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Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box
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A simple model of an atomic Bose-Einstein condensate in a box whose size varies with time is studied to
determine the nature of adiabaticity in the nonlinear dynamics obtained within the Gross-Pitaevskii equation
(the nonlinear Schidinger equation Analytical and numerical methods are used to determine the nature of
adiabaticity in this nonlinear quantum system. Criteria for validity of an adiabatic approximation are formu-
lated.

DOI: 10.1103/PhysRevA.65.033607 PACS nuntder03.75.Fi, 67.90+z, 71.35.Lk

[. INTRODUCTION the framework of perturbed soliton solutions to the nonlinear
Schralinger equatioNLSE) in other contexts.

The adiabatic theorem of quantum mechanics ensures that Here we develop a physically relevant one-dimensional
an eigenstate of a system whose Hamiltonian evolves suffBEC model that we study in detail by means of analytical
ciently slowly in time(as determined by criteria for the ap- and numerical methods to determine the nature of adiabatic-
plicability of the theorem will remain in the same eigen- ity in nonlinear quantum systems within mean-field theory.
state, even though the eigenstate evolves in tjhe3].  There are several regimes in which adiabaticity can be ex-
Hence, a slowly evolving system that is initially in its ground perimentally and theoretically probed for nonlinear systems.
state will remain in the ground state throughout the course ofhe simplest regime is one for which the characteristic dy-
its evolution. The adiabatic theorem relies heavily on thenamical time scaléi.e., the time during which parameters of
superposition principle of quantum mechaniedthough in  the Hamiltonian undergo an essential change satisfies
classical mechanics similar theorems are valid for nonlineaconditions
systems[4]). It is of interest to determine to what extent
adiabaticity carries over toonlinearquantum systems, such TADT<TyL - (2)
as Bose-Einstein condensatB&£Cs in the region where the
mean-field description is appropriate. Well below the criticalHere, 7,p is the quantum-mechanical linear adiabatic time
temperature, the mean-field description is based on thscale determined in terms of the inverse of the difference of

Gross-Pitaevskii equatiofGPE), the energy eigenvalues at different values of timep
) =maxXh/ € (t)—&(t)]}, where the maximum is taken with
v h respect to a given time intervgd], while the nonlinear time
i% ot 2mV FV(r, 1)+ NoUo[ W% W, @) scale isty = maxX#i/u(t)}, with w(t) being the instantaneous

chemical potential11]. In this case, the applicability of the
and this approximation often yields excellent results for theadiabatic theorem of linear quantum mechaics3] is en-
system dynamics, even when the external poteitighries  sured by the first inequality in E42), and nonlinearity can-
with time. In Eq.(1), Uy=4mayh?/m is the atom-atom in- not play a significant role in the dynamics due to the second
teraction strength that is proportional to trevave scattering inequality. Therefore, the dynamics must be adiabatic in this
lengtha,, andmis the atomic mass. The parameigyin Eq.  case. This regime applies to the NIST optical-lattice experi-
(1) is the total number of atoms, and the wave functibris ~ ments wherein microsecond-duration light pulses are applied
subject to the normalizatiofi|W(r,t)|2dr=1 (the normal- to a sodium BE({12].
ization integral is a dynamical invariant of GRRdiabatic A more intriguing and more problematic regime is when
considerations regarding the GPE dynamics have been aghe dynamical time scale i&rge, i.e., 7ap, 7y <T. This
plied to cold Bosonic atoms trapped in optical lattif&s g], case applies, e.g., to the BEC experiments reported in Refs.
and the formation of optical lattice gates for quantum com{6,7]. Here, the nonlinearity plays an essential role in the
puting from atomic BEC$9]. However, the applicability of ~dynamics, and a relevant question is whether the dynamics
the adiabaticity concept to BECs does not follow from thecan be adiabatic. Generally, the answer is no, since further
above-mentioned adiabatic theorem of quantum mechanic§me scales may appear in the multidimensional GPE, viz., a
since the nonlinearity does not allow applicability of the su-diffraction time, 7o =2mL3/%, whereL , is the length of the
perposition principle to the GPE. On the other hand, adiabasystem(see beloy, or a tunneling time scaleg,, (which
ticity of nonlinear wave equations, and in particular, of soli- itself may vary in the course of the system’s evolujiph3].
ton solutions to such equations, have been extensivelif T is larger tharall these time scales, clearly the dynamics
studied(for a review, see Ref10]). Nevertheless, BEC dy- will be adiabatic. In what follows, we show that the GPE
namical problems based on the GPE have their own specifidoes allow for adiabaticity whefap, 7o, 7y <<T, and we
features, so that this case can be different from that studied igive explicit criteria for the validity of adiabaticity in the
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GPE for the specific problem considered here. We do so bpared with the diffraction time scalg,=2mL3/#%, also ob-
means of an analytical estimate of correctiongdeviations  tained directly from the GPH11], so we should have
from) the adiabatic approximation. We also present numeriTsty, > .

