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Unified semiclassical approximation for Bose-Einstein condensates: Application to a BEC
in an optical potential
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We present semiclassical descriptions of Bose-Einstein condensates for configurations with spatial symme-
try, e.g., cylindrical symmetry, and without any symmetry. The description of the cylindrical case is quasi-one-
dimensionalQ1D), in the sense that one only needs to solve an effective 1D nonlineardiuieo equation,
but the solution incorporates 3D aspects of the problem, as a result of which the 1D equation is supplemented
by a noncanonicalquartio normalization condition. The solution in classically allowed regions is matched
onto that in classically forbidden regions by a connection formula that properly accounts for the nonlinear
mean-field interaction. Special cases for vortex solutions are treated too. Comparisons of the Q1D solution with
the full 3D and Thomas-Fermi ones are presented, and conditions for the applicability of the effective low-
dimensional equations are obtained.
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I. INTRODUCTION the full 3D wave function in the transverse plane. In the
transverse direction, the ansatz adopted in Fgfassumed a
Simple models of Bose-Einstein condens4RiEC9 have  Gaussian distribution. As a result, a nonpolynomial GPE was
been very useful for understanding their physics. For exderived in that work. It was used recenfl§] to describe
ample, in the mean-field approximation for BECs with repul-macroscopic tunneling in a double-well potential subject to
sive atom-atom interactions, in regions where the local dentapid temporal modulation.

sity is large enough and the mean-figltbnlineay term in Here we develo_p an approach that differs from the treat-
the Gross-Pitaevskii equatig®PB is much larger than the Ments of Refs[4,5] in several ways. In our treatment in Sec.
kinetic-energy term’ the Thomas_Fer(ﬂ'iF) approximation “l, regions of phyS|Ca| space In which the denSIty is suffi-

offers such a simplified description for the ground state of ient for the application of the mean-field approximation,
BEC in a stationary potentidll]. However, in classically and those in which the density is low, are treated completely
forbidden regions of the coordinate space, the density is lovdifferently. In Sec. IV, we develop a connecti¢erossover
and the TF approximation is invalid. It is necessary to matcHormula for the wave function in these regions, in analogy
the TF approximation in the region of high density to a de-With the commonly known formulas between classically al-
scription valid near the boundaries of the classically allowedowed and forbidden regions in ordinary quantum mechanics
motion and inside the classically forbidden region for a giverl 7] (the difference from the connection formula in quantum
external potential. For dynamic situations, some simple apthechanics is due to the fact that the GPE is a nonlinear
proximations exist for time-dependent harmonic potentialsquation. A WKB approximation for the nonlinear Schro
[2,3]. It would be very useful to have a simple effective dinger equation in an external potential, uniformly valid in
one-dimensiona(1D) approximation that properly accounts classically allowed and forbidden regions, was recently pro-
for the 3D character of a BEC, for both static and dynamicPosed in Ref[8], but that approximation does not produce
problems in configurations with spatial symmetry, such as dhe connection formula. _
BEC in a cylindrically symmetric potentid.g., a harmonic In Sec. Ill we develop an effectively 1D treatment of the
trap with cylindrical symmetry, with or without an optical dynamics with the cylindrical symmetry. In order to reduce
potential that varies in space along the symmetry axis of théhe 3D equation to a 1D form, we do not assume a Gaussian
harmonic potential, see a detailed formulation of the modeflistribution in the transverse direction, which is an essential
below in Sec. ). Pedriet al. developed a treatment of this difference from the approach adopted in R¢fs5]. Instead,
kind [4]. Another contribution was made in Ré6], which ~ Wwe directly use the TF approximation in 3D. An estimate for
aimed at a derivation of an effectively one-dimensiofid) ~ the applicability of our methodwhich relies upon the ne-
GPE relevant for the description of a 3D BEC by means ofglect of the transverse part of the kinetic energy in the GPE
the variational approximation. The 1D wave function derivedfor the case of a cigar-shaped BEC is given by
in Ref. [5] was defined so that.it has the same density dis;ri— 4mNag>L, 1)
bution along the symmetry axis of the system as that which
could be obtained by integrating the distribution produced bywhereN is the number of atoms,, is thes-wave scattering
length, andL is the length of the cigar-shaped configuration.
As the longitudinal length and number of atoms are not in-
*Present address: Department of Interdisciplinary Studies, Facultgglependent parameters, the valueLofo be substituted into
of Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. Eqg. (1) is a function ofN, which is to be determined for a
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specific potential. Conditiofil) may be easily met in situa- end, we consider a BEC in an array of optical traps, in the

tions relevant to experimerisee, for instance, an example presence of the gravitational field and large-size magnetic

given in Sec. VIII below. trap in the form of a parabolic potential induced by the in-
If, nevertheless, the conditiqt) is not met, the treatment teraction of the magnetic moment of atoms with an external

developed in Refd.4,5] may apply. It should also be men- static magnetic field. The static magnetic-trap potential is

tioned that the approach proposed in R&l.is applicable in L 20 2,0 o

an essentially wider parametric range if one is interested in Vu(r)=z2mlo;z°+ wf (X“+y9)], (©)]

the profile of the condensate density along the cylindrical . . . -

axis, integrated in the transverse pldsee Eq(11) in Ref. where m is the atomic mass. The optical potential is pro-

