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Unified semiclassical approximation for Bose-Einstein condensates: Application to a BEC
in an optical potential
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We present semiclassical descriptions of Bose-Einstein condensates for configurations with spatial symme-
try, e.g., cylindrical symmetry, and without any symmetry. The description of the cylindrical case is quasi-one-
dimensional~Q1D!, in the sense that one only needs to solve an effective 1D nonlinear Schro¨dinger equation,
but the solution incorporates 3D aspects of the problem, as a result of which the 1D equation is supplemented
by a noncanonical~quartic! normalization condition. The solution in classically allowed regions is matched
onto that in classically forbidden regions by a connection formula that properly accounts for the nonlinear
mean-field interaction. Special cases for vortex solutions are treated too. Comparisons of the Q1D solution with
the full 3D and Thomas-Fermi ones are presented, and conditions for the applicability of the effective low-
dimensional equations are obtained.
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I. INTRODUCTION

Simple models of Bose-Einstein condensates~BECs! have
been very useful for understanding their physics. For
ample, in the mean-field approximation for BECs with rep
sive atom-atom interactions, in regions where the local d
sity is large enough and the mean-field~nonlinear! term in
the Gross-Pitaevskii equation~GPE! is much larger than the
kinetic-energy term, the Thomas-Fermi~TF! approximation
offers such a simplified description for the ground state o
BEC in a stationary potential@1#. However, in classically
forbidden regions of the coordinate space, the density is
and the TF approximation is invalid. It is necessary to ma
the TF approximation in the region of high density to a d
scription valid near the boundaries of the classically allow
motion and inside the classically forbidden region for a giv
external potential. For dynamic situations, some simple
proximations exist for time-dependent harmonic potent
@2,3#. It would be very useful to have a simple effectiv
one-dimensional~1D! approximation that properly accoun
for the 3D character of a BEC, for both static and dynam
problems in configurations with spatial symmetry, such a
BEC in a cylindrically symmetric potential~e.g., a harmonic
trap with cylindrical symmetry, with or without an optica
potential that varies in space along the symmetry axis of
harmonic potential, see a detailed formulation of the mo
below in Sec. II!. Pedriet al. developed a treatment of thi
kind @4#. Another contribution was made in Ref.@5#, which
aimed at a derivation of an effectively one-dimensional~1D!
GPE relevant for the description of a 3D BEC by means
the variational approximation. The 1D wave function deriv
in Ref. @5# was defined so that it has the same density dis
bution along the symmetry axis of the system as that wh
could be obtained by integrating the distribution produced
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the full 3D wave function in the transverse plane. In t
transverse direction, the ansatz adopted in Ref.@5# assumed a
Gaussian distribution. As a result, a nonpolynomial GPE w
derived in that work. It was used recently@6# to describe
macroscopic tunneling in a double-well potential subject
rapid temporal modulation.

Here we develop an approach that differs from the tre
ments of Refs.@4,5# in several ways. In our treatment in Se
III, regions of physical space in which the density is suf
cient for the application of the mean-field approximatio
and those in which the density is low, are treated comple
differently. In Sec. IV, we develop a connection~crossover!
formula for the wave function in these regions, in analo
with the commonly known formulas between classically
lowed and forbidden regions in ordinary quantum mechan
@7# ~the difference from the connection formula in quantu
mechanics is due to the fact that the GPE is a nonlin
equation!. A WKB approximation for the nonlinear Schro¨-
dinger equation in an external potential, uniformly valid
classically allowed and forbidden regions, was recently p
posed in Ref.@8#, but that approximation does not produc
the connection formula.

In Sec. III we develop an effectively 1D treatment of th
dynamics with the cylindrical symmetry. In order to redu
the 3D equation to a 1D form, we do not assume a Gaus
distribution in the transverse direction, which is an essen
difference from the approach adopted in Refs.@4,5#. Instead,
we directly use the TF approximation in 3D. An estimate f
the applicability of our method~which relies upon the ne
glect of the transverse part of the kinetic energy in the GP!
for the case of a cigar-shaped BEC is given by

4pNa0@L, ~1!

whereN is the number of atoms,a0 is thes-wave scattering
length, andL is the length of the cigar-shaped configuratio
As the longitudinal length and number of atoms are not
dependent parameters, the value ofL to be substituted into
Eq. ~1! is a function ofN, which is to be determined for a

lty
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BAND, TOWERS, AND MALOMED PHYSICAL REVIEW A67, 023602 ~2003!
specific potential. Condition~1! may be easily met in situa
tions relevant to experiment~see, for instance, an examp
given in Sec. VIII below!.

If, nevertheless, the condition~1! is not met, the treatmen
developed in Refs.@4,5# may apply. It should also be men
tioned that the approach proposed in Ref.@5# is applicable in
an essentially wider parametric range if one is interested
the profile of the condensate density along the cylindri
axis, integrated in the transverse plane@see Eq.~11! in Ref.
@5#, which demonstrates that the profile directly followin
from a high-density approximation applied to the abov
mentioned nonpolynomial GPE is fairly close to that pr
duced by the TF approximation applied directly to the und
lying 3D GPE#.

Here, in the classically allowed region, the full 3D GPE
reduced to a 1D equation. However, a drastic difference fr
the naive 1D description is that the solution to our 1D eq
tion is subject to anoncanonical~nonquadratic! normaliza-
tion condition@see Eq.~16!#, which is derived from the ca
nonical normalization for the 3D wave function. As
physically relevant application of the general method,
calculate the quantum-mechanical distribution of values
the longitudinal momentum in a cigar-shaped BEC in Sec
This distribution also has a noncanonical form in comparis
with ordinary quantum mechanics in 1D. In Sec. VI we ge
eralize the approach to treat the case of a BEC with vortic
in this case, the effective 1D normalization condition tak
on a still more involved form@see Eq.~57!#.

