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Bose-Einstein condensates in time-dependent light potentials: Adiabatic and nonadiabatic behavio
of nonlinear wave equations
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The criteria for validity of adiabaticity for nonlinear wave equations are considered within the context of
atomic matter waves tunneling from macroscopically populated optical standing-wave traps loaded from a
Bose-Einstein condensate. We show that, even when the optical standing wave is slowly turned on and the
condensate behaves adiabatically during this turn-on, once the tunneling time between wells in the optical
lattice becomes longer than the nonlinear time scale, adiabaticity breaks down and a significant spatially
varying phase develops across the condensate wave function from well to well. This phase drastically affects
the contrast of the fringe pattern in Josephson-effect interference experiments, and the condensate coherence
properties in general.
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I. INTRODUCTION

Recent matter-wave interference studies with Bo
Einstein condensed atoms@1–5# have shown that one ca
observe phase-dependent dynamics in dilute neutral-a
systems, in complete analogy with those observed
Josephson-effect experiments@6#. In some of the experi-
ments reported in Refs.@3,4#, the external potential@applied
by optical standing waves to the initial ground-state Bo
Einstein condensate~BEC!# is slowly turned on. One migh
assume, based upon the adiabatic theorem of quantum
chanics@7,8#, that the system should remain in an eigensta
even though the nature of the eigenstate evolves in ti
Moreover, adiabaticity criteria for nonlinear wave equatio
have been studied in connection with soliton dynamics
nearly integrable systems, and one expects on the bas
these studies that adiabaticity should be maintained w
slow enough variation of the parameters of the system@9#. A
spatially varying phase of the condensate wave function
manifestation of nonadiabatic dynamics of a BEC, in t
sense that the adiabatic eigenstate@the ground nonlinear
eigenstate of the Gross-Pitaevskii equation~GPE! calculated
using the potential at any instant of time# can be taken to be
real ~it does not have a spatially depenendent phase!. Hence
one concludes that a spatially varying phase should not
velop across the condensate in Refs.@3,4# when the optical
potential is turned on very slowly. Here we present calcu
tions corresponding to conditions similar to those reported
@3,4# showing that the BEC remains adiabatic as the li
potential is turned on very slowly, and the phase is cons
across the condensate. The dynamics are indeed adia
despite the fact that nonlinear dynamics precludes the po
bility of a superposition principle, which is used heavily
deriving the adiabatic theorem. We further show that, as
light potential is slowly increased in strength to the po
where the wave packets in the individual optically induc
wells become strongly separated, and the time scale for
neling becomes long compared to the nonlinear time sc
adiabaticity is destroyed and a large spatially varying ph
develops across the wave function. This large inhomo
neous phase, obtained within a mean-field approximation
1050-2947/2002/65~5!/053602~5!/$20.00 65 0536
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due to the tunneling dynamics~induced by the kinetic energy
of the BEC in the lattice potential! not being able to imple-
ment the equilibration of the phase across the BEC on
nonlinear time scale.

The process of dynamic splitting of a condensate by
external time-varying potential was studied using two-mo
models@10# which show that the mean-field approximatio
based upon the GPE will not give a good description of
splitting process due to the slow rise of a potential barr
that cuts off tunneling processes. Our results show that, e
within a mean-field approximation, a sudden inhomogene
phase buildup begins to develop when the tunneling ti
becomes comparable to or larger than the nonlinear t
scale, and the process of optical lattice turn-on ceases t
adiabatic when this happens. A transition occurs when th
two time scales become comparable, already within a me
field GPE approach. The spatially varying phase advers
affects the fringe contrast in interference experiments p
formed on the BEC wave packets.

Adiabaticity in nonlinear systems can be studied in va
ous regimes. DenotingtAD as the quantum-mechanical line
adiabatic time scale determined in terms of the difference
the ~linear! energy eigenvalues@7# and tNL the nonlinear
time scale@11# ~see below!, the simplest regime is one in
which the duration of the dynamical process being studi
T, satisfies the conditiontAD!T!tNL . In this case, adiaba
ticity is ensured by the adiabatic theorem due to the fi
inequality, and nonlinearity cannot play a significant role
the dynamics due to the second inequality. Hence, the
namics must be adiabatic. The regime in which the exp
ments of Refs.@3,4# are carried out satisfies the conditio
tAD ,tNL!T, and the nonlinearity does play an importa
role in the dynamics. Nevertheless, as described below,
dynamics are indeed adiabatic, until the strength of the o
cal lattice is so large that the wave packets in the individ
wells become almost completely separated.