[5], which demonstrates that the profile directly following duced by light .bea“.“s With i(j_entical linear polqri_zations,
from a high-density approximation applied to the above-Whose propagation directions lie in a plane containingzhe
axis, forming angles9/2 and 7—— 6/2 with it (§=0 corre-

mentioned nonpolynomial GPE is fairly close to that pro- R .
duced by the TF approximation applied directly to the underSPONdS t0 two beams counterpropagating in the direc-
lying 3D GPH. tion). Interference between these fields produces a standing-

Here, in the classically allowed region, the full 3D GPE is Wave potential along the direction, whose amplitude is

reduced to a 1D equation. However, a drastic difference fronﬁ)ropor_tionall to the intensity of light. It _is assumed.thaF the
the naive 1D description is that the solution to our 1D equalNtensity is initially zero and gradually increases with time,
tion is subject to anoncanonical(nonquadratic normaliza- hence th? light-induced potential experienced by atoms in
tion condition[see Eq.(16)], which is derived from the ca- the BECis
nonlc;al normalization fpr Fhe 3D wave function. As a V (z,)=V,(t)[ 1+ cog 2k2)]/2, (4)
physically relevant application of the general method, we
calculate the quantum-mechanical distribution of values ofvhereV(t) is the optical potential’s amplitude which varies
the longitudinal momentum in a cigar-shaped BEC in Sec. Vin time, andk=(27/\,)sin(6/2) is the wave vector of the
This distribution also has a noncanonical form in comparisorpptical lattice,\ ,, being the wavelength of light. It is often
with ordinary quantum mechanics in 1D. In Sec. VI we gen-convenient to discuss the depth of the optical potential in
eralize the approach to treat the case of a BEC with vorticityunits of the recoil energfg=(2%/\ )%/ (2m), which is
in this case, the effective 1D normalization condition takesthe kinetic energy gained by an atom when it absorbs a pho-
on a still more involved fornjsee Eq.(57)]. ton from the optical lattice.

We also develop a generalization of our approach for a Finally, the description of the mean-field dynamics of the
pancake-shaped condensate, even when the cylindrical sydondensate is based on the 3D time-dependent GPE,
metry is broken by an external potential, so that the effective
equation is 2D, see Sec. VIl below. In that case, the applica-
bility condition for our method takes a form different from

Eq. (1),

J ~
ifi - W(r,t)=[p?2m+V(r,t) +NUo| ¥ []W, ()

where V(r,t)=Vy(r)—mgz+V,(z,t) is the full potential
(47agN)?>R?, ) (the second term is the gravitational potential/2m is the
Mo kinetic-energy operatol) ,=4mayh?/m is the atom-atom
interaction strength that is proportional to thevave scatter-
ing lengthay, andN is the total number of atoms. Note that,
ccording to Eq(3), the full potential can be written as

wherem is the atom massy, is the frequency correspond-
ing to the confining potential in the transverse direction, an
R is the radius of the pancake. Conditi(®) is more restric-
tive than Eq.(;), but it can alsp be met in experimentally V(r,t)=V,(z,t)+V, (r,), with VL(rL)E%mwf(XZerZ)_
relevant situations, as is described belas well as in the (6)
case of Eq(1), the radius and number of atoms, to be sub- _ _ ) o
stituted into Eq.(2), are not independent parameters, a rela- Equation(5) can be rewritten, in terms of characteristic
tion between them being determined by the potential relief irfliffraction and nonlinear time scalégr andty, , as follows
the plane of the pancakeFinally, the pancake wave function [9,10
is subject to another noncanonical normalization, see Eq. 2
(60) below. A LS
In Sec. VIII we provide numerical examples that compare ot tor ’ ta |‘I’m|2
our method with full 3D calculations for a BEC in static
potentials and for dynamics of a BEC in the presence of &lere, the diffraction time tor=2mr2Jf, with rqe

time-varying external potential. The comparison demon-=/2,/(mw?) and ;=(wzwi)1/3, and the nonlinear time
strates the validity of the approach developed in the prese%LE(Gme/ﬁ)_l:(M/ﬁ)_l can be expressed in terms of

work. the chemical potentigk, where| V| is the maximum mag-
nitude of ¥ [9]. Another useful length scale istg,
= \/Z,U,/(mwzz), i.e., the TF radius in the direction. This is

We begin by defining the systems of interest to us in theghe size of a TF wave function in the direction for the
context of a cylindrically symmetric model problem. To this harmonic potentiamwizzlz.

w2

)

IIl. AMODEL WITH CYLINDRICAL SYMMETRY
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lll. THE SEMICLASSICAL APPROXIMATION wherer is the radial coordinate in the plane,¥). The quan-

We consider a semiclassical approach based on thtt'aty I'n introduced in Eq(13) may be regarded as a definition

Thomas-Fermi approximation for a 3D BEC wave function Of the radius of the cigarTshaped B.EC at given valuesx.of

in a cylindrically symmetric potential. Our treatment is bro- ﬁg(rjt'ngrrijga\ggxecgﬁ%?ggf(r’t) is subject to the ordi-

ken up into different approaches depending upon whether the y '

atomic gas density is higfin the classically allowed regions . e

of the coordinate spag®r low (in classically forbidden re- wa rdrf dZW(r,z,t)2=1. (14)
0 —0o0

gions.