cal results for the dynamics of this system when this condi- |t is convenient to transform the variablgst, and ¢ to

tion does not apply. new (dimensionlessvariablesr, &, andu:
II. THE DYNAMICAL MODEL E=XIL(1), ®)
We consider a model based on the 1D GPE, in which the Aot dt’

9

external potential (x) is an infinitely deep well, ™=om NEXG)
0, 0<x<L(t),
U(x)= () u=2gma L(t) . (10)

+o0o, Xx<0 or x>L(t).

Note that the problem is mapped onto a fixed spatial interval
e€[0,1] of the dimensionless spatial variabfe and the
oundary condition is therefore not time dependent when the

problem is reformulated in terms of these variables. The 1D

GPE (4) takes the following form in terms of the new vari-

The size of the well(t) slowly varies with time, and we are
interested in determining the behavior of the system in thi
case, to determine the applicability of adiabaticity. The 1D
GPE takes the form

52 ables:
i =— 5— ot 9l Y], 4
V= g et Ol @ iU +ug—|ulPu=i(L,/L)(éu),, (11
with the boundary conditions whereL ,=dL/dr. Equation(1l) is supplemented by bound-

ary conditions following from Eq(5),
P(Ot)=¢(L(1),1)=0, 5

and normalization of the wave function,

u(é=0,7)=u(é=1,71=0. (12
The norm defined in terms of the transformed wave func-

f“ |p(x)]|2dx=1. ©) tion u,

* 1
_ 2

The nonlinearity parametag appearing in this 1D GPE is NLu()] fo luce e, 13
related to the nonlinearity parametlpU, in its 3D coun- o ) o
terpart, Eq.(1), and is determined so thatl,U,|¥,/2 IS not conserved in time, unlike the original norm,
=g| |, whereW ,, and ,, are the maximum values of the f('g(t)| P(x,1)|2dx=1. Indeed, as follows from the substitution
3D and 1D wave functions, respectively. This condition en-of Eq. (10) for u into Eq. (13), the u norm is an explicit
sures that the time scales for the nonlinear interaction in th&unction of time,
3D and 1D cases are equake below and Refl1l)).

This is the generalization of the particle in a box problem 2gm ~ L7
to the case wher@) the size of the box is varying with time, Nfu(7)]= ?L(T)z nOL_O'
and (b) there are many bosonic particles in the box that are
interacting via a mean field. whereL ,=L (t= —) [alternativelyL ,=L (t=t,) if the ini-

