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Adiabaticity in nonlinear quantum dynamics: Bose-Einstein condensate in a time-varying box

Y. B. Band,1 Boris Malomed,2 and Marek Trippenbach1,3

1Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
3Institute of Experimental Physics, Optics Division, Warsaw University, ul. Hoz˙a 69, Warsaw 00-681, Poland

~Received 7 August 2001; published 7 February 2002; publisher error corrected 19 February 2002!

A simple model of an atomic Bose-Einstein condensate in a box whose size varies with time is studied to
determine the nature of adiabaticity in the nonlinear dynamics obtained within the Gross-Pitaevskii equation
~the nonlinear Schro¨dinger equation!. Analytical and numerical methods are used to determine the nature of
adiabaticity in this nonlinear quantum system. Criteria for validity of an adiabatic approximation are formu-
lated.
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I. INTRODUCTION

The adiabatic theorem of quantum mechanics ensures
an eigenstate of a system whose Hamiltonian evolves s
ciently slowly in time~as determined by criteria for the ap
plicability of the theorem! will remain in the same eigen
state, even though the eigenstate evolves in time@1–3#.
Hence, a slowly evolving system that is initially in its groun
state will remain in the ground state throughout the cours
its evolution. The adiabatic theorem relies heavily on
superposition principle of quantum mechanics~although in
classical mechanics similar theorems are valid for nonlin
systems@4#!. It is of interest to determine to what exte
adiabaticity carries over tononlinearquantum systems, suc
as Bose-Einstein condensates~BECs! in the region where the
mean-field description is appropriate. Well below the critic
temperature, the mean-field description is based on
Gross-Pitaevskii equation~GPE!,

i\
]C

]t
5F2

\2

2m
¹21V~r ,t !1N0U0uCu2GC, ~1!

and this approximation often yields excellent results for
system dynamics, even when the external potentialV varies
with time. In Eq.~1!, U054pa0\2/m is the atom-atom in-
teraction strength that is proportional to thes-wave scattering
lengtha0, andm is the atomic mass. The parameterN0 in Eq.
~1! is the total number of atoms, and the wave functionC is
subject to the normalization* uC(r ,t)u2dr51 ~the normal-
ization integral is a dynamical invariant of GPE!. Adiabatic
considerations regarding the GPE dynamics have been
plied to cold Bosonic atoms trapped in optical lattices@5–8#,
and the formation of optical lattice gates for quantum co
puting from atomic BECs@9#. However, the applicability of
the adiabaticity concept to BECs does not follow from t
above-mentioned adiabatic theorem of quantum mechan
since the nonlinearity does not allow applicability of the s
perposition principle to the GPE. On the other hand, adia
ticity of nonlinear wave equations, and in particular, of so
ton solutions to such equations, have been extensi
studied~for a review, see Ref.@10#!. Nevertheless, BEC dy
namical problems based on the GPE have their own spe
features, so that this case can be different from that studie
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the framework of perturbed soliton solutions to the nonline
Schrödinger equation~NLSE! in other contexts.

Here we develop a physically relevant one-dimensio
BEC model that we study in detail by means of analytic
and numerical methods to determine the nature of adiaba
ity in nonlinear quantum systems within mean-field theo
There are several regimes in which adiabaticity can be
perimentally and theoretically probed for nonlinear system
The simplest regime is one for which the characteristic
namical time scale~i.e., the time during which parameters o
the Hamiltonian undergo an essential change!, T, satisfies
conditions

tAD!T!tNL . ~2!

Here, tAD is the quantum-mechanical linear adiabatic tim
scale determined in terms of the inverse of the difference
the energy eigenvalues at different values of time,tAD
5max$\/@e1(t)2e0(t)#%, where the maximum is taken with
respect to a given time interval@2#, while the nonlinear time
scale istNL5max$\/m(t)%, with m(t) being the instantaneou
chemical potential@11#. In this case, the applicability of the
adiabatic theorem of linear quantum mechanics@1–3# is en-
sured by the first inequality in Eq.~2!, and nonlinearity can-
not play a significant role in the dynamics due to the seco
inequality. Therefore, the dynamics must be adiabatic in
case. This regime applies to the NIST optical-lattice expe
ments wherein microsecond-duration light pulses are app
to a sodium BEC@12#.