A. The classically allowed region Upon noting that the integration overin Eg. (14) is con-

. . . . fined to the regiorr <r,, and substitution of the ansa(8)
Inside the classically allowed regidnot too close to its 'réto Eq. (14), we obtain a result

boundaries so that the atomic gas density, and hence, tr|1
nonlinear term in Eq(5), remains sufficiently large our o ;
description is based on the following ansatz for the 3D wave 277] dzf mrdr|\II(r,Z't)|2
function W (r,t): - 0

G-V, (r)/[p(z ]| *? 2w [ 2 22
W(r)=9(zt) 1 lG ' ) =5 . dz . rdr[G|¢(z,t)|*—mwTr?/2]
2
wherey(z,t) is a newly defined effective 1D wave function _ Moy [ fm 2_ .2
= dz| rdr(rp,—r9)
and G o 0
G=NUy=4mNayh?/m 9) oG [+
= zf |p(z,t)|*dz=1. (15)
[cf. Eq. (5)]. Note that the ansatz assumes a fairly simple M) J ==

relation between the squared 1D and 3D wave functions,
Thus, according to Eq15), the usual normalization condi-
||?=V, IG+|¥|2 (100 tion for the 3D wave function, Eq.14), generates the fol-
lowing noncanonicalnormalization condition for the effec-
The ansatZ8) makes sense in the region of physical coordi-tive 1D wave function:
nates where
2

Gly(z ]2~V (r,)>0. (11 f“°|¢(z,t>|4dz: e 16

Substituting the ansat®8) into the 3D GPE and neglect-
ing the transverse part of the kinetic-energy operator in th&\Ve stress that this abnormal-looking condition is a direct
spirit of the TF approximation, we arrive at an effective 1D result of the standard full normalization conditioh4) and
GPE, the ansatZ8) adopted for the 3D wave function.
’ L We note that, as follows from Eq®8), #(z,t)=V¥(x
oY ~p 2 =0y=0.zt), i.e., the functiony is the particular value of
Ihﬁ B ﬁpz+VZ(z’t)+G| 2 (12 the full wave function¥ on the axisx=y=0 (therefore, the
functions and\W are measured in the same upit®espite
upon neglecting terms proportional ¥ . Strictly speaking, the on-axis identity between the functiosand ¢, the lat-
to derive Eq.(12) we need a conditioR, <G|¥|?, in terms  ter one does not have the interpretation as a probability am-
of the 3D wave function. However, it will be shown below plitude for the distribution of atoms along thexis; instead,
that the 1D equatiofil2) is a reasonable approximate model the probability for finding a particle in the region between
even when the termg, andG|W|? are of the same order of andz+dz (integrated in the transverse plare
magnitude. The full TF approximation for stationary solu-

tions to Eq.(12) can be obtained, as discussed in Sec. Il D »

below, if one further neglects the longitudinal kinetic-energy P(Z)dZZZWJ0 rdr|W(r,zt)|*dz

operatorfﬁ/Zm. We stress that ansat8) is not an exact

solution of the full 3D GPE, and it cannot describe radial G

excitations of the BEC. =——|y(z,1)|*dz, 17
For the case of a harmonic transverse potetialfrom Mo,

Eq. (6), the above limitatior(11) yields
a(6) My cf. Egs.(15) and(16).

2G Recall that, in contrast to linear quantum mechanics, the
r2<rﬁ1(z,t)E > | (z,1)|2, (13 normalization of the wave functiog is important and af-
Mo} fects physical results in nonlinear theories of the GPE type.
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Indeed, the strength of the nonlinear mean-field term in Eqthe coordinate space should therefore be very accurate, and
(12) is determined by the maximum value |of|? and is thus  this indeed is confirmed by numerical results reported in
affected by the normalization. Sec. VIII.
Similarly, for a pancake-shapeRb condensate with
B. The applicability condition for the Thomas-Fermi

approximation N=2x10", ,=100 Hz, wy=w,=20 Hz,

Getting back to the derivation of the 1D equatiti®) ay=>5.017 nm, (23
from the underlying 3D GPE5), we note that the neglect of
the transverse kinetic energy is a crucially important assumpthe height of the pancake is very close to the TF length in the
tion in the derivation. To estimate a physical conditions betransversez direction, r1g ,~2.4 um (and the TF radius in
hind this assumption, we notice that, in the case of a cigarthe transverse directionigg; ~12 um), so condition(1) is
shaped condensate, or a pancake-shaped condéndetee  met in this case too.
the height of the pancake is along thexis), the transverse Details of the derivation of the corresponding applicabil-
momentum may be estimated ps~7#/r,,, wherer,, is the ity condition (2) for the pancake case are given below at the
effective radius of the cigafor height of the pancake, see end of Sec. VII, where we show that the condition is met for
below), for which the estimatél3) was obtained above. The values of the parameters from E@3).
transverse kinetic energy may be neglected in comparison
with the confining (transversg potential if pf/(Zm) C. Stationary and slowly varying cases
<mw?r2/2. The substitution of the above estimate for

yields the condition A stationary solution to the 3D GPE with a time-

independent potentiaV(r) can be approximated, in classi-
(me)zrﬁq>ﬁ2- (18) cally allowed regions, by a stationary version of the ansatz
(8), ¥(r,z,t)= ¢(z) exd —(i/h)ut], where the functionp(z)
Further, we use Eq13) to estimate ,,, taking into account satisfies the equation
that | 4|2 can be estimated by means of the normalization 2 g
condition (14), S —Zf+[vz(z)—,u]¢+G¢3=0 (24)
|12~ LT L), (19 “
following from Eq. (12).

