hardly decreases on the
time scale shown, and the standard deviation of L_(¢) increases
linearly with time at large times. We conclude that, despite the
fluctuations, n,(¢) and L,(¢) do not decay to zero as do the
other components of n(7) and L(7).

In Fig. 10 we also allowed the z component of the electric
field to fluctuate, i.e., we allowed &,(¢) to be a nonvanish-
ing stochastic variable with “volatility” (standard deviation)
&9 = 0.1. Clearly, there is not very much of a change due to
&,(t). Again, despite the fluctuations of the electric field, n,(¢)
and L_(¢) do not decay to zero as do the other components
of n(r) and L(z). This is in contrast to the motion of spin
in a stochastic magnetic field, where all the spin components
decay to zero for Gaussian white noise in all the magnetic-field
components [4].

V. SUMMARY AND CONCLUSION

We introduced a model for treating the dynamics of an
electric dipole moment in the presence of a deterministic

PHYSICAL REVIEW E 88, 022127 (2013)

electric field and an environment with which the dipole inter-
acts. Environmental decoherence was modeled by considering
a stochastic fluctuating electric field (noise) which interacts
with the electric dipole moment. We solved the stochastic
mean-field equations of motion for Gaussian white noise.
The model makes the external noise assumption [5] wherein
no backaction of the system on the environment is present.
A consequence of this assumption is that the system does
not come into equilibrium with a thermal environment, but
goes to the most democratic density-matrix state having zero
expectation value of the dipole moment [4]. This is a good
approximation when the backaction is weak, as explained
in [4,5]. But even if it is not weak, one way of overcoming
this problem is to augment the equations of motion for the
electric dipole moment with a decay term that insures that
the system comes into thermal equilibrium at long times. If
we schematically represent the equation of motion for the

dipole moment as % = Od, and add a decay term n to get the
augmented equation of motion, Z—‘; = Od — n, then, at large
times, we can set the rate of change of the dipole moment
to be zero and the dipole moment to its equilibrium value
as given by a Boltzmann averaged dipole moment, deq =
Trle #Hd]/Tr[e #H], where B is the inverse temperature of
the bath. Hence, as t — oo, we find that n = Od.q. Thus the

augmented equation of motion becomes

dd
— = 0()d(?) — Odgg. (21)
dt
This equation yields the right thermal equilibrium result
asymptotically, d(z) = dey. Similarly for the angular

momentum equation,

dL . ~

— = 0()d(t) — OLg, (22)
dt

where Leq = Tr[e ##L]/Tr[e ##]. This approach may be
overly simplistic if multiple decoherence processes play a role
in the backaction dynamics, but it does yield dynamics that
tend asymptotically to the correct equilibrium results when
backaction is not negligible.

Here, we showed that the dynamics of an electric dipole
moment in a stochastic field is more complicated than the
dynamics of a magnetic dipole moment in a stochastic
magnetic field. Even with the external noise assumption, and
even for Gaussian white noise, not all the components of
the average electric dipole moment and the average angular
momentum decay to zero, despite fluctuations in all three
components of the electric field. This is in contrast to the
decay of the average over fluctuations of a magnetic moment,
which does decay to zero in a stochastic magnetic field
with Gaussian white noise in all three components [4]. Here,
L.(1) 2 L.(0), and n,(t), which is proportional to the Stark

energy, also does not decay to zero at large times; the system
does not come into equilibrium. These predictions, which are
valid under the external noise assumption, should be able to be
readily checked experimentally. The predictions will remain
valid also for the Gaussian colored noise stochastic process,
as long as the temporal correlation time of the noise process,
7., is short compared with the rotation time of the molecule,
T, = I/z, and the Stark time scale, tg = h/(Ed).
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