A more intriguing and more problematic regime is wh
the dynamical time scale islarge, i.e., tAD ,tNL!T. This
case applies, e.g., to the BEC experiments reported in R
@6,7#. Here, the nonlinearity plays an essential role in t
dynamics, and a relevant question is whether the dynam
can be adiabatic. Generally, the answer is no, since fur
time scales may appear in the multidimensional GPE, viz
diffraction time,tDF52mL0

2/\, whereL0 is the length of the
system~see below!, or a tunneling time scale,t tun ~which
itself may vary in the course of the system’s evolution! @13#.
If T is larger thanall these time scales, clearly the dynami
will be adiabatic. In what follows, we show that the GP
does allow for adiabaticity whentAD ,tDF ,tNL!T, and we
give explicit criteria for the validity of adiabaticity in the
©2002 The American Physical Society07-1
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GPE for the specific problem considered here. We do so
means of an analytical estimate of corrections to~deviations
from! the adiabatic approximation. We also present num
cal results for the dynamics of this system when this con
tion does not apply.

II. THE DYNAMICAL MODEL

We consider a model based on the 1D GPE, in which
external potentialU(x) is an infinitely deep well,

U~x!5H 0, 0,x,L~ t !,

1`, x,0 or x.L~ t !.
~3!

The size of the wellL(t) slowly varies with time, and we are
interested in determining the behavior of the system in
case, to determine the applicability of adiabaticity. The
GPE takes the form

i\c t52
\2

2m
cxx1gucu2c, ~4!

with the boundary conditions

c~0,t !5c„L~ t !,t…50, ~5!

and normalization of the wave function,

E
2`

`

uc~x!u2dx51. ~6!

The nonlinearity parameterg appearing in this 1D GPE is
related to the nonlinearity parameterN0U0 in its 3D coun-
terpart, Eq. ~1!, and is determined so thatN0U0uCmu2
5gucmu2, whereCm andcm are the maximum values of th
3D and 1D wave functions, respectively. This condition e
sures that the time scales for the nonlinear interaction in
3D and 1D cases are equal~see below and Ref.@11#!.

This is the generalization of the particle in a box proble
to the case where~a! the size of the box is varying with time
and ~b! there are many bosonic particles in the box that
interacting via a mean field.

A typical situation in which the dynamics may be adi
batic is when the functionL(t) takes on constant values a
t→6`, and slowly varies in between on a long time scaleT.
We aim to find the final statec(x,t51`) into which an
initial state c(x,t52`) will be transformed ifT is suffi-
ciently large, and to check whether the wave functionc(x,t)
remains adiabatic during the course of the evolution, p
vided that the functionL(t) varies slowly enough~in prac-
tice, of course, the evolution time interval is large but finit!.
To determine what ‘‘sufficiently slow’’ means, we define th
nonlinear time scale obtained directly from the GPE as@11#

tNL5~gucmu2/\!21'm/\, ~7!

wherem and ucmu are the chemical potential and maximu
of the wave function in the initial configuration. The evol
tion is slow as compared to nonlinear time scale ifT@tNL .
In many BEC systems, the nonlinear time scale is large c
03360
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pared with the diffraction time scaletDF52mL0
2/\, also ob-

tained directly from the GPE@11#, so we should have
T@tNL@tDF .

It is convenient to transform the variablesx, t, andc to
new ~dimensionless! variablest, j, andu:

j[x/L~ t !, ~8!

t[
\

2mE
0

t dt8

L2~ t8!
, ~9!

u[A2gm\21L~ t !c. ~10!