A typical situation in which the dynamics may be adia- tial moment in time ist,]. The dimensionless nonlinear-
batic is when the functioi.(t) takes on constant values as strength parameter,

t— £, and slowly varies in between on a long time schle

We aim to find the final statey(x,t=-+<) into which an No=2gmLly /A2, (15
initial state ¢(x,t=—«) will be transformed ifT is suffi- ) . )

ciently large, and to check whether the wave funciign,t) ~ introduced in Eq(14) will play an important role below.
remains adiabatic during the course of the evolution, pro- When the system size(7) is a slowly varying function
vided that the functiori(t) varies slowly enougffin prac-  ©f time, the right-hand sideRHS) of Eq. (11) is small, being
tice, of course, the evolution time interval is large but finite Proportional to the logarithmic derivative of the slowly vary-
To determine what “sufficiently slow” means, we define the N9 function. Therefore, Eq11) may be naturally considered

nonlinear time scale obtained directly from the GPEHg &S @ perturbed self-defocusing NLSE, and the adiabatic
methods for nonlinear wave equations reviewed in [REJ]

tae= (9] Y| h) 1= ulth, (7) might be applied. However, the perturbation term on the
RHS of Eq.(11) need not allow straightforward application
whereu and || are the chemical potential and maximum of the perturbation theory to the present problem since this
of the wave function in the initial configuration. The evolu- term doesotvanish atté=0 andé=1 when a general solu-
tion is slow as compared to nonlinear time scal@sfty, . tion found in the zeroth-order approximatifthe expression
In many BEC systems, the nonlinear time scale is large comL8) below] is inserted into it. One can easily check that, as a

(14
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=

consequence of this, a perturbative expansion generated by (a

50 - :
the term on RHS of Eq.11) is incompatible with the bound- ] :
ary conditions(12). 40 C
To resolve the problem, we transform the wave function Z .
once again, defining 2-{30_: o
. 2] :
L, 220 o
u(é,n)=v(é nexpg - —§&. (16 & r
4L * 10 o
The transformatiof16) generates a more convenient form of 01—
the perturbed NLS equation, 0 0!2 0!4 K 0!6 0!8 1
2 ®) 14 PRI BRI BRI BRI R
. 5, . L: LL,,—2L% ) ]
IUT+U§§—|U| UZIZ0+T§ v, (17) 124 k =0.9995

—_
o
1l

which is subject to the same boundary conditions as in Eq.
(12), v(é=0,7)=v(£é=1,7)=0. An obvious advantage of
having the perturbed NLS equation in the foti¥) is that
now the perturbation vanishes &0 andé=1, once a so-
lution found in the zeroth-order approximation vanishes at ¥
these points. 0 0.2 04 5 06 0.8
Note that the first term on the right-hand side of ELj)
is nonconservative. Accordingly, it is straightforward to see FIG. 1. (a) The expression R(k)[K (k) —E(k)] vs the elliptic
that this term leads to the exact relatigt¥) for the norm  modulus k. (b) The zeroth-order analytic  solution
evolution. Another important fact is that the second term ore®%K(k)sn(2K(q) ¢,k) for three different values d. The normal-
the RHS of Eq.(17), unlike the first term, issecond-order ization of these soliton solutions can be read off the curv@jn
small with regard to derivatives of the slowly varying func-
tions. In the perturbation-theory section that follows below,where E(k) is the complete elliptic integral of the second

we will not consider effects produced by the second-ordekind. Thusk completely determines the normalization of the
term, focusing solely on the most important first-orderinitial wave function, and vice versa.
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effects. To illustrate the zeroth-order solution, plots of
8K(K[K(K)—E(K)] vs k [see Eq. (20], and
Ill. ADIABATIC PERTURBATION THEORY 232K (k)sn(2K (q) &,k) vs ¢ for three different values ok
o in the regime of strong nonlinearitk>0.5 [see Eq.(18)],

A. Zeroth-order approximation are displayed in Figs.(&) and Xb). We remark that an exact

In zeroth-order approximation of the perturbation theorysolution that can be expressed in terms of the Jacobi elliptic
[neglecting the RHS of Eq17)], an exact stationary solution functions is frequently called anoidal wave which stems
satisfying the zero boundary conditionsé&t0 andé=1is  from the notation cn for the Jacobi’s elliptic cosine, related to
given by[14-16 the elliptic sine.