For problems with a slow time variation, we can consider
an instantaneous eigenstate of the nonlinear time-dependent
GPE equation. Adiabatically varying potentials(z,t) can
be treated by calculating the instantaneous chemical potential

and the substitution of Eq20) into Eq. (18) leads, with ~@nd quasistationary wave functiof(z;t) in the instanta-
regard to expressiof9) for G, to the final condition in the N€OUS external potential, and then forming the full time-

wherelL is the longitudinal size of the cigar. This eventually
yields

re~Gl(mw?L), (20)

form of Eq. (1). dependent solution as
Typical values of the parameters for a cigar-shap@b .
condensate are ¢(r,z,t)=¢(z;t)exp[—(i/ﬁ)f dt’w(t)|. (25
0

N=2x10", ,=20 Hz, wy=w,=100 Hz,
Strictly speaking, the noncanonical normalization condition
ap=5.017 nm. (21) (16), unlike the canonicalquadrati¢ one, is not compatible

with the full time-dependent effective 1D GRE2). How-

Substitution of these values into Ed,) yields the following  ever, there is no problem with the compatibility in the case of

limitation on the length of the cigat.<1 mm, which is the adiabatically slow evolution.

satisfied in experimentally realistic configurations. On the

other hand, the assumption that the cigar is strongly stretched p. Full Thomas-Fermi approximation in the classically

in the z direction implies an inequality,,<L. Making use of allowed region

relation (20), the latter condition can be cast in a final form

L>1 um. For the parameters in E1), we find the con- The full 3D TF approximation can be recovered if we

apply the TF approximation directly to the 1D equatid®),

dition neglecting the kinetic-energy operator in it, so that the solu-
1 um<L<1 mm. (22)  tion will be
i i —V,(z,t it
The actL!aI length of the cigar, as found from the full numeri W(zt) = [H A )ex _ _J' dt’ w(t)|. (26
cal solution(see belov, turns out to be very close to the 3D G hlo

TF estimatey ¢ ,~17 um, so condition(22) is easily met.
For this example, as well as those presented below in Seéccording to Eq.(8), this yields the full 3D TF wave func-
VIII, our approximation in the classically allowed regions of tion,
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w—V, (), —Vy(z,t)|*? it Quite naturally, Eq(32) is equivalent to Eq(12) inside the
Y(r,t)= ex % dt’ w(t")
0

. classically forbidden region, as in this region the nonlinear

G 27 term in Eq.(12) is negligible.
Substituting Eq.(26) into the noncanonical normalization IV. MATCHING CONDITIONS
condition (16) yields Equation (12) or (7) can be rewritten in the following
e form by rescaling, z, and ¢:
f_w ()= Va(z ) Pdz=Gmo/m, 9 iu+Lu,,—U(z,Hu— ylul2u=0, (33

where the region of integration overis restricted by the where y>0 is a properly normalized nonlinear coupling
condition u(t) —V,(z,t)>0. Hence, the normalization con- strength. A solution to Eq(33) is sought for as
dition (28) determines the chemical potentja{t). Note that
the condition(28) is equivalent to the usual form of the . Y
condition which determines the chemical potential in the uzt=v(zt)exy i odt SUE (34)
framework of the TF approximation applied to the full 3D
equation(5): with a real chemical potential(t) and a real function
) v(z;t), cf. Eq.(25). Here, the time dependence d{z,t) is
T o) + o0 . - . .
cm _ _ presumed to be slow enough, amgi;t) satisfies a quasista-
G fo rdrfﬁwdz[,u(t) vrnl=1, 9 tionary equation
where the integration is performed over the region in which 1d% 3
w(t)—V(r,t)>0. Performing the algebra, we arrive at the [n(t)=U(z,t)]Jv+ 242 " =0. (35
usual expression for the chemical potential in the static har-

monic 3D potentialwithout an optical component As in the ordinary semiclassical form of quantum me-

. B T chanics, it is necessary to match the approximations for the

n=73[15G/(4m) ] (Mw*)=">. wave function across the classical turning point, which sepa-

rates the classically allowed and forbidden regions in the 1D

Finally, for any potentiaV,(z) (and the harmonic potential space. As well as in linear quantum mechanics, the wave
V.), the effective probability density defined by EQ7)  function in the latter region will be taken in the WKB ap-

takes the following form in the TF approximation: proximation, see Eq(36) below. However, a crucial differ-
ence from the standard theory is that the wave function in the
T ) classically allowed area is taken not in the corresponding
Pre(2)= MG |n=V(2)] (B0 version of the WKB approximation, but rather in the TF
1

form. This, of course, drastically changes the matching prob-
lem (see also Ref.8]).
Deeply under the barrier, i.e., for large positive values of
the potentiald (z), the density of particles is small, hence, as
E. Classically forbidden regions it was already mentioned above, the nonlinear term in Eq.
In classically forbidden regions, the density of atoms is(35) may be dropped, and a solution may be presented in the
small, therefore the nonlinear term in the GPE may beStandard semiclassic@lVKB) approximation,
dropped, so that it becomes tantamount to the ordinary
guantum-mechanical Schtinger equation, hence we adopt

C z
the following product ansatz fo¥ (r,t): v(2)= WEXF{ - Lo V2{U(2') — p}dZ’ |,
(36)

in the region wherg.—V,(z)>0; otherwise P1g(z)=0.