We consider Bose-Einstein condensed87Rb atoms in the
uF52,MF52& hyperfine state confined in an array of optic
traps in a gravitational field. The atoms are trapped at
antinodes of a vertically oriented red-detuned optical sta
©2002 The American Physical Society02-1
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ing wave, which are separated byDz5l/2, where l
5840 nm is the wavelength of light used to confine t
atoms. The depth of the optical potential is proportional
the intensity of the light; the intensity is initially zero an
increases linearly with time. The initial BEC is cigar shap
with 104 atoms in a static harmonic trap potentialVho(r )
5(mvz/2)z21(mvx,y/2)(x21y2) with frequencies vz

52p3102 Hz andv̄52p333 Hz@v̄5(vxvyvz)
1/3 with

vx5vy[vxy# @4#. The light potential experienced by th
atoms in the BEC is given byVL(z,t)5V0(t)@1
1cos(2kLz)# where the well depthV0(t)5125t@ER# varies
linearly with time. The recoil energyER5\2kL

2/2m is the
kinetic energy gained by an atom absorbing a photon fr
the optical lattice, wherem is the atomic mass, and the ph
ton wave vector iskL52p/l. The rate of increase of th
light potential (125@ER /s#) is sufficiently slow, as shown
below, that the dynamics of the BEC is adiabatic for much
the turn-on. After some time, the harmonic potential and
light potential are switched off~dropped!, releasing the at-
oms to fall under the influence of gravity. In the experime
reported in Ref.@4#, the atoms are held in the optical lattic
for a short time~2.5 ms! after switching off the harmonic
potential, allowing the gravitational potential difference b
tween wells to affect the phase difference between wells,
absorption images are taken 8 ms after the optical potenti
turned off and the atoms begin to free-fall.

II. THEORETICAL FORMULATION

The mean-field dynamics can be determined in terms
the time-dependent GPE,i\]c(r ,t)/]t5@p2/2m1V(r ,t)
1N0U0ucu2#c, whereV(r ,t)5Vho(r )2mgz1VL(z,t), U0
54pa0\2/m is the atom-atom interaction strength, which
proportional to thes-wave scattering lengtha0, andN0 is the
total number of atoms. We solve the time-dependent G
using a split-operator fast Fourier transform method
propagate an initial state of the BEC in time in the prese
of the harmonic potential, gravity, and the time-depend
optical lattice; the initial state is determined by propagat
in imaginary time with vanishing optical lattice potenti
@11#. Due to the large number of grid points necessary in
lattice direction (z), and the large number of time steps ne
essary to propagate the GPE to completion of the dynam
we found it necessary to convert the three-dimensional~3D!
GPE into an effective 1D GPE with similar dynamics. This
carried out using the following procedure. The 1D GPE
written in terms of characteristic time scalestDF for diffrac-
tion and tNL for the nonlinear interaction, in the following
manner@11,12#:

]c

]t
5 i F r TF

2

tDF

]2

]z2
2V~z,t !/\2

1

tNL

ucu2

ucmu2Gc. ~1!

Here, r TF5A2m/(mv̄2) is the Thomas-Fermi radius,m is
the initial chemical potential, m5 1

2 (15U0N/
4p)2/5(mv̄2)3/5, tDF is the diffraction timetDF52mrTF

2 /\,
anducmu is the maximum initial magnitude of the wave fun
tion defined in terms of the initial nonlinear time bytNL
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5(m/\)215(NU0ucmu2/\)21 @11#. We take all lengths in the
GPE ~1! in units of the Thomas-Fermi radius along thez
axis, and we call this length unitr z[r TF,z . The key to ob-
taining physically relevant dynamics using the 1D GPE is
use ~1! v1D5(2m/mrz)

1/2, and ~2! N1D5N0(v̄/v1D)3.
These two equations ensure that the Thomas-Fermi ra
and the nonlinear time~or the chemical potential! remain as
in the 3D world. We checked to confirm that this procedu
gives the same wave function as the 1D projection of the
GPE solution for our studies, using shorter propagat
times.