We also develop a generalization of our approach fo
pancake-shaped condensate, even when the cylindrical
metry is broken by an external potential, so that the effec
equation is 2D, see Sec. VII below. In that case, the appl
bility condition for our method takes a form different from
Eq. ~1!,

\

mv'

~4pa0N!2@R4, ~2!

wherem is the atom mass,v' is the frequency correspond
ing to the confining potential in the transverse direction, a
R is the radius of the pancake. Condition~2! is more restric-
tive than Eq.~1!, but it can also be met in experimental
relevant situations, as is described below@as well as in the
case of Eq.~1!, the radius and number of atoms, to be su
stituted into Eq.~2!, are not independent parameters, a re
tion between them being determined by the potential relie
the plane of the pancake#. Finally, the pancake wave functio
is subject to another noncanonical normalization, see
~60! below.

In Sec. VIII we provide numerical examples that compa
our method with full 3D calculations for a BEC in stat
potentials and for dynamics of a BEC in the presence o
time-varying external potential. The comparison demo
strates the validity of the approach developed in the pre
work.

II. A MODEL WITH CYLINDRICAL SYMMETRY

We begin by defining the systems of interest to us in
context of a cylindrically symmetric model problem. To th
02360
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end, we consider a BEC in an array of optical traps, in
presence of the gravitational field and large-size magn
trap in the form of a parabolic potential induced by the
teraction of the magnetic moment of atoms with an exter
static magnetic field. The static magnetic-trap potential is

VM~r !5 1
2 m@vz

2z21v'
2 ~x21y2!#, ~3!

where m is the atomic mass. The optical potential is pr
duced by light beams with identical linear polarization
whose propagation directions lie in a plane containing thz
axis, forming anglesu/2 and p2u/2 with it (u50 corre-
sponds to two beams counterpropagating in the6z direc-
tion!. Interference between these fields produces a stand
wave potential along thez direction, whose amplitude is
proportional to the intensity of light. It is assumed that t
intensity is initially zero and gradually increases with tim
hence the light-induced potential experienced by atoms
the BEC is

VL~z,t !5V0~ t !@11cos~2kz!#/2, ~4!

whereV0(t) is the optical potential’s amplitude which varie
in time, andk[(2p/lph)sin(u/2) is the wave vector of the
optical lattice,lph being the wavelength of light. It is often
convenient to discuss the depth of the optical potentia
units of the recoil energyER5(2p\/lph)

2/(2m), which is
the kinetic energy gained by an atom when it absorbs a p
ton from the optical lattice.

Finally, the description of the mean-field dynamics of t
condensate is based on the 3D time-dependent GPE,

i\
]

]t
C~r ,t !5@ p̂2/2m1V~r ,t !1NU0uCu2#C, ~5!

where V(r ,t)5VM(r )2mgz1VL(z,t) is the full potential
~the second term is the gravitational potential!, p̂2/2m is the
kinetic-energy operator,U054pa0\2/m is the atom-atom
interaction strength that is proportional to thes-wave scatter-
ing lengtha0, andN is the total number of atoms. Note tha
according to Eq.~3!, the full potential can be written as

V~r ,t ![Vz~z,t !1V'~r'!, with V'~r'![ 1
2 mv'

2 ~x21y2!.
~6!

Equation~5! can be rewritten, in terms of characterist
diffraction and nonlinear time scalestDF andtNL , as follows
@9,10#:

]C

]t
5 i F r TF

2

tDF
¹22V~r ,t !/\2

1

tNL

uCu2

uCmu2
GC. ~7!

Here, the diffraction time tDF[2mrTF
2 /\, with r TF

5A2m/(mv̄2) and v̄5(vzv'
2 )1/3, and the nonlinear time

tNL[(GuCmu2/\)215(m/\)21 can be expressed in terms o
the chemical potentialm, whereuCmu is the maximum mag-
nitude of C @9#. Another useful length scale isr TF,z

5A2m/(mvz
2), i.e., the TF radius in thez direction. This is

the size of a TF wave function in thez direction for the
harmonic potentialmvz

2z2/2.
2-2
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III. THE SEMICLASSICAL APPROXIMATION

We consider a semiclassical approach based on
Thomas-Fermi approximation for a 3D BEC wave functi
in a cylindrically symmetric potential. Our treatment is br
ken up into different approaches depending upon whether
atomic gas density is high~in the classically allowed region
of the coordinate space! or low ~in classically forbidden re-
gions!.

A. The classically allowed region

Inside the classically allowed region@not too close to its
boundaries so that the atomic gas density, and hence
nonlinear term in Eq.~5!, remains sufficiently large#, our
description is based on the following ansatz for the 3D wa
function C(r ,t):

C~r ,t !5c~z,t !S G2V'~r'!/uc~z,t !u2

G D 1/2

, ~8!

wherec(z,t) is a newly defined effective 1D wave functio
and

G[NU054pNa0\2/m ~9!

@cf. Eq. ~5!#. Note that the ansatz assumes a fairly sim
relation between the squared 1D and 3D wave functions

ucu25V' /G1uCu2. ~10!

The ansatz~8! makes sense in the region of physical coor
nates where

Guc~z,t !u22V'~r'!.0. ~11!

