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Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavior
of nonlinear wave equations
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The criteria for validity of adiabaticity for nonlinear wave equations are considered within the context of
atomic matter waves tunneling from macroscopically populated optical standing-wave traps loaded from a
Bose-Einstein condensate. We show that, even when the optical standing wave is slowly turned on and the
condensate behaves adiabatically during this turn-on, once the tunneling time between wells in the optical
lattice becomes longer than the nonlinear time scale, adiabaticity breaks down and a significant spatially
varying phase develops across the condensate wave function from well to well. This phase drastically affects
the contrast of the fringe pattern in Josephson-effect interference experiments, and the condensate coherence
properties in general.
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[. INTRODUCTION due to the tunneling dynami¢sduced by the kinetic energy
of the BEC in the lattice potentirhot being able to imple-
Recent matter-wave interference studies with Bosement the equilibration of the phase across the BEC on the
Einstein condensed atoni$—5] have shown that one can nonlinear time scale.
observe phase-dependent dynamics in dilute neutral-atom The process of dynamic splitting of a condensate by an
systems, in complete analogy with those observed irexternal time-varying potential was studied using two-mode
Josephson-effect experimeni§]. In some of the experi- models[10] which show that the mean-field approximation
ments reported in Ref§3,4], the external potentidepplied  pased upon the GPE will not give a good description of the
by optical standing waves to the initial ground-state Bosexyitting process due to the slow rise of a potential barrier

Einstein condensatéBE%)] is slowly tuhrned on. fOne MIgt  1hat cuts off tunneling processes. Our results show that, even
assume, based upon the adiabatic t eorem of quantum M@iin 5 mean-field approximation, a sudden inhomogeneous
chanics7,8], that the system shoul_d remain in an eigenstate,, , <. buildup begins to develop when the tunneling time
even though the nature of the eigenstate evolves in tim

. - o ) : ecomes comparable to or larger than the nonlinear time
Moreover, adiabaticity criteria for nonlinear wave equatlonsscale and the process of optical lattice turn-on ceases to be
have been studied in connection with soliton dynamics in ' P P

nearly integrable systems, and one expects on the basis 8fiiat_>atic when this happens. A transition oceurs vyhen these
these studies that adiabaticity should be maintained witVC ime scales become comparable, already within a mean-
slow enough variation of the parameters of the sy<ignA field GPE ap.proach. The s.papally varying phasgz adversely
spatially varying phase of the condensate wave function is gffects the fringe contrast in interference experiments per-
manifestation of nonadiabatic dynamics of a BEC, in theformed on the BEC wave packets.

sense that the adiabatic eigenstfiee ground nonlinear Adiabaticity in nonlinear systems can be studied in vari-
eigenstate of the Gross-Pitaevskii equatiGib calculated 0Us regimes. Denoting,p as the quantum-mechanical linear
using the potential at any instant of tilnean be taken to be adiabatic time scale determined in terms of the difference of
real (it does not have a spatially depenendent phasence the (linean energy eigenvaluef7] and y_ the nonlinear
one concludes that a spatially varying phase should not déime scale[11] (see below, the simplest regime is one in
velop across the condensate in R¢&4] when the optical which the duration of the dynamical process being studied,
potential is turned on very slowly. Here we present calcula-T, satisfies the conditiom,p<T<< 7y . In this case, adiaba-
tions corresponding to conditions similar to those reported iriicity is ensured by the adiabatic theorem due to the first
[3,4] showing that the BEC remains adiabatic as the lightinequality, and nonlinearity cannot play a significant role in
potential is turned on very slowly, and the phase is constarthe dynamics due to the second inequality. Hence, the dy-
across the condensate. The dynamics are indeed adiabatiamics must be adiabatic. The regime in which the experi-
despite the fact that nonlinear dynamics precludes the possinents of Refs[3,4] are carried out satisfies the condition
bility of a superposition principle, which is used heavily in 7aop, 7 <T, and the nonlinearity does play an important
deriving the adiabatic theorem. We further show that, as theole in the dynamics. Nevertheless, as described below, the
light potential is slowly increased in strength to the pointdynamics are indeed adiabatic, until the strength of the opti-
where the wave packets in the individual optically inducedcal lattice is so large that the wave packets in the individual
wells become strongly separated, and the time scale for turwells become almost completely separated.