W(r,t)=y(z,t)exp(—r2/2R? —iw, t/2), (31)
o where, for definiteness, we choaggas the classical turning
where the transversg squared_radmsR@ﬁ/me. We point, at whichU(z,) = x, andC is (for the time being an
stress that the Gaussian approximation for the transverse pajfitrary real constartbecause is arbitrary,z, may indeed
of the ansatz31) is appropriate, unlike in the classically e chosen arbitrarily It is also assumed that the classically
allowed region, as the equation is effectively linear in theorpigden region is located at>z, i.e., to the right of the
present case. Upon substituting E§1) into the linearized turning point. As usual, the WKB approximatid@6) is not
GPE, it is straightforward to obtain an effective 1D linearjid too close to the turning point.
Schralinger equation, On the other hand, the solution inside the classically al-
lowed region ¢<z,), not too close to the turning point, is
Iz, _ if)2+V (z,t) (32) taken in the usual TF approximation as described above, cf.
at 2m-z AT Eq. (26):

.
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u—U(z) the universal numerical consta@tin Egs.(41) from match-
UTF™ —7 . 37) ing the solution to its uniquely defined asymptotic form at
§——c.
Note that, unlike the WKB solutio(86), the TF approximate ~ As mentioned above, this matching problem is different
solution (37) does not contain any arbitrary constant. from its counterpart in ordinarglinear) quantum mechanics.

Now we need to match the two approximatiai3§) and ~ An exact solutionto this problem is available in the math-
(37) across the turning point’ in the Vicinity of which both ematical Iiterature(see REf[lZ] and references to original
approximations are not applicable, the eventual objective beworks therein. The final result of the analysis is
ing to find the constan€ in Eq. (36). Following the usual
guantum-mechanical approach, one can cast the matching E=i~0282 42)
problem into a standard form, expanding the potential in the N
vicinity of the turning point,

Using this exact result, and undoing the rescalit@f®, we

n—=U(z)~Fo(z—2p), (38)  obtain the value of the consta@tin the WKB solution(36):
whereF, is the value of the potential force at the turning ~  [2|Fg| [Fol
point (in the present cas€,<0). The accordingly modified c=C v~ N2my (43)

version of Eq.(35) is
With the relation (43), the WKB expression36) for the
3 wave function under the barrier is completely defined. Of
d_22+':0(z_20)v_27’v =0, course, the result presented in the fofd8) also applies
when the classically forbidden region is located to the left
(rather than to the rightof the classical turning point.

This result for the matching problem applies as well to the

2

which is transformed into a normalized form

o2 case of the adiabatically slow variation of the parameters,
w 3 X . .
—= Ew+ 2w (39 e.g., whenF slowly varies as a function of tim@r whenvy
dé changes with time due to the variation of the trap potential
) with time). The result does not apply to the case of a vertical
by means of rescalings potential wall (when, formally, Fy=). However, in this
(2IF o)™ case, the solution is almost trivial. Indeed, assume that at the
0

. (40) pointz=0 there is a jump of the potential from a large nega-
\/; tive valueU _ inside the well ¢<0) to a large positive value
U, inside the classically forbidden regiom>*0). Then, in
Equation(39) is a particular case of a classical equationthe allowed region, the TF solution in the form
known as the Painlévizanscendental of the second type. The= /(. —U_)/y is valid everywhere up to the turning point,
full form of this equation(a standard notation for which is the exact solution in the forbidden region is

t=(2IFo) 220, v=

Pu) is
v=Cexd —V2(U,—u)z],
2
_V: =W+ 2wl + a, and the constart is immediately found from the continuity
dé condition,C=\(u—U_)/7.

cf. Eq. (39), wherea is an arbitrary real parameter; in the
present casey=0. The use of the expansidB88) and sim-
plified equation(39) for matching different asymptotic solu- The approach developed above can be naturally applied to
tions of an equation equivalent to E@®5) was proposed, in calculate the distribution of values of the longitudinal mo-
a context different from BEC, in Refl1l] (however, the mentump in a given quantum stafé¥’), which can be mea-
asymptotic form of the solution inside the classically allowedsured in a direct experiment. The distribution is determined
region, for which the analysis was done in REE1], was by the scalar product

different from Eq.(37): it corresponded to a nonlinear wave

function oscillating in space, rather than to the TF gase P(p)=Kp|¥), (44)
Here, it is necessary to find a solution to E§9) with the
property that it takes the asymptotic forms

V. MOMENTUM DISTRIBUTION

where, up to a normalization factor,

= _ —ipz
w~—¢/2 and wwgiexp( - 253’2) (41) (P —exp( h ) 49

1/4

is the conjugate eigenfunction of the momentum operator.
at £——« and é— +o, respectively, in accordance with Thus, according to Eq(44), to determine the momentum
Egs.(37) and(36). The actual problem is to find a value of distribution in thez direction we need to calculate nothing
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else but the 1D Fourier transform of the 3D wave function +oo

(8), additionally integrated in the transverse directighe (‘I’|O(P)|‘1’>:j dpO(p)[(p|w)[>. (51)

scalar product in Eq(44) assumes, of course, the full 3D o

integratior: The expressioi49) should be then substituted fop| V) in
Eq. (51).

j W(r, ,zt)r, dr,
h 0
(46) . . .