Substituting the ansatz~8! into the 3D GPE and neglect
ing the transverse part of the kinetic-energy operator in
spirit of the TF approximation, we arrive at an effective 1
GPE,

i\
]c

]t
5F 1

2m
p̂z

21Vz~z,t !1Gucu2Gc, ~12!

upon neglecting terms proportional toV' . Strictly speaking,
to derive Eq.~12! we need a conditionV'!GuCu2, in terms
of the 3D wave function. However, it will be shown belo
that the 1D equation~12! is a reasonable approximate mod
even when the termsV' andGuCu2 are of the same order o
magnitude. The full TF approximation for stationary sol
tions to Eq.~12! can be obtained, as discussed in Sec. II
below, if one further neglects the longitudinal kinetic-ener
operator p̂z

2/2m. We stress that ansatz~8! is not an exact
solution of the full 3D GPE, and it cannot describe rad
excitations of the BEC.

For the case of a harmonic transverse potentialV' from
Eq. ~6!, the above limitation~11! yields

r 2,r m
2 ~z,t ![

2G

mv'
2

uc~z,t !u2, ~13!
02360
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wherer is the radial coordinate in the plane (x,y). The quan-
tity r m introduced in Eq.~13! may be regarded as a definitio
of the radius of the cigar-shaped BEC at given values oz
and t. The 3D wave functionC(r ,t) is subject to the ordi-
nary normalization condition,

2pE
0

`

rdr E
2`

1`

dzuC~r ,z,t !u251. ~14!

Upon noting that the integration overr in Eq. ~14! is con-
fined to the regionr ,r m and substitution of the ansatz~8!
into Eq. ~14!, we obtain a result

2pE
2`

1`

dzE
0

r m
rdr uC~r ,z,t !u2

5
2p

G E
2`

1`

dzE
0

r m
rdr @Guc~z,t !u22mv'

2 r 2/2#

[
pmv'

2

G E
2`

1`

dzE
0

r m
rdr ~r m

2 2r 2!

5
pG

mv'
2 E

2`

1`

uc~z,t !u4dz51. ~15!

Thus, according to Eq.~15!, the usual normalization condi
tion for the 3D wave function, Eq.~14!, generates the fol-
lowing noncanonicalnormalization condition for the effec
tive 1D wave function:

E
2`

1`

uc~z,t !u4dz5
mv'

2

pG
. ~16!

We stress that this abnormal-looking condition is a dir
result of the standard full normalization condition~14! and
the ansatz~8! adopted for the 3D wave function.

We note that, as follows from Eq.~8!, c(z,t)[C(x
50,y50,z,t), i.e., the functionc is the particular value of
the full wave functionC on the axisx5y50 ~therefore, the
functionsc andC are measured in the same units!. Despite
the on-axis identity between the functionsC andc, the lat-
ter one does not have the interpretation as a probability
plitude for the distribution of atoms along thez axis; instead,
the probability for finding a particle in the region betweenz
andz1dz ~integrated in the transverse plane! is

P~z!dz52pE
0

`

rdr uC~r ,z,t !u2dz

5
pG

mv'
2

uc~z,t !u4dz, ~17!

cf. Eqs.~15! and ~16!.
Recall that, in contrast to linear quantum mechanics,

normalization of the wave functionc is important and af-
fects physical results in nonlinear theories of the GPE ty
2-3
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Indeed, the strength of the nonlinear mean-field term in
~12! is determined by the maximum value ofucu2 and is thus
affected by the normalization.

B. The applicability condition for the Thomas-Fermi
approximation

Getting back to the derivation of the 1D equation~12!
from the underlying 3D GPE~5!, we note that the neglect o
the transverse kinetic energy is a crucially important assu
tion in the derivation. To estimate a physical conditions b
hind this assumption, we notice that, in the case of a cig
shaped condensate, or a pancake-shaped condensate~where
the height of the pancake is along thez axis!, the transverse
momentum may be estimated asp';\/r m , wherer m is the
effective radius of the cigar~or height of the pancake, se
below!, for which the estimate~13! was obtained above. Th
transverse kinetic energy may be neglected in compar
with the confining ~transverse! potential if p'

2 /(2m)
!mv'

2 r m
2 /2. The substitution of the above estimate forp'

yields the condition

~mv'!2r m
4 @\2. ~18!

Further, we use Eq.~13! to estimater m , taking into account
that ucu2 can be estimated by means of the normalizat
condition ~14!,

ucu2;1/~pr m
2 L !, ~19!

whereL is the longitudinal size of the cigar. This eventua
yields

r m
4 ;G/~mv'

2 L !, ~20!

and the substitution of Eq.~20! into Eq. ~18! leads, with
regard to expression~9! for G, to the final condition in the
form of Eq. ~1!.

Typical values of the parameters for a cigar-shaped87Rb
condensate are

N523104, vz520 Hz, vx5vy5100 Hz,

a055.017 nm. ~21!

Substitution of these values into Eq.~1! yields the following
limitation on the length of the cigar:L!1 mm, which is
satisfied in experimentally realistic configurations. On t
other hand, the assumption that the cigar is strongly stretc
in thez direction implies an inequalityr m!L. Making use of
relation ~20!, the latter condition can be cast in a final for
L@1 mm. For the parameters in Eq.~21!, we find the con-
dition

1 mm!L!1 mm. ~22!

The actual length of the cigar, as found from the full nume
cal solution~see below!, turns out to be very close to the 3
TF estimate,r TF,z'17 mm, so condition~22! is easily met.
For this example, as well as those presented below in
VIII, our approximation in the classically allowed regions
02360
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the coordinate space should therefore be very accurate,
this indeed is confirmed by numerical results reported
Sec. VIII.