_ 9302 ;
v(£,7)=27KK(K)snZK (@) & k)exp(—i ) B. The nonlinear adiabatic approximation
=V(&kexdid(n)]. (18) The first-order perturbation term on the RHS of Etj7)
) o o can be treated in terms of nonlinear adiabatic perturbation
Here sn(, ) is the doubly periodic Jacobi elliptic sine func- a6y [10]. We stress that, unlike the perturbation term in
tion, k is the corresponding elliptic modulu&(k) is the  he intermediate equatiofil), which is “abnormal” in the
complt_ete e_IIiptic integral of the first kind, and the chemical ganse that it is not compatible to the necessary boundary
potential w is related tok as follows: conditions, as it was explained above, the “normal” pertur-
o bation in Eq.(17) satisfies the boundary conditions. The ap-
pn=4(1+kHK(k). (19 plicability of simple perturbative techniques for this class of
models can be proved using a rigorous expansion based on
The modulusk, which takes values€k<1, determines the the inverse scattering transform for the unperturbed NLS
strength of the nonlinearity: it is weakk—0, and strong if ~ equation(i.e., one can prove that the “simple techniques”
k—1. In fact, k is related directly to the dimensionless yield, in the lowest-order nontrivial approximation, exactly
nonlinearity-strength parameteg defined in Eq(15) as fol-  the same results as the rigorous methods, see[R@fand
lows: references therejn
The first standard step of the perturbative analysis is to
8K(K)[K(k)—E(k)]=ng, (20 apply the lowest-order adiabatic approximation. This ap-
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proximation takes the unperturbed soluti¢iB), that con- C. Corrections to the lowest-order adiabatic approximation
tains the parametdt, and makes it the first-order approxi-
mate solution to the perturbed equation, assuming that the,
modulusk is slowly varying with time, rather than remaining
constant.

Once the slow time dependence lqfr) has been deter-
ined as described above, one can look for perturbation-
induced corrections to the state’s shape, which was not taken
. into account in the first-order adiabatic approximation. A so-
The slow dependence of the paramesfeis introduced SO | ion to Eq.(17) including the corrections can be sought in

as to cancel the secular divergefgein the perturbation  yhe form of an expansion compatible with the zero boundary
theory. An important case is when the unperturbed solution ;- qitions namely

contains a single nontrivial parametek, (in the present
casg, and the perturbed equation gives rise to an exact rela- *

tion replacing a conservation law existing in the unperturbed v(&,7)=|V(&;k)+ E by(7)sin(7Tmé) |exdi¢(1)],
version of the equatiofthis exact relation is usually called a m=1

balance equatiorfor the (formen conserved quantify This (25)

is the case in Eq(14). Then, the time dependence of the yhere the functions and ¢ are those which were obtained
parameter, i.ek(7), can be found in a very simple way by i, the preceding section.

s_ubs_titution of the zeroth—o_rder approximation for the sc_)lu- The simplest way to derive evolution equations for the
tion into the balance equatlc[r;O]. In the present case, this amplitudesb,(t) is to directly substitute the expansié25)
condition a_moun_ts to evalua_tlon of_the _actual value of thgpiq Eq. (17), multiply the resulting equation by sinné),
norm (13), inserting the solutior18) into it, and then sub- 5 jntegrate frong=0 to é=1, carrying out this procedure
stituting the result into the exact relatiéh4). The final re- o each integem. The correction terms are neglected when
sultis substituting the expressiof25) into the first perturbation
term on the RHS of Eq(17), as they would give rise to
8K(kIIK (k) ~E(k)J=noL.(7)/Lo. @D higher-order perturbatio?](s.?mplemerilting this ggjjrocedure, we