The above consideration can be generalized for a case
where the multiplier 2 is generated by the angular integra- When the condensate inside the cylindrically symmetric re-
tion in the transverse plane. gion is given vorticity, so that the wave function has the form

Substituting the expressidB) for ¥ inside the classically _ .
allowed region intd46), the integration over | is confined Y(rzh=exil ) @(r.z0), (52)

to the interval G<r, <r,,, whererj(zt) is the same as whered is the angular coordinate in the transverse plane and
defined above by Eq13). Taking into account the form of | is the vorticity quantum number. The ansd® is then

<p|\If>=27-rfj:dz ex;{

VI. THE CONDENSATE WITH VORTICITY

the transverse potentiéb), we arrive at an expression replaced by
+oo —ipz W(r,z,t)=expil )G~ 2
(p|\If>~27rf dzexp{ ﬁp )w(z,t) ( Pte)
‘°° 722
2 2.2
il G=V, () (2,1)[2| 2 . \/G"”'(Z’t)' (mw” 2 zer)'
xf G rodr,
0 (53
e —ipz The corresponding normalization condition replacing Eq
= 2 )
ZWJ’_QC rmdzex4 h ) (14) takes the form
1 +o 'm 2
X ¢(Z,t)j Vi-p?pdp, (47 27Tf dzf rdr|W(r,z,t)|*=1, (54
0 - "min

where p=r, /r,,. Further, using an elementary formula Where now
J5J1—p?pdp=1/3 and the expressiofi3) for r,,, we ob-

tain from Eq.(47), rzmzmiz [Gln*+ VG g|*—(1hw,)?],  (59)
1
4 G (+= —ipz
o)="7 = [ dzend] P wztlcznl .
me? J = roin=—5LGltl*~ VG[yy[*~ (Ifiw,)?].  (56)
(48) Mo

which is the final result: Eq48) tells us that the amplitude The corresponding 1D GPE equation i%i(z,t) is
(p|W¥) of the probability distribution, which determines the

o : d 1.
probability as per Eq(44), is iﬁ%z ﬁp§+vz(z,t)+G|lﬁ||2 .
Am(2m)Y? : - .
(p|¥)= ———"— F{l |2 (plh), (49  Finally, the substitution of the expressiof&3), (55), and
3 mwi (56) into Eq. (54) yields, after a straightforward calculation
of the integral over the radial variabte an effectively 1D
where F is the symbol of the Fourier transform normalization condition in a complicated form, which is a
generalization of the above noncanonical normalization con-
o e . o
FfH(w)= 1 f expl —iwt)F(t)dt. (50 dition (16) corresponding td=0:
(2m) 2] = f”dz Gl (@ IPVGH (@' - (hw,)?
Inside the classically forbidden region, the usual quantum- - mzwj
mechanical expressions for the momentum distribution ap- ) ) 4
ply. _( hil ) In 2G% ()"
Expectation values of operators involving only the longi- M| (lhw,)?
tudinal momentum can be computed as follows, if we ne-
glect a contribution from classically forbidden regions. Sup- 2G|y ()% |G (2)]* 2G
pose we have an operato(p), such as, for instance,itself + 7o o )2 -1]|= R
or the kinetic energyp?/(2m). Then, the expectation value * (lhw,) My
of the operatoi©O(p) is given by (57
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Note that, withl =0, this result indeed reduces to Efi6). A  that the normalization condition in the present case yields an

consequence of Eq57) is that|;(z)|? cannot take values estimate for the squared wave function different from that

smaller than(|¢,(2)|?)min=(%®, )/G. Furthermore, from Eq. given by Eq.(19): ||~ 1/(7R?z,,), wherez,, is the effec-

(53) it is clear that the conditiorG|¢(z,t)|?—[mw?r?/2  tive transverse size of the pancake condensate, according to

+(#1/r)2/(2m)]>0 must be satisfied for the ansdB8) to  EQ. (59), and R is a characteristic radius of the pancake.

be valid. Accordingly, the final estimate for the transverse size is dif-
ferent from that given by Eq20) for the cigar:

VII. THE BROKEN-SYMMETRY CONDENSATE

G
: . : 73~ R™2. (62)
As mentioned in the Introduction, the approach developed m mwi

above can be extended to the case when the cylindrical sym-

metry about the axis is broken by a nonaxisymmetric po- The supstitution of E¢(62) into the condition that the trans-
tential Vy(x,y). In this case, essentially the same ansatz agerse kinetic energy must be much smaller than the confining
given by Eq.(8) may be employed if the potential is har- htenial yields the eventual resi®).

monic inz Accozrdingly, we take the transverse potential as'  or example, if the same values of physical parameters as
V. (2)=(1/2)mw?Z? cf. Eq.(6), and an ansatz in the form given in Eq.(23) are adopted in the present case, the condi-

G—mwf22/2| p(x,y,1)[? 12 tion (2) imposes the following limitation on the pancake’s
W(r,t)=¢(xy,t) G . (58)  radius: R=0.01 mm. As well as in the case of the cigar,
another condition must be added, to guarantee that the radius
Note that the interpretation of the functigr(x,y,t) is simi- ~ Ris much larger than the transverse sizgli.e., the conden-

lar to that of the functionj(z,t) in the ansatZ8): it coin-  sate is indeed shaped like a pangakéaking use of Eq(62)
cides with the full 3D wave function?(x,y,z,t) at z=0.  and again taking the values of the parameters from(E1),
Substitution of Eq(58) into the 3D normalization condition One can cast the latter condition in the foRe-1 um. Thus,
(14) and straightforward integration in thedirection, which ~ the present approach applies to the pancake-shaped conden-