Similarly, for a pancake-shaped87Rb condensate with

N523104, vz5100 Hz, vx5vy520 Hz,

a055.017 nm, ~23!

the height of the pancake is very close to the TF length in
transversez direction, r TF,z'2.4 mm ~and the TF radius in
the transverse direction isr TF,' '12 mm), so condition~1! is
met in this case too.

Details of the derivation of the corresponding applicab
ity condition ~2! for the pancake case are given below at t
end of Sec. VII, where we show that the condition is met
values of the parameters from Eq.~23!.

C. Stationary and slowly varying cases

A stationary solution to the 3D GPE with a time
independent potentialV(r ) can be approximated, in class
cally allowed regions, by a stationary version of the ans
~8!, c(r ,z,t)5f(z) exp@2(i/\)mt#, where the functionf(z)
satisfies the equation

2
\2

2m

d2f

dz2
1@Vz~z!2m#f1Gf350 ~24!

following from Eq. ~12!.
For problems with a slow time variation, we can consid

an instantaneous eigenstate of the nonlinear time-depen
GPE equation. Adiabatically varying potentialsVz(z,t) can
be treated by calculating the instantaneous chemical pote
and quasistationary wave functionf(z;t) in the instanta-
neous external potential, and then forming the full tim
dependent solution as

c~r ,z,t !5f~z;t !expF2~ i /\!E
0

t

dt8m~ t8!G . ~25!

Strictly speaking, the noncanonical normalization conditi
~16!, unlike the canonical~quadratic! one, is not compatible
with the full time-dependent effective 1D GPE~12!. How-
ever, there is no problem with the compatibility in the case
the adiabatically slow evolution.

D. Full Thomas-Fermi approximation in the classically
allowed region

The full 3D TF approximation can be recovered if w
apply the TF approximation directly to the 1D equation~12!,
neglecting the kinetic-energy operator in it, so that the so
tion will be

c~z,t !5Am2Vz~z,t !

G
expF2

i

\E0

t

dt8m~ t8!G . ~26!

According to Eq.~8!, this yields the full 3D TF wave func-
tion,
2-4
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C~r ,t !5S m2V'~r !'2Vz~z,t !

G D 1/2

expF2
i

\E0

t

dt8m~ t8!G .
~27!

Substituting Eq.~26! into the noncanonical normalizatio
condition ~16! yields

E
2`

1`

@m~ t !2Vz~z,t !#2dz5Gmv'
2 /p, ~28!

where the region of integration overz is restricted by the
conditionm(t)2Vz(z,t).0. Hence, the normalization con
dition ~28! determines the chemical potentialm(t). Note that
the condition ~28! is equivalent to the usual form of th
condition which determines the chemical potential in t
framework of the TF approximation applied to the full 3
equation~5!:

2p

G E
0

`

rdr E
2`

1`

dz@m~ t !2V~r ,t !#51, ~29!

where the integration is performed over the region in wh
m(t)2V(r ,t).0. Performing the algebra, we arrive at th
usual expression for the chemical potential in the static h
monic 3D potential~without an optical component!:

m5 1
2 @15G/~4p!#2/5~mv̄2!3/5.

Finally, for any potentialVz(z) ~and the harmonic potentia
V'), the effective probability density defined by Eq.~17!
takes the following form in the TF approximation:

PTF~z!5
p

mv'
2 G

um2Vz~z!u2 ~30!

in the region wherem2Vz(z).0; otherwise,PTF(z)50.

E. Classically forbidden regions

In classically forbidden regions, the density of atoms
small, therefore the nonlinear term in the GPE may
dropped, so that it becomes tantamount to the ordin
quantum-mechanical Schro¨dinger equation, hence we ado
the following product ansatz forC(r ,t):

C~r ,t !5c~z,t !exp~2r'
2 /2R'

2 2 iv't/2!, ~31!

where the transverse squared radius isR'
2 5\/mv' . We

stress that the Gaussian approximation for the transverse
of the ansatz~31! is appropriate, unlike in the classicall
allowed region, as the equation is effectively linear in t
present case. Upon substituting Eq.~31! into the linearized
GPE, it is straightforward to obtain an effective 1D line
Schrödinger equation,

i\
]c~z,t !

]t
5F 1

2m
p̂z

21Vz~z,t !Gc. ~32!
02360
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Quite naturally, Eq.~32! is equivalent to Eq.~12! inside the
classically forbidden region, as in this region the nonline
term in Eq.~12! is negligible.

IV. MATCHING CONDITIONS

Equation ~12! or ~7! can be rewritten in the following
form by rescalingt, z, andc:

iut1
1
2 uzz2U~z,t !u2guuu2u50, ~33!

where g.0 is a properly normalized nonlinear couplin
strength. A solution to Eq.~33! is sought for as

u~z,t !5v~z;t !expS 2 i E
0

t

dt8m~ t8! D , ~34!

with a real chemical potentialm(t) and a real function
v(z;t), cf. Eq. ~25!. Here, the time dependence ofU(z,t) is
presumed to be slow enough, andv(z;t) satisfies a quasista
tionary equation

@m~ t !2U~z,t !#v1
1

2

d2v

dz2
2gv350. ~35!

As in the ordinary semiclassical form of quantum m
chanics, it is necessary to match the approximations for
wave function across the classical turning point, which se
rates the classically allowed and forbidden regions in the
space. As well as in linear quantum mechanics, the w
function in the latter region will be taken in the WKB ap
proximation, see Eq.~36! below. However, a crucial differ-
ence from the standard theory is that the wave function in
classically allowed area is taken not in the correspond
version of the WKB approximation, but rather in the T
form. This, of course, drastically changes the matching pr
lem ~see also Ref.@8#!.