III. NUMERICAL RESULTS

Starting from the BEC without any optical lattice prese
we begin to increase the optical potential with the line
rampV0(t) mentioned earlier. Figure 1 shows the magnitu
and phase of the Gross-Pitaevskii wave functionc(z,t)
5uc(z,t)uexp@iu(z,t)# as a function of position in the optica
lattice, z/r z , when the well depth of the optical lattice i
10ER and 15ER . We have takenz50 to be at the minimum
of the harmonic potential plus the gravitational potential, i.
we have shifted the definition of the center of the trap to
true center of the combined harmonic plus gravitational
tentials. About 17 wells of the optical potential are populat
during the course of the dynamics. The magnitudeuc(z,t)u
remains normalized throughout the propagation; if we w
to average out the oscillations inuc(z,t)u we would obtain
roughly the initial BECuc(z,0)u. The phaseu(z,t) is nearly
spatially independent, and the magnitudesuc(z,t)u in Fig. 1
are very nearly equal to the eigenstates of the GPE with
optical potential present at these times. The slight variat
of the phases with positionz indicates the small degree of th
nonadiabaticity that results during the dynamics. The pha
u(z,t) vary as a function of time by a spatially independe
constant due to the dynamics but this (z-independent! con-
stant phase is not physically significant in the experiments
Refs.@3,4#. The phaseu(z,t) at the time when the depth o

FIG. 1. Magnitude and phase of the Gross-Pitaevskii wave fu
tion as a function of position in the optical lattice. The wave fun
tion is shown when the well depth of the optical lattice is 10ER and
15ER .
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BOSE-EINSTEIN CONDENSATES IN TIME-DEPENDENT . . . PHYSICAL REVIEW A 65 053602
the optical lattice is 10ER has been shifted up in Fig. 1 b
unity so that it could be plotted conveniently.

As we increase the well depth of the optical lattice furth
a regime is reached in which the wave packets localized
the various wells become almost completely separa
When this occurs, the spatially varying phase of the wa
function begins to grow significantly, and the spatially d
pendent variations increase as the well depth of the op
lattice increases. Figure 2 shows the magnitudeuc(z,t)u and
phaseu(z,t) of the GP wave function as a function of pos
tion in the optical lattice,z/r z , when the well depth of the
optical lattice is 25ER and 40ER . The magnitude of the wave
function is almost totally within the regionz/r zP
@21.3,1.3#. The wave packets in the optical wells are almo
fully separated. The spatially dependent variations in
phase are less pronounced in the center of the trap wher
variations in the peak densities of the wave packets fr
well to well are smaller; by 40ER the variation in phase
across the condensate is large compared with 1 rad.
jump in the phase for 40ER at z/r z'61.1 is artificial and
due to the continuation of the inverse trigonometric funct
used to calculateu(z,t) from c(z,t). The spatial phase varia
tion over the condensate for 50ER is much greater than tha
for 40ER ; it varies by more than 5p from z/r z50 to 1.5.

Figure 3 shows the magnitude of the Fourier transform
the Gross-Pitaevskii wave functionc(k) versusk when the
well depth of the optical lattice is 25ER , 40ER , and 50ER .
The wave function has amplitude aroundk50, 62kL , al-
though components aroundk564kL are also clearly visible.
The width of the wave packets increases with increasing w
depth, particularly as the spatially varying phase across
condensate becomes significant. By 50ER , the widths of the
Fourier components of the wave packets are a good frac
of 2kL .

Adiabaticity is maintained throughout the course of t
dynamics until the wave packets become well separated
the tunneling time becomes comparable to or larger than
nonlinear time scale. Adiabaticity of soliton solutions of no

FIG. 2. Magnitude and phase of the Gross-Pitaevskii wave fu
tion as a function of position in the optical lattice. The wave fun
tion is shown when the well depth of the optical lattice is 25ER and
40ER .
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linear wave equations has been extensively studied
slowly varying external conditions~for a review, see Ref.
@9#!. It has been shown that, if the time scaleT of the varia-
tion of an external parameter is slow compared to the ins
taneous nonlinear eigenvaluev0(t) of the nonlinear~time-
independent! equation at time t, v0(t)T/(2p)@1, the
dynamics can be adiabatic. Here we see that an additi
condition is required; adiabaticity breaks down when t
wave packets become well separated and the tunneling
becomes longer than the nonlinear time.

It is easy to make a rough estimate of the tunneling pr
ability from well to well using the semiclassical approxim
tion @8#,

P~ t !5expS 2E
0

p/(2kL)

k~z,t !dzD
'expS 2A2m

\2 E0

p/(2kL)

@VL~z,t !#1/2dzD
5exp@22A4mV0~ t !/~\kL!#. ~2!

The tunneling rate is then given byR(t)5vv(t)3P(t),
where the vibrational frequencyvv(t) can be approximated
by vv(t)'A4kL

2V0(t)/m, since the expansion of the optica
potential about a minimum in the potential yieldsVL(z,t)
'(m/2)@vv(t)#2z25(m/2)@4kL

2V0(t)/m#z2. Hence, the
time-dependent tunneling rate is

R~ t !5A8~V0~ t !/ER!exp$2A8@V0~ t !/ER#%@ER /\#.