Note that the problem is mapped onto a fixed spatial inter
jP@0,1# of the dimensionless spatial variablej, and the
boundary condition is therefore not time dependent when
problem is reformulated in terms of these variables. The
GPE ~4! takes the following form in terms of the new var
ables:

iut1ujj2uuu2u5 i ~Lt /L !~ju!j , ~11!

whereLt[dL/dt. Equation~11! is supplemented by bound
ary conditions following from Eq.~5!,

u~j50,t!5u~j51,t!50. ~12!

The norm defined in terms of the transformed wave fu
tion u,

N@u~t!#[E
0

1

uu~j,t!u2dj, ~13!

is not conserved in time, unlike the original norm
*0

L(t)uc(x,t)u2dx51. Indeed, as follows from the substitutio
of Eq. ~10! for u into Eq. ~13!, the u norm is an explicit
function of time,

N@u~t!#5
2gm

\2
L~t![n0

L~t!

L0
, ~14!

whereL0[L(t52`) @alternatively,L0[L(t5t0) if the ini-
tial moment in time ist0#. The dimensionless nonlinea
strength parameter,

n0[2gmL0 /\2, ~15!

introduced in Eq.~14! will play an important role below.
When the system sizeL(t) is a slowly varying function

of time, the right-hand side~RHS! of Eq. ~11! is small, being
proportional to the logarithmic derivative of the slowly var
ing function. Therefore, Eq.~11! may be naturally considere
as a perturbed self-defocusing NLSE, and the adiab
methods for nonlinear wave equations reviewed in Ref.@10#
might be applied. However, the perturbation term on
RHS of Eq.~11! need not allow straightforward applicatio
of the perturbation theory to the present problem since
term doesnot vanish atj50 andj51 when a general solu
tion found in the zeroth-order approximation@the expression
~18! below# is inserted into it. One can easily check that, a
7-2
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ADIABATICITY IN NONLINEAR QUANTUM . . . PHYSICAL REVIEW A 65 033607
consequence of this, a perturbative expansion generate
the term on RHS of Eq.~11! is incompatible with the bound
ary conditions~12!.

To resolve the problem, we transform the wave funct
once again, defining

u~j,t![v~j,t!expS i

4

Lt

L
j2D . ~16!

The transformation~16! generates a more convenient form
the perturbed NLS equation,

ivt1vjj2uvu2v5 i
Lt

2L
v1

LLtt22Lt
2

4L2
j2v, ~17!

which is subject to the same boundary conditions as in
~12!, v(j50,t)5v(j51,t)50. An obvious advantage o
having the perturbed NLS equation in the form~17! is that
now the perturbation vanishes atj50 andj51, once a so-
lution found in the zeroth-order approximation vanishes
these points.

Note that the first term on the right-hand side of Eq.~17!
is nonconservative. Accordingly, it is straightforward to s
that this term leads to the exact relation~14! for the norm
evolution. Another important fact is that the second term
the RHS of Eq.~17!, unlike the first term, issecond-order
small with regard to derivatives of the slowly varying func
tions. In the perturbation-theory section that follows belo
we will not consider effects produced by the second-or
term, focusing solely on the most important first-ord
effects.

III. ADIABATIC PERTURBATION THEORY

A. Zeroth-order approximation

In zeroth-order approximation of the perturbation theo
@neglecting the RHS of Eq.~17!#, an exact stationary solutio
satisfying the zero boundary conditions atj50 andj51 is
given by @14–16#

v~j,t!523/2kK~k!sn„2K~q!j,k…exp~2 imt!

[V~j;k!exp@ if~t!#. ~18!

Here sn(•,•) is the doubly periodic Jacobi elliptic sine func
tion, k is the corresponding elliptic modulus,K(k) is the
complete elliptic integral of the first kind, and the chemic
potentialm is related tok as follows:

m54~11k2!K2~k!. ~19!