Deeply under the barrier, i.e., for large positive values
the potentialU(z), the density of particles is small, hence,
it was already mentioned above, the nonlinear term in
~35! may be dropped, and a solution may be presented in
standard semiclassical~WKB! approximation,

v~z!5
C

@2$U~z!2m%#1/4
expF2E

z0

z
A2$U~z8!2m%dz8G ,

~36!

where, for definiteness, we choosez0 as the classical turning
point, at whichU(z0)5m, andC is ~for the time being! an
arbitrary real constant~becauseC is arbitrary,z0 may indeed
be chosen arbitrarily!. It is also assumed that the classica
forbidden region is located atz.z0, i.e., to the right of the
turning point. As usual, the WKB approximation~36! is not
valid too close to the turning point.

On the other hand, the solution inside the classically
lowed region (z,z0), not too close to the turning point, i
taken in the usual TF approximation as described above
Eq. ~26!:
2-5
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vTF5Am2U~z!

g
. ~37!

Note that, unlike the WKB solution~36!, the TF approximate
solution ~37! does not contain any arbitrary constant.

Now we need to match the two approximations~36! and
~37! across the turning point, in the vicinity of which bot
approximations are not applicable, the eventual objective
ing to find the constantC in Eq. ~36!. Following the usual
quantum-mechanical approach, one can cast the matc
problem into a standard form, expanding the potential in
vicinity of the turning point,

m2U~z!'F0~z2z0!, ~38!

whereF0 is the value of the potential force at the turnin
point ~in the present case,F0,0). The accordingly modified
version of Eq.~35! is

d2v

dz2
1F0~z2z0!v22gv350,

which is transformed into a normalized form

d2w

dj2
5jw12w3 ~39!

by means of rescalings

j[~2uF0u!1/3~z2z0!, v[
~2uF0u!1/3

Ag
w. ~40!

Equation~39! is a particular case of a classical equati
known as the Painleve´ transcendental of the second type. T
full form of this equation~a standard notation for which i
PII) is

d2w

dj2
5jw12w31a,

cf. Eq. ~39!, wherea is an arbitrary real parameter; in th
present case,a[0. The use of the expansion~38! and sim-
plified equation~39! for matching different asymptotic solu
tions of an equation equivalent to Eq.~35! was proposed, in
a context different from BEC, in Ref.@11# ~however, the
asymptotic form of the solution inside the classically allow
region, for which the analysis was done in Ref.@11#, was
different from Eq.~37!: it corresponded to a nonlinear wav
function oscillating in space, rather than to the TF cas!.
Here, it is necessary to find a solution to Eq.~39! with the
property that it takes the asymptotic forms

w'A2j/2 and w'
C̃

j1/4
expS 2

2

3
j3/2D ~41!

at j→2` and j→1`, respectively, in accordance wit
Eqs.~37! and ~36!. The actual problem is to find a value o
02360
e-

ing
e

the universal numerical constantC̃ in Eqs.~41! from match-
ing the solution to its uniquely defined asymptotic form
j→2`.

As mentioned above, this matching problem is differe
from its counterpart in ordinary~linear! quantum mechanics
An exact solutionto this problem is available in the math
ematical literature~see Ref.@12# and references to origina
works therein!. The final result of the analysis is

C̃5
1

2Ap
'0.282. ~42!

Using this exact result, and undoing the rescalings~40!, we
obtain the value of the constantC in the WKB solution~36!:

C5C̃A2uF0u
g

[A uF0u
2pg

. ~43!

With the relation ~43!, the WKB expression~36! for the
wave function under the barrier is completely defined.
course, the result presented in the form~43! also applies
when the classically forbidden region is located to the l
~rather than to the right! of the classical turning point.

This result for the matching problem applies as well to t
case of the adiabatically slow variation of the paramete
e.g., whenF0 slowly varies as a function of time~or wheng
changes with time due to the variation of the trap poten
with time!. The result does not apply to the case of a verti
potential wall ~when, formally, F05`). However, in this
case, the solution is almost trivial. Indeed, assume that at
point z50 there is a jump of the potential from a large neg
tive valueU2 inside the well (z,0) to a large positive value
U1 inside the classically forbidden region (z.0). Then, in
the allowed region, the TF solution in the formv
5A(m2U2)/g is valid everywhere up to the turning poin
the exact solution in the forbidden region is

v5C exp@2A2~U12m!z#,

and the constantC is immediately found from the continuity
condition,C5A(m2U2)/g.

V. MOMENTUM DISTRIBUTION

The approach developed above can be naturally applie
calculate the distribution of values of the longitudinal m
mentump in a given quantum stateuC&, which can be mea-
sured in a direct experiment. The distribution is determin
by the scalar product

P~p!5 z^puC& z2, ~44!

where, up to a normalization factor,

^pu5expS 2 ipz

\ D ~45!

is the conjugate eigenfunction of the momentum opera
Thus, according to Eq.~44!, to determine the momentum
distribution in thez direction we need to calculate nothin
2-6
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else but the 1D Fourier transform of the 3D wave functi
~8!, additionally integrated in the transverse direction@the
scalar product in Eq.~44! assumes, of course, the full 3
integration#:

^puC&52pE
2`

1`

dz expS 2 ipz

\ D E
0

`

C~r' ,z,t !r'dr' ,

~46!

where the multiplier 2p is generated by the angular integr
tion in the transverse plane.