Equation(21) is a transcendental equation to deterntige) use the classical Fourier expansion for the function sn,

for a given functionL(7) and ng (recall thatn, is a con- w

2 prl/2
stani. sn(2K (k) £,k)= sin(m(2p—1
An essential ingredient of the adiabatic approximation is a n2K(k)$.k) kK(k) pzl 1-Q%1 (m(2p=1)8).
consistent definition of the phasg(r) for the first-order (26)

solution with variablek(7). Indeed, substitutinds(7) back

into the general expressiofis8) and(19) for the wave func- )= 7K(V1-k?)
tion, it is easy to see that the consistently defined phase is Q(k)=exp — K (k) : (27)
T T A complicated system of inhomogeneous linear evolution
_ ’ r— 20 1 2 ’ ’
P(1)=— LO'“(T ydr'=— LO[“'k ()K= k(7" ))d 7", equations fob,,(7) ensues. linis odd, i.e.m=2p—1, we
(22) obtain
7o being the initial time ¢,= — in the usual formulation of .dby, g .
the adiabatic approximation =g, R2p—1b29—1_ngl M2p-1n(20n D7)
Thus, the full expression for the lowest-order perturbative
solution obtained in the adiabatic approximation is iL, = QP12
| T KKK 1-g 1 @9
v(&7)=V(EK()exdid(7)], (29 Q
where V(£;k) and ¢(7) are given by Eqs(18) and (22, and. ifmis even, i.e.m=2p,
respectively. Note that expressi@B) automatically satisfies db o
the zero boundary conditions at the poigts0 and§=1. 2P Raopbap— > Mopn(2b,—b%)=0.  (29)
Knowing a particular form of the slow temporal depen- dr n=1 ’
dencek( ) obtained from Eq(21), one can find the temporal ) ) ] )
dependence of the solution’s amplitude, HereQ is the Jacobi parametedefined in Eq(27), and the
coefficients appearing on the left-hand sides of E&8). and
A(r)=maxv(&,7)|=2%%K(T)K(k(T)). (24) (29 are
é
R 52(1+k2)|<2(k)—1(wm)2 (30)
The temporal dependence of state’s widithich, for in- m 2 '
stance, can be defined as the full width at half-maximum of
|v(&,7)|?] can similarly be obtained in the adiabatic approxi- oo 1
mation from the above expressions. Using E(9) and M mn=4k“K=(k) Oan(ZK(k)g,k)[cos{w(m—n)}
(21), it is also possible to predict the evolution of the instan-
taneous value of the chemical potentig]r). —cogm(m+n)}]dé. (31
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site parities are zero, hence we may sgf=0, and we are f(r)d7’, (36)

left with the system of equatior{28). Recall that one should

substitute the time-dependent moduk(s) as found from  \yhere () is an eigenvalue of the matrik(7), and f(7)

Egs.(21) into the above expressions. are slowly varying functions similar to the above-mentioned
This cumbersome system can be simplified(t) does ¢ = Note that the time scalesiZw, determined by different

not take on values too close to unity. Then, sn remains Closéigenfrequencie&), are, in fact, a mixture of the adiabatic
to the usual sine functioffor instance, ak?= 1/2, the Jacobi and nonlinear time scales,,, and ., defined in the

parameter, which determines the anharmonicity of the expanmutroduction.

sion (26), is Q=exp(—m)~0.043, which may be regarded as  The following conclusion can be made concerning the
a sufficiently small expansion factorThus, to obtain a gjze of thenonadiabaticeffects (shape correctionsconsid-
simple approximation for the coefficierlt,, defined in Eq.  gred above. If the functiob(7) slowly depends om with a
(31), one may simply set $8K (k)¢ k)=sin(mf). Within  characteristic time scal® (as defined in the Introduction
this approximation the only nonzero components of the Magnq if a characteristic value of is w, (within the limits of
trix (M) are its slow evolution on the time scateT), the criterion for the

applicability of the adiabatic approximation is

In fact, all the coefficient ,,, with m andn having oppo- T 5
f exr{ —if w(7)d7”
0

M1;=3k?K2(k), Mpm=2k?K2(k) (m>1),
woT27>1. (37)
— — 212
Minm—2=Mum-2m=—kK(k). 32 We stress that, as the characteristic times @, taken for
the different eigenfrequencies constitute a set including the
adiabatic and nonlinear time scales, and ry, (see abovg
the inequality(37) is exactly the condition for the applicabil-
ity of the adiabatic approximation conjectured in the Intro-
uction.