The modulusk, which takes values 0<k<1, determines the
strength of the nonlinearity: it is weak ifk→0, and strong if
k→1. In fact, k is related directly to the dimensionles
nonlinearity-strength parametern0 defined in Eq.~15! as fol-
lows:

8K~k!@K~k!2E~k!#5n0 , ~20!
03360
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where E(k) is the complete elliptic integral of the secon
kind. Thus,k completely determines the normalization of th
initial wave function, and vice versa.

To illustrate the zeroth-order solution, plots o
8K(k)@K(k)2E(k)# vs k @see Eq. ~20!#, and
23/2kK(k)sn„2K(q)j,k… vs j for three different values ofk
in the regime of strong nonlinearity,k.0.5 @see Eq.~18!#,
are displayed in Figs. 1~a! and 1~b!. We remark that an exac
solution that can be expressed in terms of the Jacobi elli
functions is frequently called acnoidal wave, which stems
from the notation cn for the Jacobi’s elliptic cosine, related
the elliptic sine.

B. The nonlinear adiabatic approximation

The first-order perturbation term on the RHS of Eq.~17!
can be treated in terms of nonlinear adiabatic perturba
theory @10#. We stress that, unlike the perturbation term
the intermediate equation~11!, which is ‘‘abnormal’’ in the
sense that it is not compatible to the necessary bound
conditions, as it was explained above, the ‘‘normal’’ pertu
bation in Eq.~17! satisfies the boundary conditions. The a
plicability of simple perturbative techniques for this class
models can be proved using a rigorous expansion base
the inverse scattering transform for the unperturbed N
equation~i.e., one can prove that the ‘‘simple technique
yield, in the lowest-order nontrivial approximation, exact
the same results as the rigorous methods, see Ref.@10# and
references therein!.

The first standard step of the perturbative analysis is
apply the lowest-order adiabatic approximation. This a

FIG. 1. ~a! The expression 8K(k)@K(k)2E(k)# vs the elliptic
modulus k. ~b! The zeroth-order analytic solution
23/2kK(k)sn(2K(q)j,k) for three different values ofk. The normal-
ization of these soliton solutions can be read off the curve in~a!.
7-3
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proximation takes the unperturbed solution~18!, that con-
tains the parameterk, and makes it the first-order approx
mate solution to the perturbed equation, assuming that
modulusk is slowly varying with time, rather than remainin
constant.

The slow dependence of the parameter~s! is introduced so
as to cancel the secular divergence~s! in the perturbation
theory. An important case is when the unperturbed solu
contains a single nontrivial parameter (k, in the present
case!, and the perturbed equation gives rise to an exact r
tion replacing a conservation law existing in the unperturb
version of the equation@this exact relation is usually called
balance equationfor the ~former! conserved quantity#. This
is the case in Eq.~14!. Then, the time dependence of th
parameter, i.e.,k(t), can be found in a very simple way b
substitution of the zeroth-order approximation for the so
tion into the balance equation@10#. In the present case, thi
condition amounts to evaluation of the actual value of
norm ~13!, inserting the solution~18! into it, and then sub-
stituting the result into the exact relation~14!. The final re-
sult is

8K~k!@K~k!2E~k!#5n0L~t!/L0 . ~21!

Equation~21! is a transcendental equation to determinek(t)
for a given functionL(t) and n0 ~recall thatn0 is a con-
stant!.

An essential ingredient of the adiabatic approximation i
consistent definition of the phasef(t) for the first-order
solution with variablek(t). Indeed, substitutingk(t) back
into the general expressions~18! and~19! for the wave func-
tion, it is easy to see that the consistently defined phase

f~t!52E
t0

t

m~t8!dt8[24E
t0

t

@11k2~t8!#K2
„k~t8!…dt8,

~22!

t0 being the initial time (t052` in the usual formulation of
the adiabatic approximation!.

Thus, the full expression for the lowest-order perturbat
solution obtained in the adiabatic approximation is

v~j,t!5V„j;k~t!…exp@ if~t!#, ~23!

where V(j;k) and f(t) are given by Eqs.~18! and ~22!,
respectively. Note that expression~23! automatically satisfies
the zero boundary conditions at the pointsj50 andj51.