Substituting the expression~8! for C inside the classically
allowed region into~46!, the integration overr' is confined
to the interval 0,r',r m , where r m

2 (z,t) is the same as
defined above by Eq.~13!. Taking into account the form o
the transverse potential~6!, we arrive at an expression

^puC&'2pE
2`

1`

dzexpS 2 ipz

\ Dc~z,t !

3E
0

r mS G2V'~r'!/uc~z,t !u2

G D 1/2

r'dr'

52pE
2`

1`

r m
2 dzexpS 2 ipz

\ D
3c~z,t !E

0

1
A12r2rdr, ~47!

where r[r' /r m . Further, using an elementary formu
*0

1A12r2rdr51/3 and the expression~13! for r m , we ob-
tain from Eq.~47!,

^puC&5
4p

3

G

mv'
2 E

2`

1`

dzexpS 2 ipz

\ Dc~z,t !uc~z,t !u2,

~48!

which is the final result: Eq.~48! tells us that the amplitude
^puC& of the probability distribution, which determines th
probability as per Eq.~44!, is

^puC&5
4p~2p!1/2

3

G

mv'
2
F$cucu2%~p/\!, ~49!

whereF is the symbol of the Fourier transform

F$ f %~v![
1

~2p!1/2E2`

1`

exp~2 ivt ! f ~ t !dt. ~50!

Inside the classically forbidden region, the usual quantu
mechanical expressions for the momentum distribution
ply.

Expectation values of operators involving only the lon
tudinal momentum can be computed as follows, if we n
glect a contribution from classically forbidden regions. Su
pose we have an operatorO(p), such as, for instance,p itself
or the kinetic energyp2/(2m). Then, the expectation valu
of the operatorO(p) is given by
02360
-
-

-
-

^CuO~p!uC&5E
2`

1`

dpO~p!z^puC& z2. ~51!

The expression~49! should be then substituted for^puC& in
Eq. ~51!.

VI. THE CONDENSATE WITH VORTICITY

The above consideration can be generalized for a c
when the condensate inside the cylindrically symmetric
gion is given vorticity, so that the wave function has the fo

C~r ,z,t !5exp~ i l u!F~r ,z,t !, ~52!

whereu is the angular coordinate in the transverse plane
l is the vorticity quantum number. The ansatz~8! is then
replaced by

C~r ,z,t !5exp~ i l u!G21/2

3AGuc l~z,t !u22S mv'
2 r 2/21

\2l 2

2mr2D .

~53!

The corresponding normalization condition replacing E
~14! takes the form

2pE
2`

1`

dzE
r min

r m
rdr uC~r ,z,t !u251, ~54!

where now

r m
2 5

1

mv'
2 @Guc l u21AG2uc l u42~ l\v'!2#, ~55!

r min
2 5

1

mv'
2 @Guc l u22AG2uc l u42~ l\v'!2#. ~56!

The corresponding 1D GPE equation forc l(z,t) is

i\
]c l

]t
5F 1

2m
p̂z

21Vz~z,t !1Guc l u2Gc l .

Finally, the substitution of the expressions~53!, ~55!, and
~56! into Eq. ~54! yields, after a straightforward calculatio
of the integral over the radial variabler, an effectively 1D
normalization condition in a complicated form, which is
generalization of the above noncanonical normalization c
dition ~16! corresponding tol 50:

E
2`

1`

dzFGuc l~z!u2AG2uc l~z!u42~ l\v'!2

m2v'
4

2S \ l

mv'
D 2

lnS 2G2uc l~z!u4

~ l\v'!2
21

1
2Guc l~z!u2

l\v'
AG2uc l~z!u4

~ l\v'!2
21D G5

2G

pmv'
2

.

~57!
2-7
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Note that, withl 50, this result indeed reduces to Eq.~16!. A
consequence of Eq.~57! is that uc l(z)u2 cannot take values
smaller than„uc l(z)u2

…min5(l\v')/G. Furthermore, from Eq.
~53! it is clear that the conditionGuc l(z,t)u22@mv'

2 r 2/2
1(\ l /r )2/(2m)#.0 must be satisfied for the ansatz~53! to
be valid.

VII. THE BROKEN-SYMMETRY CONDENSATE

As mentioned in the Introduction, the approach develop
above can be extended to the case when the cylindrical s
metry about thez axis is broken by a nonaxisymmetric po
tential Vxy(x,y). In this case, essentially the same ansatz
given by Eq.~8! may be employed if the potential is ha
monic in z. Accordingly, we take the transverse potential
V'(z)5(1/2)mv'

2 z2, cf. Eq. ~6!, and an ansatz in the form

C~r ,t !5c~x,y,t !S G2mv'
2 z2/2uc~x,y,t !u2

G D 1/2

. ~58!

Note that the interpretation of the functionc(x,y,t) is simi-
lar to that of the functionc(z,t) in the ansatz~8!: it coin-
cides with the full 3D wave functionC(x,y,z,t) at z50.
Substitution of Eq.~58! into the 3D normalization condition
~14! and straightforward integration in thez direction, which
is actually limited to the interval

0,z2,zm
2 [

2G

mv'
2

uc~x,y,t !u2 ~59!

@cf. Eq. ~13!#, yields a result

E
2`

1`E
2`

1`

uc~x,y!u3dx dy5
3

4
Amv'

2

2G
, ~60!

cf. Eq. ~16!. This is another example of the noncanonic
normalization condition, which is generated by the reduct
in the effective space dimension. As for the effective 2
GPE generated by the ansatz~58!, it has the usual form

i\
]c~x,y,t !