The evolution equation@5) for the shape-correction am-
plitudes are to be solved for an initial state without shape
b, + 3k?K?(k)b* corrections, i.e.p,(7=179)=0 Vm. If one takes the initial

moment asro— —« (as mentioned above, this is the stan-
iL dard assumption in the treatment of adiabatic processes

) (33 [1,4]), one can determine eventual values of the shape-
2L correction amplitudes ab,(7) at 7— +. Classical esti-

mates for integrals involving products of rapidly and slowly

Furthermore, the RHS of E¢28) also greatly simplifies in
the same approximation. It is different from zero solely for
m=1, being equal taL ./(2L). Thus, the approximation
that replaces the sn function by the usual sine leads to th
following equations, instead of Eq&8) and (29):

2
2(1—2k2)r<2(|<)—7T7

.abyg
i—— +
dr

+k?K?(2bz—b3)=

dbyp_g 21— KOK2(K)— [7(2p—1)]? varying functions[1] show that the values df,(7— +)

" 4r + 2 JK=(K) 2 2p-1 are exponentially smalivhen condition(37) is satisfied,
+2k2K2(K)b3,_ ;1 +k?K?(2byy 3+ 2b,p 1~ b3, 5 |br( 7=+ )| ~exp — consX wyT). (39
- ;pﬂ):o, (34) A particular value of the constant in this expression depends

on the choice of the unperturbed state and on the form of the
where p>1. Recall that all the amplitudels,, with even  functionL(7). Hence, in analogy with the well-known theo-
values ofm are zero. rems estimating nonadiabatic corrections to the adiabatic ap-

Despite the fact that the approximate system consisting gfroximation in (nonlineaj classical mechanicg4], the

Egs. (33) and (34) is considerably simpler than the exact bp,,(7— +) values are exponentially small.
Eqgs.(28), it can only be solved numerically by truncating the
system of the linear equations at some finite integer. Never- IV. NUMERICAL RESULTS
theless, some qualitative generic features of the solution can

be determined. The general structure of the system is of the We first present results for the amplitudeg() in Eq.
form (25), obtained by numerically solving Eg&83) and(34). We

takek?=0.3, Lo=1, and

_ 2

20?

28 4 AmB=ic 35
g, TA(MB=IC(n), (35 L(r=L,

whereB is a column vector of the variablds,, ., A is a
matrix of coefficients multiplying the variablds andC is babili
the vector column of free terms on the left-hand side, withProPapility

with o=T/10. Figure 2 shows the computed excited-state

the single nonzero entry;=L ./(2L). Both C andA slowly Ne
depend upon time—the former directly, the latter kia). Po(7)= 2 b (7)|2 (39)
Solutions to the systerf85) consist of terms of the type ¢ =1
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6 initial eigenstate Iyl ——
T

25F
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ne B3
15} )
EXAS
1F
Ir phase 8(&) ——
05} of \
% 10 20 30 40 5'To 60 70 80 90 100 1o 02 04 : 06 038 1
FIG. 2. The probability22°:1|bm(r)|2 for the nonadiabatic cor- FIG. 4. The magnitude and phase of the wave funcijgd, r
rection to the state vs for N.=1,3,5,7,9 withT=100. ForN, =T)=|y(&)|e'"? vs the coordinatg in the box at the completion
=3 the curves lie on top of each other. of the dynamical process, witk=0.963 andT=1x10 2. Also

shown is the magnitude in the initial eigenstate.
versus timer, with the number of modes kept in the trun-
cated calculation beinty.=1,3,5,7, and 9, fof=100. Ex-  form method, in order to check if adiabaticity still takes
cept forN.=1, all the curves lie on top of each other, hencePlace in this regime. Figure 4 shows the results for the cal-
the results do converge very quickly as a function of theculated wave functions(¢,7=T)=|y(£)|€"® vs ¢ in the