Knowing a particular form of the slow temporal depe
dencek(t) obtained from Eq.~21!, one can find the tempora
dependence of the solution’s amplitude,

A~t![max
j

uv~j,t!u522/3k~t!K„k~t!…. ~24!

The temporal dependence of state’s width@which, for in-
stance, can be defined as the full width at half-maximum
uv(j,t)u2# can similarly be obtained in the adiabatic appro
mation from the above expressions. Using Eqs.~19! and
~21!, it is also possible to predict the evolution of the insta
taneous value of the chemical potentialm(t).
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C. Corrections to the lowest-order adiabatic approximation

Once the slow time dependence ofk(t) has been deter
mined as described above, one can look for perturbat
induced corrections to the state’s shape, which was not ta
into account in the first-order adiabatic approximation. A s
lution to Eq.~17! including the corrections can be sought
the form of an expansion compatible with the zero bound
conditions, namely,

v~j,t!5FV~j;k!1 (
m51

`

bm~t!sin~pmj!Gexp@ if~t!#,

~25!

where the functionsV andf are those which were obtaine
in the preceding section.

The simplest way to derive evolution equations for t
amplitudesbm(t) is to directly substitute the expansion~25!
into Eq. ~17!, multiply the resulting equation by sin(pmj),
and integrate fromj50 to j51, carrying out this procedure
for each integerm. The correction terms are neglected wh
substituting the expression~25! into the first perturbation
term on the RHS of Eq.~17!, as they would give rise to
higher-order perturbations. Implementing this procedure,
use the classical Fourier expansion for the function sn,

sn„2K~k!j,k…5
2p

kK~k! (
p51

`
Qp21/2

12Q2p21
sin„p~2p21!j…,

~26!

Q~k![expF2
pK~A12k2!

K~k!
G . ~27!

A complicated system of inhomogeneous linear evolut
equations forbm(t) ensues. Ifm is odd, i.e.,m[2p21, we
obtain

i
db2p21

dt
1R2p21b2p212 (

n51

`

M2p21,n~2bn2bn* !

5
iL t

L

p

kK~k!

Qp21/2

12Q2p21
, ~28!

and, if m is even, i.e.,m[2p,

i
db2p

dt
1R2pb2p2 (

n51

`

M2p,n~2bn2bn* !50. ~29!

HereQ is theJacobi parameterdefined in Eq.~27!, and the
coefficients appearing on the left-hand sides of Eqs.~28! and
~29! are

Rm[2~11k2!K2~k!2
1

2
~pm!2, ~30!

Mmn[4k2K2~k!E
0

1

sn2
„2K~k!j,k…@cos$p~m2n!%

2cos$p~m1n!%#dj. ~31!
7-4
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In fact, all the coefficientsMmn with m andn having oppo-
site parities are zero, hence we may setb2p[0, and we are
left with the system of equations~28!. Recall that one should
substitute the time-dependent modulusk(t) as found from
Eqs.~21! into the above expressions.

This cumbersome system can be simplified ifk(t) does
not take on values too close to unity. Then, sn remains c
to the usual sine function@for instance, atk251/2, the Jacobi
parameter, which determines the anharmonicity of the exp
sion ~26!, is Q5exp(2p)'0.043, which may be regarded a
a sufficiently small expansion factor#. Thus, to obtain a
simple approximation for the coefficientsMmn defined in Eq.
~31!, one may simply set sn„2K(k)j,k…'sin(pj). Within
this approximation the only nonzero components of the m
trix ( Mmn) are

M1153k2K2~k!, Mmm52k2K2~k! ~m.1!,

Mm,m225Mm22,m52k2K2~k!. ~32!