]t
5F 1

2m
~ p̂x

21 p̂y
2!1Vxy~x,y,t !Gc, ~61!

cf. Eq. ~12! @a formal condition under which Eq.~61! can be
derived from the 3D equation~5! is mv'

2 z2!uc(x,y,t)u2].
We do not consider the problem of matching the wa

function in the classically allowed and forbidden regions
the framework of the 2D equation~61!, as the WKB approxi-
mation for the classically forbidden region is itself problem
atic in the 2D case. In fact, this approximation was on
elaborated for the 2D motion in an axially symmetric fie
@7#, which does not correspond to the situation of interes
the present context@the axial symmetry in the (x,y) plane
will be destroyed by the optical lattice#.

Finally, to estimate the applicability of the TF approxim
tion, i.e., the possibility to neglect the transverse kinetic
ergy ~along the height of the pancake! in the course of the
derivation of the 2D equation~61!, we notice that this can be
carried out following the lines of the analysis presen
above for the cigar-shaped condensate~where the pancake
shaped case was mentioned too!, with the only difference
02360
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that the normalization condition in the present case yields
estimate for the squared wave function different from th
given by Eq.~19!: ucu2;1/(pR2zm), wherezm is the effec-
tive transverse size of the pancake condensate, accordin
Eq. ~59!, and R is a characteristic radius of the pancak
Accordingly, the final estimate for the transverse size is d
ferent from that given by Eq.~20! for the cigar:

zm
3 ;

G

mv'
2

R22. ~62!

The substitution of Eq.~62! into the condition that the trans
verse kinetic energy must be much smaller than the confin
potential yields the eventual result~2!.

For example, if the same values of physical parameter
given in Eq.~23! are adopted in the present case, the con
tion ~2! imposes the following limitation on the pancake
radius: R&0.01 mm. As well as in the case of the ciga
another condition must be added, to guarantee that the ra
R is much larger than the transverse sizezm ~i.e., the conden-
sate is indeed shaped like a pancake!. Making use of Eq.~62!
and again taking the values of the parameters from Eq.~21!,
one can cast the latter condition in the formR@1 mm. Thus,
the present approach applies to the pancake-shaped con
sates if 1mm!R&10 mm. Although this condition is essen
tially more restrictive than its counterpart for the ciga
shaped condensates, it can be implemented in the experi
~in fact, one may expect that the pancake configuration w
be created with a larger number of atoms than the cigar, t
the above conditions will assume a less restrictive form!. The
TF length in thez direction is r TF,z'2.4 mm, and the TF-
radius RTF,' '12 mm, and these are very close to the n
merically computed lengths, so our condition~2! is met. If,
for other values of the physical parameters, the conditi
are not met, the approach developed in Refs.@4# or @5# may
be applicable.

VIII. NUMERICAL RESULTS

For the numerical solution of Eqs.~5! and ~12!, we used
the standard split-step operator method@13#. The computa-
tional grids had 65 536 and 3233232048 points for the 1D
and 3D cases, respectively, with spatial stepsDhz
'0.0002r TF,z for the 1D geometry, andDhx5Dhy
'0.13r TF andDhz'0.005r TF for the 3D case. We used tw
different methods for finding stationary solutions to GP
~24!, and to its 3D counterpart: the first technique was
imaginary-time version of the split-step operator method@9#,
and the second is the standard finite-difference method u
to solve a two-point boundary-value problem@14#. It is im-
portant to note that, by treating Eq.~24! as a two-point
boundary problem, the initial conditions must include t
eigenvaluem. This will, generally, give an unphysical solu
tion for f, since the normalization condition will not be me
By gradually changing the value ofm, and redetermining the
wave function of the nonlinear GPE using the finit
difference method, we can follow the surface of solutions
Eq. ~24! until a physical solution is obtained.

Numerically, we find the imaginary time split-step rela
2-8
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ation method painfully difficult to converge in 3D for th
cigar-shaped geometry that we used in the calculations,
with and without the optical potential. The finite-differenc
two-point boundary-value method appears to be more e
cient. For dynamical simulations, however, we used only
split-step method.

We first consider the case when only the harmonic pot
tial is present; the action of an optical potential on t
trapped BEC will be considered below. In the calculatio
we take a 87Rb condensate withN5106 atoms, vz
520 Hz, vx5vy5100 Hz, anda055.017 nm. For the pa
rameters used in the calculation, the TF radius in thez direc-
tion is r TF,z536.35mm, in the x,y directions r TF,'
57.27mm, and the chemical potential ism51.507
310230 J. The applicability condition~1! definitely holds in
this case.

FIG. 1. The probabilityP(z) for the 3D harmonic potential vs
z/r TF,z , as found numerically using Eq.~7!, andPTF(z) vs z/r TF,z ,
as calculated using Eq.~30!. The probabilityP3D(z) found from the
stationary version of the full 3D equation~see the text! cannot be
discerned, as it lies on top ofPTF(z).

FIG. 2. The probabilityP(z) for the combination of the 3D
harmonic and optical potentials vsz/r TF,z , as found numerically
using Eq. ~7!. For comparison, the probabilityP(z) without the
optical potential, and the optical potential itself are also shown
02360
th

-
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-

,

Figure 1 shows the probabilityP(z) versusz, as calcu-
lated using Eq.~7!. Also shown is the probabilityPTF(z) as
obtained from the full TF approximation based on Eq.~30!,
and a probabilityP3D(z) found from the numerical solution
of the full 3D GPE. The curve obtained from the 3D GP
lies on top of the TF curve, being nearly indiscernible from
~it is no surprise that TF is a good approximation for 106 Rb
atoms in a harmonic trap!. Clearly, the comparison of the
P(z) found by means of the approximation developed abo
with the TF and full 3D results is excellent. A slight deteri
ration occurs in the region where the density is low.