is actually limited to the interval sates if Lum<R=<10 um. Although this condition is essen-
tially more restrictive than its counterpart for the cigar-
0<2<72= 2G lp(x,y,0)2 (59 s_haped condensates, it can be implemented in the experiment
m mwf 7 (in fact, one may expect that the pancake configuration will
be created with a larger number of atoms than the cigar, then
[cf. Eq.(13)], yields a result the above conditions will assume a less restrictive foffrhe
b oo 3 me? TF length in thez direction isrg,~2.4 um, and the TF-
f f [p(x,y)|3dx dy= ZVZ_C;’ (60)  radiusRyr; =12 um, and these are very close to the nu-

merically computed lengths, so our conditi(®) is met. If,
for other values of the physical parameters, the conditions

cf. Eq. (16). This is another example of the noncanonical .
normalization condition, which is generated by the reductiorﬁgear;)%t“?;gi;he approach developed in Ref$.or [5] may

in the effective space dimension. As for the effective 2D
GPE generated by the ans#k8), it has the usual form

. OP(X,y,t)
ih—— =

VIIl. NUMERICAL RESULTS

1 2, 12
ﬁ(px+ py) +ny(x,y,t)

G For the numerical solution of Eq$s) and(12), we used
the standard split-step operator metjd&]. The computa-

cf. Eq.(12) [a formal condition under which E461) can be tional grids had 65536 and 3232 2048 points for the 1D

derived from the 3D equatiof®) is mw? 22<|y(x,y,t)|?]. and 3D cases, respectively, with spatial stepd,

We do not consider the problem of matching the wave~0.0002¢, for the 1D geometry, andAh,=Ah,
function in the classically allowed and forbidden regions in~0.13rr and Ah,~0.005 ¢ for the 3D case. We used two
the framework of the 2D equatidil), as the WKB approxi- different methods for finding stationary solutions to GPE
mation for the classically forbidden region is itself problem- (24), and to its 3D counterpart: the first technique was an
atic in the 2D case. In fact, this approximation was onlyimaginary-time version of the split-step operator metf@ld
elaborated for the 2D motion in an axially symmetric field and the second is the standard finite-difference method used
[7], which does not correspond to the situation of interest irto solve a two-point boundary-value probléd®]. It is im-
the present contexXthe axial symmetry in thex(y) plane portant to note that, by treating Eq24) as a two-point
will be destroyed by the optical latti¢e boundary problem, the initial conditions must include the

Finally, to estimate the applicability of the TF approxima- eigenvaluew. This will, generally, give an unphysical solu-
tion, i.e., the possibility to neglect the transverse kinetic ention for ¢, since the normalization condition will not be met.
ergy (along the height of the pancgki the course of the By gradually changing the value @f, and redetermining the
derivation of the 2D equatio(61), we notice that this can be wave function of the nonlinear GPE using the finite-
carried out following the lines of the analysis presenteddifference method, we can follow the surface of solutions to
above for the cigar-shaped condens@tbere the pancake- Eq. (24) until a physical solution is obtained.
shaped case was mentioned )towith the only difference Numerically, we find the imaginary time split-step relax-
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0.9 P(z)— T

P () andB_(2)

0.8
0.7
0.6

0.5

Z91.'1‘F,z

FIG. 1. The probabilityP(z) for the 3D harmonic potential vs
z/r 12, as found numerically using EG7), andP+(z) vs z/r 1¢;,
as calculated using E¢30). The probabilityP;(z) found from the
stationary version of the full 3D equatidsee the tejtcannot be
discerned, as it lies on top &(2).

ation method painfully difficult to converge in 3D for the
cigar-shaped geometry that we used in the calculations,
with and without the optical potential. The finite-difference
two-point boundary-value method appears to be more effi
cient. For dynamical simulations, however, we used only th
split-step method.

We first consider the case when only the harmonic poten
tial is present; the action of an optical potential on the
trapped BEC will be considered below. In the calculations,
we take a ®Rb condensate withN=10° atoms, w,
=20 Hz, o= wy=100 Hz, anday,=5.017 nm. For the pa-
rameters used in the calculation, the TF radius inzbeec-
tion is rg,=36.35um, in the x,y directions ryg
=7.27um, and the chemical potential isu=1.507
X 103%J. The applicability conditioril) definitely holds in
this case.

2
&
3f i 33
b | 5
8 g
[-9
2} 1Z
5
i gins :
-1.5 -1 -0.5 0 0.5 1 1.5

g,

FIG. 2. The probabilityP(z) for the combination of the 3D
harmonic and optical potentials \&r¢,, as found numerically
using Eq.(7). For comparison, the probabiliti?(z) without the
optical potential, and the optical potential itself are also shown.
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FIG. 3. The probability distribution®(z), P3p(2), andPg(2)

vs z/r ¢, for the combination of the 3D harmonic and optical po-
tentials. The inset is an enlargement of the region aéa- ,=1.

Figure 1 shows the probabiliti?(z) versusz, as calcu-

lated using Eq(7). Also shown is the probability1(z) as
tnp.ptained from the full TF approximation based on E2[),
and a probabilityP55(z) found from the numerical solution
of the full 3D GPE. The curve obtained from the 3D GPE

éies on top of the TF curve, being nearly indiscernible from it

(it is no surprise that TF is a good approximation fof Fb

atoms in a harmonic trapClearly, the comparison of the

P(z) found by means of the approximation developed above

with the TF and full 3D results is excellent. A slight deterio-

ration occurs in the region where the density is low.