number of the modes. We see from Fig. 2 that the probabilit?0X at the completion of the dynamical process for small
of finding excited states for all times is below 32075, (nonadiabatig time scale,T=0.01, and fork=0.963. Also

and fort=T the probability is exceedingly small, i.e., the Shown for comparison is the initial eigenstate magnitude
process is almost completely adiabatic. A minimum ofl#(¢,7=0)|. The magnitude of the wave function in the final
Po(7=T/2) is expected from the general form of the pertur-Stateé is not too different from that in the initial eigenstate,
bation equations since the derivative lofr) vanishes atr and the spatial variation of the phgse is fairly flgt. Figure 5
=T/2. ForT=10, the excited-state probabilitg9) begins to ~ Pertains to the same case, but with a larger time scale,
be large ¢0.2), and the adiabatic-theory results are no more=1- Now, the magnitudes of the wave function in the finite
reliable. For example, Fig. 3 shows the results Tor10.  and initial state are barely distinguishable on the scale of the
Again the convergence as a function of the number of thdigure, and the spatial profile of the phase is almost flat.
modes is very fast, but the excited-state probability is not'hus, the process is largely adiabatic in the latter case.
small. For timesr>T, P (7) oscillates with time.

For stronger nonlinearity, 0s5k?<1, perturbative meth- V. CONCLUSION

ods cannot be usdh particular, the approximation based on We have presented a consistent derivation of the nonlinear

the replacement of the elliptic sine by the ordinary sine, a : . o , .
described in the above section, does not appe we di- %ynamlcs for a simple model describing a BEC confined in a

rectly solved Eq(17) by using a split-step fast Fourier trans- 7

03 r T T T T T r T r 6 1
5k J
02sf
b=l
02} Z
St 1
E
015 2f 1
“a
We 1k i
0.1
PM___L____________________'_‘_,
005}
1o 0.2 04 0.6 038 1
4
0 1L 1 1 1 1 1 1 1 1
ot 23 e s e T 890 FIG. 5. The magnitude and phase of the wave functi¢s, r
=T)=|y(&)|e' "9 vs the coordinaté in the box at the completion
FIG. 3. Same as Fig. 2 except for=10. of the dynamical process, witk=0.963 andT=1.
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box with a temporally varying siz&(7). The speed of the The particle in a box is a paradigm problem in one-body
variation of L(7) determines whether the dynamics is adia-quantum mechanics. We have extended it to the many-body
batic. A “trivial” regime of adiabaticity is that for which regime at least within a mean-field approach, and studied the
Tap<<T<<7y_; in this paper, we have shown that adiabaticity adiabaticity for such a system when the size of the box varies
can also be maintained whenp,7pr, 7y <<T, Where the with time. Specifically, we formulated the criteria for the
various time scales have been defined in the Introduction. Ifalidity of the adiabatic approximation for a BEC in a box
other time scales appear, the conditiopy,7pr, 7y <T  Whose size varies with time, developed the analytical and
may not be sufficient to ensure adiabaticity. For example, if anumerical tools for investigating adiabaticity in the dynamics
barrier is present in the middle of the box, e.g., a repulgive within quantum mean-field theory, and presented results of
function atx=Ly/2, then another time scale, correspondingcalculations for this system.

to the time of tunneling under the barriet,,, is present in
the problem. If this time scale is long compared witf ,
adiabaticity will not be maintained, and a nonvanishing spa-
tially varying phase will develop across the condensate wave This work was supported in part by grants from the US-
function [13]. Hence, the issue of adiabaticity in nonlinear Israel Binational Science Foundation, the Israel Science
problems must be investigated carefully; the perturbativd~oundation, the James Franck Binational German-Israeli
techniques reviewed in Rdf10] may be applicable, but ad- Program in Laser-Matter Interaction, and the Polish KBN
ditional considerations may play a role. 2/P03/B07819.
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