neling becomes long compared to the nonlinear time scale, We consider Bose-Einstein condens&&b atoms in the
adiabaticity is destroyed and a large spatially varying phasé==2,Mg=2) hyperfine state confined in an array of optical
develops across the wave function. This large inhomogetraps in a gravitational field. The atoms are trapped at the
neous phase, obtained within a mean-field approximation, iantinodes of a vertically oriented red-detuned optical stand-
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ing wave, which are separated bh¥z=\/2, where A
=840 nm is the wavelength of light used to confine the
atoms. The depth of the optical potential is proportional to
the intensity of the light; the intensity is initially zero and
increases linearly with time. The initial BEC is cigar shaped
with 10* atoms in a static harmonic trap potenth}.(r)
=(Mw,/2)2°+ (Mwy ,/2) (x*+y?)  with frequencies o,
=27x102 Hz andw=2mx33 Hz[w= (0w w,) " with
wy=wy=w,y] [4]. The light potential experienced by the
atoms in the BEC is given byV (z,t)=Vy(t)[1 04l
+cos(%, 2)] where the well depth/y(t)=125[Eg] varies
linearly with time. The recoil energfg="72k?/2m is the o2
kinetic energy gained by an atom absorbing a photon from
the optical lattice, wheren is the atomic mass, and the pho- ¢
ton wave vector ik, =2#/\. The rate of increase of the
E%T;VE?LZT;‘EL (dlyznglfﬁiéss]z)fltsh?éﬁé%egtg dﬂg\é\@icafs() rsrr;?]v(\;’r? of FIG. 1. Magnitude and phase of the Gross-Pitaevskii wave func-
’ . . . tion as a function of position in the optical lattice. The wave func-
t.he tum'on'. After Som.e time, the harmonic pOt,entlal and th‘?ion is shown when the well depth of the optical lattice i€4Gnd
light potential are switched offdropped, releasing the at- 156,
oms to fall under the influence of gravity. In the experiments
reported in Ref[4], the atoms are held in the optical lattice
for a short time(2.5 m9 after switching off the harmonic
potential, allowing the gravitational potential difference be- xis, and we call this length unit=rr ,. The key to ob-
tween wells to affect the phase difference between wells, an ’ oz

L : 4" taining physically relevant dynamics using the 1D GPE is to
absorption images are taken 8 ms after the optical potential is 112 — 3
turned off and the atoms begin to free-fall. use (1) w;p=(2u/mry)™, and (2) Nip=No(w/wip)®.

These two equations ensure that the Thomas-Fermi radius

and the nonlinear timéor the chemical potentiatemain as
in the 3D world. We checked to confirm that this procedure

The mean-field dynamics can be determined in terms ogives the same wave function as the 1D projection of the 3D
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=(uw/h) " 1=(NUg|¢|%h) " [11]. We take all lengths in the
GPE (1) in units of the Thomas-Fermi radius along the

Il. THEORETICAL FORMULATION

the time-dependent GPE#dy(r,t)/at=[p?/2m+V(r,t)
+NoUo|#/]?1¢, whereV(r,t)=Vyo(r)—mgz+V, (zt), Uy

=4magh?/m is the atom-atom interaction strength, which is

proportional to thes-wave scattering lengta,, andNy is the

GPE solution for our studies, using shorter propagation
times.

IIl. NUMERICAL RESULTS

total number of atoms. We solve the time-dependent GPE . ) _ _
using a split-operator fast Fourier transform method to Starting from the BEC without any optical lattice present,

propagate an initial state of the BEC in time in the presencd/€ begin to increase the optical potential with the linear
of the harmonic potential, gravity, and the time-dependenf@MPVo(t) mentioned earlier. Figure 1 shows the magnitude
optical lattice; the initial state is determined by propagating?Nd phase of the Gross-Pitaevskii wave functig(e,t)
in imaginary time with vanishing optical lattice potential =|y(z,1)|exdif(z1)] as a function of position in the optical
[11]. Due to the large number of grid points necessary in theattice, z/r,, when the well depth of the optical lattice is
lattice direction ), and the large number of time steps nec-10Er and 1¥g. We have takerz=0 to be at the minimum
essary to propagate the GPE to completion of the dynamicé’,f the harmpmc potenthl p]us the gravitational potential, i.e.,
we found it necessary to convert the three-dimensi¢s@) ~ We have shifted the def|_n|t|on of the center of th(_e trap to the
GPE into an effective 1D GPE with similar dynamics. This is frué center of the combined harmonic plus gravitational po-
carried out using the following procedure. The 1D GPE istenpals. About 17 wells of the op_tlcal potential are populated
written in terms of characteristic time scalgs: for diffrac- ~ during the course of the dynamics. The magnitligiez, t) |
tion andty, for the nonlinear interaction, in the following "€mains normalized throughout the propagation; if we were
mannef11,17: to average out the oscillations j@(z,t)| we would obtain
roughly the initial BEC|(z,0)|. The phased(z,t) is nearly

oy [r2e 82 1 |yf? spatially independent, and the magnitudigéz,t)| in Fig. 1
il — ~V(zt)/h - — 4 (1)  are very nearly equal to the eigenstates of the GPE with the
DF Jz NL || optical potential present at these times. The slight variation
— o of the phases with positionindicates the small degree of the
Here, rre=V2u/(mo?) is the Thomas-Fermi radiug, is  nonadiabaticity that results during the dynamics. The phases
the initial  chemical  potential, w=3(15UoN/  g(z 1) vary as a function of time by a spatially independent