Figure 2 shows the probability distribution for the same
harmonic potential as in Fig. 1, but with an added optical-
lattice potential as given by Ed4), with the wavelength
Aph=2840 nm, relative anglé#=10° between the two light
beams, and the constant amplitidg=5Eg . For this wave-
length, the recoil energyEgr=%2(27/\)%/(2m)=2.15
x10°%°]J, so the optical potential’s strength is about 1.4
times the value of the chemical potential in the absence of
the optical lattice. In the presence of the optical lattice, the

0 15

FIG. 4. The probabilit|¥(r)|? vs x andz
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10 T T T T T

chemical potential is calculated to be 3150 3 J (slightly

t=0tp——
more than twice the chemical potential without the optical o} t=0.2t];-—-—-—- i
lattice). Also shown in Fig. 2 is the optical potenti¥| (z), ! t=05tg—

8t t=1tF ............... i

andP(z) determined without the optical latti¢as in Fig. 1.
As is seen from the figure, the optical potential squeezes the 7f
atomic density out to largez; it also squeezes it out to larger  ¢|
x andy, see below.

Figure 3 shows the comparison B{z) with P;g(z) and
P3p(2), whereP+1g(z) is calculated using Eq30), and with 41
Psp(2) as obtained by solving the stationary 3D GPE. The
TF result still provides an adequate description, despite the
fact that the kinetic energy is more important in this case
than in the case without the optical potential. Hence we con-
clude that the kinetic energy remains much less significant
than the potential and the mean-field energy in this case. Ou 02 04 g 06 08 1
method produces results closer to the 3D result than the TF. ’

The kinetic energy does broaden the wave function in each FIG. 5. The probabilityP(z,t) vs z at four different values of
optical well, hence peaks of the wave functions are lowetime, t=0 [V(0)=0], t=tg/5 [Vo(te/5)=0.38Eg], t=tg/2
than in the TF approximation, as evident in Fig. 3. Note,[Vo(te/2)=1.83FR], t=tg [Vo(tg) =5ERg].

however, that our method, being based on a TF-type approxi-

mation in the transverse dimension, restricts the diffusion o . . o -

the wave function due to the Kinetic enerav to #hdirection pproach is that the corresponding 1D normalization condi-
N o gy tok tion, which follows from the standard normalization condi-

(but the wave function is definitely squeezed into the trans:

verse dimension due to the optical potential and the meation in the full 3D description, takes a noncanonical form,
! . - optical pote Qontaining the fourth power of the 1D wave function, rather
field—see below The inset in the figure is an enlargement

i than its square. Also noncanonical is an expression for the
of the region neae/r ¢ ,=1.

. 2 o probability density of the distribution of the 1D momentum.

f It:r:gurf? 4 shpwti‘lf(r)[[ vte:susrhgnhd th strlklngf as;zect . These results were further extended to cases when the BEC
or this |guret Its | e ex etrk: 0 whic ;aﬂ\:vavet. unlc |otn 'S has vorticity, and when cylindrical symmetry is absent; these
squeezed out 1o fargeénn the presence ot he optical poten- ;o ¢ yield additional examples of noncanonical normaliza-
fual. Without this potentlall, t.he size of the wave functiorrin tion conditions, sometimes of quite a complicated form. For
I'?hr TFX (:rthth)’ but n?w |tt.|s squ;ahezed d‘?ultéF’ at')[.out?,)(. q both cases with the imposed and broken cylindrical symme-

€ size of fhe wave function in the radia’ direction depen %ry, explicit conditions for the applicability of the effective
uponz, as does the extent of the squeezing.iThe distri-

. . low-dimensional equations were produced.
bution of | W (r)|? versusr andz, as produced by the station- 9 b

3D GPE . is simil h btained b hod Another result, obtained in the framework of the effec-
ary « E, Is similar to that obtained by our method. tively 1D description, is an explicit matching formula be-
Finally, in Fig. 5 we show results of a dynamical calcula-

. . ) ; ) ) tween the TF approximation valid inside the classically al-
tion in which we varied the optical potential as a function of |, 4 region, and the exponentially vanishing WKB
tlmec,j sdo that.the peak Sﬂe”gth of the optlc/al BOte”F"’;]" deEipproximation valid inside the classically forbidden region.
pef ed on fime f‘yO(t_)_SERexq_[(t_tF) o], with Here, an exact solution to a problem found long ago in an
tp=1.12 ms andr=t¢/2=0.56 ms. The calculated probabil- o qiract mathematical context determines the arbitrary con-
ity distribution P(z,t) is shown at four different times, Vviz., giantin front of the exponentially decaying WKB wave func-
att=0 before the optical potential is ramped uptatt/5  {ion.

when the optical potential is still rather small, &tte/2 14 yerify the validity of analytical approximations devel-
v_vhen the optical potential is somewhat less than 0.4 times 'téped in this work, we have performed direct numerical cal-
final value of Eg, and att=tg whenVo(tg) =5Er. Theé  cyjations of bound states and of dynamics in a time-
d_ynam|cs are initially adlaba}tlc, but, clearly, l:_)y the final dependent potential, and compared the probability
time, t,=1.12 ms, the dynamics cease to be adiak@ben-  gistributions obtained with full 3D results. The comparison

pare the result with the probability distribution shown in Fig. gpows that the analytical approximations are quite accurate.
2). The dynamics of the probabilit?(z,t) versusz, calcu-

lated using the 3D GPE, are similar to that shown in Fig. 5. ACKNOWLEDGMENTS
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