The tunneling rateR(t) can be compared with the time
dependent inverse nonlinear time scale@ tNL(t)#21

5NU0ucm(t)u2/\5m(t)/\, and the time-dependent diffrac
tion time scale,@ tDF(t)#215\@vv(t)#2/4m(t). Once the tun-
neling timet tunn5R21 becomes long compared totNL ~and
tDF , which is typically the smallest of these time scales!, a
spatially independent phase cannot be maintained acros

c-
-

FIG. 3. Gross-Pitaevskii wave function in momentum spa
c(k), versusk when the well depth of the optical lattice is 25ER ,
40ER, and 50ER .
2-3
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Y. B. BAND AND MAREK TRIPPENBACH PHYSICAL REVIEW A65 053602
condensate by the action of the kinetic energy operator, a
spatially dependent phase develops. In our calculations,
happens beyond a lattice well depth of about 35ER .

The nature of the spatially varying phase can be und
stood as follows. When the tunneling time is shorter than
nonlinear time scale, the phase of the order parameterc is
independent of position and an adiabatic approximation
be made@13#: c(z,t)5c0(z;t)exp@2i*0

t m(t8)dt8/\#. Here,
m(t) is the instantaneous chemical potential at timet and
the real amplitudec0(z;t) depends only parametrically o
time. It can be further approximated by the Thomas-Fe
approximation ~see, e.g., @11#!: c0(z;t)5$@m(t)
2V(z,t)#/NU0%

1/2. Afterwards, whent tunn.tNL , the con-
densate wave packets in each of the different wells begi
evolve independently. The number of atoms in each of
wells is different~due to the harmonic potential which brea
the symmetry between the wells! and an effective chemica
potential develops in each of the wells. The phase in eac
the wells is a reflection of the chemical potential in ea
well, m j (t). As is clear from Fig. 4, which replots the mag
nitude and~continuous! phase of the instantaneous order p
rameter for a time corresponding to a potential depth
40ER , the phase in each of the wells is more or less flat,
the local phase at timet for well j, *0

t m j (t8)dt8/\, varies
with j. Note that, if the rate of intensity increase were lo
ered to the point where adiabaticity can be maintained,
phase would remain spatially uniform; however, the tunn
ing time increases exponentially with intensity so eventua
adiabaticity will not be able to be maintained.

If we take our calculated wave packets~shown in Figs. 1
and 2! and propagate for an additional 2.5 ms upon switch

FIG. 4. Magnitude and~continuous! phase of the Gross
Pitaevskii wave functionc(z,t) as a function of positionz in the
optical lattice when the well depth of the optical lattice is 40ER .
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off the magnetic field, but leaving the optical lattice potent
in place, as described in Ref.@4#, our wave packets hardly
change. However, upon switching off the optical potent
and propagating the wave packets for 8 ms, the wave pac
spread by diffusion very significantly as they fall in gravit
The resulting wave packets are considerably different for
25ER and 50ER results. The additional Fourier componen
of the wave packet in the 50ER case significantly wash ou
interference patterns in the density profile for this case, c
sistent with the measurement in@4#. Note that we are not
asserting that squeezing is absent in the experiments of
@4#; rather, that an improved model of the above-the-me
field effects that accounts for the spatially varying phase
necessary to quantitatively compare with the experime
We note parenthetically that revivals in interference patte
of Bose condensates have been predicted@14#.

IV. CONCLUSIONS

We have seen that the spatially varying phase of the
lution to the Gross-Pitaevskii equation becomes large w
the tunneling time between wells in the optical lattice b
comes comparable to or larger than the nonlinear time sc
Adiabaticity then breaks down and the instantaneous non
ear eigenvectors to the time-independent Gross-Pitaev
equation do not have the character of the dynamical solut
It remains to determine the above-mean-field corrections
this pictureusing an approach that incorporates an accura
form for the spatially varying complex order parameter.

Finally, we note that these results have implications
garding the loading of an optical lattice with atoms for qua
tum computing, using a Bose-Einstein condensate source
laser beams that are slowly turned on@15#. From our studies
we conclude that the laser fields must be controlled so
the density of the atoms is sufficiently low~the nonlinear
term must be negligible! beforetunneling between the wells
is cut off by the full depth of the optical potential. Otherwis
phase variations from well to well will deleteriously affe
the resulting optical lattice state.
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