47)?%(mw?)¥®, tor is the diffraction timetpr=2mr2./%,  constant due to the dynamics but thisifidependentcon-
and| | is the maximum initial magnitude of the wave func- stant phase is not physically significant in the experiments of
tion defined in terms of the initial nonlinear time ky;, Refs.[3,4]. The phas&(z,t) at the time when the depth of

053602-2



BOSE-EINSTEIN CONDENSATES IN TIME-DEPENDEN. . . PHYSICAL REVIEW A 65 053602

25 Eply(o)

40 Ep, Iy (2)l
15+ Fr Ve \

40 Eg 6(2) (RN for 25 Be—

100

5x W) for 50 By
sof- \
hy(o) for 40 E-
-0.5- W .
25Ep 6(2) 401

phase 6(z) I
k)l
£

1 IR B BN/ \V) V) N

0.5 1 1.5 -100 -50 0 . 50 100
k (arb. units)

Fer

FIG. 2. Magnitude and phase of the Gross-Pitaevskii wave func- FIG. 3. Gross-Pitaevskii wave function in momentum space,
tion as a function of position in the optical lattice. The wave func- ¢(k), versusk when the well depth of the optical lattice is 28,
tion is shown when the well depth of the optical lattice i€R%nd ~ 40Eg, and 5ER.
40ER.

linear wave equations has been extensively studied for

the optical lattice is 1B has been shifted up in Fig. 1 by slowly varying external conditiongfor a review, see Ref.
unity so that it could be plotted conveniently. [9]). It has been shown that, if the time scdl®f the varia-

As we increase the well depth of the optical lattice further,tion of an external parameter is slow compared to the instan-
a regime is reached in which the wave packets localized itaneous nonlinear eigenvalug(t) of the nonlinear(time-
the various wells become almost completely separatedndependent equation at timet, wy(t)T/(27)>1, the
When this occurs, the spatially varying phase of the wavelynamics can be adiabatic. Here we see that an additional
function begins to grow significantly, and the spatially de-condition is required; adiabaticity breaks down when the
pendent variations increase as the well depth of the opticabave packets become well separated and the tunneling time
lattice increases. Figure 2 shows the magnitude,t)| and  becomes longer than the nonlinear time.
phased(z,t) of the GP wave function as a function of posi- It is easy to make a rough estimate of the tunneling prob-
tion in the optical latticez/r,, when the well depth of the ability from well to well using the semiclassical approxima-
optical lattice is 2k and 4@ER. The magnitude of the wave tion [8],
function is almost totally within the regionz/r,e
[—1.3,1.3. The wave packets in the optical wells are almost wl(2k)
fully separated. The spatially dependent variations in the P(t):exp( _f
phase are less pronounced in the center of the trap where the

variations in the peak densities of the wave packets from om [ wl(2k.)
~exp — ﬁf [V (z,1)]Ydz
0

k(z,t)dz)

0

well to well are smaller; by 4B; the variation in phase
across the condensate is large compared with 1 rad. The
jump in the phase for 4% at z/r,~*+ 1.1 is artificial and
due to the continuation of the inverse trigonometric function
used to calculaté(z,t) from (z,t). The spatial phase varia-

tion over the condensate for BR is much greater than that The t“””e“T‘g rgte is then given bR(t):wU(t)X.P(t)’
for 40Ex it varies by more than & from z/r,= 0 to 1.5. where the vibrational frequenay,(t) can be approximated

Figure 3 shows the magnitude of the Fourier transform oY @u(t) = V4k{Vo(t)/m, since the expansion of the optical

the Gross-Pitaevskii wave functiaf(k) versusk when the ~Potential about a minimum in the potential yields(z,t)
. . . ~ 2,2 __ 2 2

well depth of the optical lattice is By, 40Eg, and 5Eg.  ~(M/2)[w,(1)]72°=(M/2)[4k{Vo(t)/m]z". Hence, the
The wave function has amplitude arouke-0, +2k, , al- time-dependent tunneling rate is
though components aroutkd= =4k, are also clearly visible.
The width of the wave packets increases with increasing well ~ R(t) = 8(Vo(t)/Eg)exp{ — V8[ Vo(t)/ER]} Er/f].
depth, particularly as the spatially varying phase across the
condensate becomes significant. ByERQ the widths of the  The tunneling rateR(t) can be compared with the time-
Fourier components of the wave packets are a good fractiodependent inverse nonlinear time scalgty, (t)]*
of 2k, . =NUo| ym(t)|?/2= u(t)/%, and the time-dependent diffrac-