Furthermore, the RHS of Eq.~28! also greatly simplifies in
the same approximation. It is different from zero solely f
m51, being equal toiL t /(2L). Thus, the approximation
that replaces the sn function by the usual sine leads to
following equations, instead of Eqs.~28! and ~29!:

i
db1

dt
1F2~122k2!K2~k!2

p2

2 Gb113k2K2~k!b1*

1k2K2~2b32b3* !5
iL t

2L
, ~33!

i
db2p21

dt
1F2~12k2!K2~k!2

@p~2p21!#2

2 Gb2p21

12k2K2~k!b2p21* 1k2K2~2b2p2312b2p112b2p23*

2b2p11* !50, ~34!

where p.1. Recall that all the amplitudesbm with even
values ofm are zero.

Despite the fact that the approximate system consistin
Eqs. ~33! and ~34! is considerably simpler than the exa
Eqs.~28!, it can only be solved numerically by truncating th
system of the linear equations at some finite integer. Ne
theless, some qualitative generic features of the solution
be determined. The general structure of the system is of
form

i
dB

dt
1A~t!B5 iC~t!, ~35!

whereB is a column vector of the variablesb2p21 , A is a
matrix of coefficients multiplying the variablesb, andC is
the vector column of free terms on the left-hand side, w
the single nonzero entryc1[Lt /(2L). Both C andA slowly
depend upon time—the former directly, the latter viak(t).

Solutions to the system~35! consist of terms of the type
03360
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t0

t

expS 2 i E t8
v~t9!dt9 D f ~t8!dt8, ~36!

wherev(t) is an eigenvalue of the matrixA(t), and f (t)
are slowly varying functions similar to the above-mention
c1. Note that the time scales 2p/v, determined by different
eigenfrequenciesv, are, in fact, a mixture of the adiabati
and nonlinear time scales,tAD and tNL , defined in the
Introduction.

The following conclusion can be made concerning t
size of thenonadiabaticeffects ~shape corrections! consid-
ered above. If the functionL(t) slowly depends ont with a
characteristic time scaleT ~as defined in the Introduction!,
and if a characteristic value ofv is v0 ~within the limits of
its slow evolution on the time scale;T), the criterion for the
applicability of the adiabatic approximation is

v0T/2p@1. ~37!

We stress that, as the characteristic times 2p/v0 taken for
the different eigenfrequencies constitute a set including
adiabatic and nonlinear time scalestAD andtNL ~see above!,
the inequality~37! is exactly the condition for the applicabil
ity of the adiabatic approximation conjectured in the Intr
duction.

The evolution equations~35! for the shape-correction am
plitudes are to be solved for an initial state without sha
corrections, i.e.,bm(t5t0)50 ;m. If one takes the initial
moment ast0→2` ~as mentioned above, this is the sta
dard assumption in the treatment of adiabatic proces
@1,4#!, one can determine eventual values of the sha
correction amplitudes asbm(t) at t→1`. Classical esti-
mates for integrals involving products of rapidly and slow
varying functions@1# show that the values ofbm(t→1`)
areexponentially smallwhen condition~37! is satisfied,

ubm~t51`!u;exp~2const3v0T!. ~38!

A particular value of the constant in this expression depe
on the choice of the unperturbed state and on the form of
functionL(t). Hence, in analogy with the well-known theo
rems estimating nonadiabatic corrections to the adiabatic
proximation in ~nonlinear! classical mechanics@4#, the
bm(t→1`) values are exponentially small.

IV. NUMERICAL RESULTS

We first present results for the amplitudesbm(t) in Eq.
~25!, obtained by numerically solving Eqs.~33! and~34!. We
takek250.3, L051, and