Figure 2 shows the probability distribution for the sam
harmonic potential as in Fig. 1, but with an added optic
lattice potential as given by Eq.~4!, with the wavelength
lph5840 nm, relative angleu510° between the two light
beams, and the constant amplitudeV055ER . For this wave-
length, the recoil energyER5\2(2p/l)2/(2m)52.15
310230 J, so the optical potential’s strength is about 1
times the value of the chemical potential in the absence
the optical lattice. In the presence of the optical lattice,

FIG. 3. The probability distributionsP(z), P3D(z), andPTF(z)
vs z/r TF,z for the combination of the 3D harmonic and optical p
tentials. The inset is an enlargement of the region nearz/r TF,z51.

FIG. 4. The probabilityuC(r )u2 vs x andz.
2-9
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chemical potential is calculated to be 3.15310230 J ~slightly
more than twice the chemical potential without the opti
lattice!. Also shown in Fig. 2 is the optical potentialVL(z),
andP(z) determined without the optical lattice~as in Fig. 1!.
As is seen from the figure, the optical potential squeezes
atomic density out to largerz; it also squeezes it out to large
x andy, see below.

Figure 3 shows the comparison ofP(z) with PTF(z) and
P3D(z), wherePTF(z) is calculated using Eq.~30!, and with
P3D(z) as obtained by solving the stationary 3D GPE. T
TF result still provides an adequate description, despite
fact that the kinetic energy is more important in this ca
than in the case without the optical potential. Hence we c
clude that the kinetic energy remains much less signific
than the potential and the mean-field energy in this case.
method produces results closer to the 3D result than the
The kinetic energy does broaden the wave function in e
optical well, hence peaks of the wave functions are low
than in the TF approximation, as evident in Fig. 3. No
however, that our method, being based on a TF-type appr
mation in the transverse dimension, restricts the diffusion
the wave function due to the kinetic energy to thez direction
~but the wave function is definitely squeezed into the tra
verse dimension due to the optical potential and the m
field—see below!. The inset in the figure is an enlargeme
of the region nearz/r TF,z51.

Figure 4 showsuC(r )u2 versusr andz. A striking aspect
of this figure is the extent to which the wave function
squeezed out to largerr in the presence of the optical pote
tial. Without this potential, the size of the wave function inr
is r TF,x (5r TF,y), but now it is squeezed out to about 5r TF,x .
The size of the wave function in the radial direction depen
uponz, as does the extent of the squeezing inr. The distri-
bution of uC(r )u2 versusr andz, as produced by the station
ary 3D GPE, is similar to that obtained by our method.

Finally, in Fig. 5 we show results of a dynamical calcu
tion in which we varied the optical potential as a function
time, so that the peak strength of the optical potential
pended on time asV0(t)55ERexp„2@(t2tF)/s#2

…, with
tF51.12 ms ands5tF/250.56 ms. The calculated probabi
ity distribution P(z,t) is shown at four different times, viz.
at t50 before the optical potential is ramped up, att5tF/5
when the optical potential is still rather small, att5tF/2
when the optical potential is somewhat less than 0.4 time
final value of 5ER , and att5tF when V0(tF)55ER . The
dynamics are initially adiabatic, but, clearly, by the fin
time, tF51.12 ms, the dynamics cease to be adiabatic~com-
pare the result with the probability distribution shown in F
2!. The dynamics of the probabilityP(z,t) versusz, calcu-
lated using the 3D GPE, are similar to that shown in Fig.

IX. SUMMARY AND CONCLUSIONS

We have proposed several improvements to the semic
sical description of BECs in three dimensions. First, an
satz that makes it possible to reduce the corresponding
GPE to an effectively 1D equation in the cylindrically sym
02360
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metric case was put forward. An interesting feature of t
approach is that the corresponding 1D normalization con
tion, which follows from the standard normalization cond
tion in the full 3D description, takes a noncanonical for
containing the fourth power of the 1D wave function, rath
than its square. Also noncanonical is an expression for
probability density of the distribution of the 1D momentum
These results were further extended to cases when the
has vorticity, and when cylindrical symmetry is absent; the
cases yield additional examples of noncanonical normal
tion conditions, sometimes of quite a complicated form. F
both cases with the imposed and broken cylindrical symm
try, explicit conditions for the applicability of the effectiv
low-dimensional equations were produced.

Another result, obtained in the framework of the effe
tively 1D description, is an explicit matching formula be
tween the TF approximation valid inside the classically
lowed region, and the exponentially vanishing WK
approximation valid inside the classically forbidden regio
Here, an exact solution to a problem found long ago in
abstract mathematical context determines the arbitrary c
stant in front of the exponentially decaying WKB wave fun
tion.

To verify the validity of analytical approximations deve
oped in this work, we have performed direct numerical c
culations of bound states and of dynamics in a tim
dependent potential, and compared the probabi
distributions obtained with full 3D results. The comparis
shows that the analytical approximations are quite accur
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FIG. 5. The probabilityP(z,t) vs z at four different values of
time, t50 @V0(0)50#, t5tF/5 @V0(tF/5)50.387ER#, t5tF/2
@V0(tF/2)51.839ER#, t5tF @V0(tF)55ER#.
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