Adiabaticity is maintained throughout the course of thetion time scale[tpe(t)] *=%[ w,(t)]%/4u(t). Once the tun-
dynamics until the wave packets become well separated amkling timet,,,,=R ! becomes long compared tQ, (and
the tunneling time becomes comparable to or larger than thig,, which is typically the smallest of these time scales
nonlinear time scale. Adiabaticity of soliton solutions of non- spatially independent phase cannot be maintained across the

—ex — 2/AmVy(1)/(7k)]. 2
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off the magnetic field, but leaving the optical lattice potential
in place, as described in Rd#], our wave packets hardly
change. However, upon switching off the optical potential
‘ | and propagating the wave packets for 8 ms, the wave packets
‘ spread by diffusion very significantly as they fall in gravity.
‘ l The resulting wave packets are considerably different for the
‘ 25ER and 5gR results. The additional Fourier components
of the wave packet in the B} case significantly wash out
interference patterns in the density profile for this case, con-
i ‘ J sistent with the measurement 4]. Note that we are not
0.0— \ ’ asserting that squeezing is absent in the experiments of Ref.
[4]; rather, that an improved model of the above-the-mean-
0 o5 1 field effects that accounts for the spatially varying phase is
z/t necessary to quantitatively compare with the experiments.
We note parenthetically that revivals in interference patterns

FIG. 4. Magnitude and(continuoug phase of the Gross- of Bose condensates have been predified.
Pitaevskii wave function/(z,t) as a function of positiorz in the

optical lattice when the well depth of the optical lattice i£40
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IV. CONCLUSIONS

condensate by the action of the kinetic energy operator, and a . .

spatially dependent phase develops. In our calculations, this _We have seen tha.t the SP_a“a”y varying phase of the so-

happens beyond a lattice well depth of abouER5 ution to the Gross-Pitaevskii equation becomes large when
The nature of the spatially varying phase can be underthe tunneling time between wells in the optical lattice be-

stood as follows. When the tunneling time is shorter than th&°Mes comparable to or larger than the nonlinear time scale.

nonlinear time scale, the phase of the order paramtisr Adiabaticity then breaks down and the instantaneous nonlin-

independent of position and an adiabatic approximation caf@r €igenvectors to the time-independent Gro;s—Pnaeysku
be made[13]: ¥(z,t)=vo(z:t)exd —if u(t')dt/4]. Here equation do not have the character of the dynamical solution.
u(t) is the in.stantz’aneoug c'hemical p(())l'fential at.ti d It remains to determine the above-mean-field corrections to

) ) . this pictureusing an approach that incorporates an accurate
the real amplitude/y(z;t) depends only parametrically on f for th all . | q
time. It can be further approximated by the Thomas-Fermi > or the spatially varying complex order parameter
a r.oximation (see, e (L) wo(zt)=1[ u(t) Finally, we note that these results have implications re-
_p\[/)(z ]/NU }1,2 Aft’erwa.rgl; wher{t >Ot ! theﬂcon- garding the loading of an optical lattice with atoms for quan-
' o - ' tunn= "NL » tum computing, using a Bose-Einstein condensate source and

g\elglfl aet?nvgzvznp dag:rl](tlets 'Il'r;](Sarlcuhmoljgrifd;fig:sgtixvilgif? e(%",:htf)aser beams that are slowly turned [d]. From our studies
wells is diffe?ent(due%o the harmonic potential which breaks 1 conclude that the laser fields must be controlled so that
P the density of the atoms is sufficiently loithe nonlinear

the symmetry between the welland an effective chemical term must be negligiblebeforetunneling between the wells

otential develops in each of the wells. The phase in each g ; . .
Fhe wells is a rgflection of the chemical p(?tential in eachI cut off by the full depth of the optical potential. Otherwise,

) . . h iati f Il Il will deleteriously aff
well, ui(t). As is clear from Fig. 4, which replots the mag- phase variations from well to well will deleteriously affect

nitude and(continuou$ phase of the instantaneous order pa—the resulting optical lattice state.
rameter for a time corresponding to a potential depth of
40ER, the phase in each of the wells is more or less flat, but
the local phase at time for well j, fg,uj(t’)dt’/ﬁ, varies
with j. Note that, if the rate of intensity increase were low- Useful conversations with Boris Malomed and Paul Juli-
ered to the point where adiabaticity can be maintained, thenne are gratefully acknowledged. This work was supported
phase would remain spatially uniform; however, the tunnelin part by grants from the U.S.-Israel Binational Science
ing time increases exponentially with intensity so eventuallyFoundation(Grant No. 98-42], Jerusalem, Israel, the Israel
adiabaticity will not be able to be maintained. Science FoundatiofGrant No. 212/0}, the Israel MOD Re-

If we take our calculated wave packéshown in Figs. 1  search and Technology Unit, and the Polish KBN 2P03/
and 2 and propagate for an additional 2.5 ms upon switching3807819.
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