L~t!5L0F11expS 2
~t2T/2!2

2s2 D G ,

with s5T/10. Figure 2 shows the computed excited-st
probability

Pex~t![ (
m51

Nc

ubm~t!u2 ~39!
7-5
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versus timet, with the number of modes kept in the trun
cated calculation beingNc51,3,5,7, and 9, forT5100. Ex-
cept forNc51, all the curves lie on top of each other, hen
the results do converge very quickly as a function of
number of the modes. We see from Fig. 2 that the probab
of finding excited states for all times is below 3.231025,
and for t5T the probability is exceedingly small, i.e., th
process is almost completely adiabatic. A minimum
Pex(t5T/2) is expected from the general form of the pertu
bation equations since the derivative ofL(t) vanishes att
5T/2. ForT&10, the excited-state probability~39! begins to
be large (.0.2), and the adiabatic-theory results are no m
reliable. For example, Fig. 3 shows the results forT510.
Again the convergence as a function of the number of
modes is very fast, but the excited-state probability is
small. For timest.T, Pex(t) oscillates with time.

For stronger nonlinearity, 0.5,k2<1, perturbative meth-
ods cannot be used~in particular, the approximation based o
the replacement of the elliptic sine by the ordinary sine,
described in the above section, does not apply!, so we di-
rectly solved Eq.~17! by using a split-step fast Fourier tran

FIG. 2. The probability(m51
Nc ubm(t)u2 for the nonadiabatic cor-

rection to the state vst for Nc51,3,5,7,9 withT5100. For Nc

>3 the curves lie on top of each other.

FIG. 3. Same as Fig. 2 except forT510.
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form method, in order to check if adiabaticity still take
place in this regime. Figure 4 shows the results for the c
culated wave functionc(j,t5T)[uc(j)ueiu(j) vs j in the
box at the completion of the dynamical process for sm
~nonadiabatic! time scale,T50.01, and fork50.963. Also
shown for comparison is the initial eigenstate magnitu
uc(j,t50)u. The magnitude of the wave function in the fin
state is not too different from that in the initial eigensta
and the spatial variation of the phase is fairly flat. Figure
pertains to the same case, but with a larger time scaleT
51. Now, the magnitudes of the wave function in the fin
and initial state are barely distinguishable on the scale of
figure, and the spatial profile of the phase is almost fl
Thus, the process is largely adiabatic in the latter case.

V. CONCLUSION

We have presented a consistent derivation of the nonlin
dynamics for a simple model describing a BEC confined i

FIG. 4. The magnitude and phase of the wave functionc(j,t
5T)5uc(j)ueiu(j) vs the coordinatej in the box at the completion
of the dynamical process, withk50.963 andT5131022. Also
shown is the magnitude in the initial eigenstate.

FIG. 5. The magnitude and phase of the wave functionc(j,t
5T)5uc(j)ueiu(j) vs the coordinatej in the box at the completion
of the dynamical process, withk50.963 andT51.
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box with a temporally varying sizeL(t). The speed of the
variation ofL(t) determines whether the dynamics is ad
batic. A ‘‘trivial’’ regime of adiabaticity is that for which
tAD!T!tNL ; in this paper, we have shown that adiabatic
can also be maintained whentAD ,tDF ,tNL!T, where the
various time scales have been defined in the Introduction
other time scales appear, the conditiontAD ,tDF ,tNL!T
may not be sufficient to ensure adiabaticity. For example,
barrier is present in the middle of the box, e.g., a repulsivd
function atx5L0/2, then another time scale, correspondi
to the time of tunneling under the barrier,t tun, is present in
the problem. If this time scale is long compared withtNL ,
adiabaticity will not be maintained, and a nonvanishing s
tially varying phase will develop across the condensate w
function @13#. Hence, the issue of adiabaticity in nonline
problems must be investigated carefully; the perturba
techniques reviewed in Ref.@10# may be applicable, but ad
ditional considerations may play a role.
,

.

03360
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The particle in a box is a paradigm problem in one-bo
quantum mechanics. We have extended it to the many-b
regime at least within a mean-field approach, and studied
adiabaticity for such a system when the size of the box va
with time. Specifically, we formulated the criteria for th
validity of the adiabatic approximation for a BEC in a bo
whose size varies with time, developed the analytical a
numerical tools for investigating adiabaticity in the dynam
within quantum mean-field theory, and presented results
calculations for this system.
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