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Theory of four-wave mixing of matter waves from a Bose-Einstein condensate
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A recent experiment@Deng et al., Nature ~London! 398, 218 ~1999!# demonstrated four-wave mixing of
matter wave packets created from a Bose-Einstein condensate. The experiment utilized light pulses to create
two high-momentum wave packets via Bragg diffraction from a stationary Bose-Einstein condensate. The
high-momentum components and the initial low-momentum condensate interact to form a new momentum
component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional
quantum- mechanical description, based on the slowly-varying-envelope approximation, for four-wave mixing
in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation. We apply this formulation
to describe the experimental observations and to make predictions. We examine the role of phase-modulation,
momentum, and energy conservation~i.e., phase matching!, and particle number conservation in four-wave
mixing of matter waves, and develop simple models for understanding our numerical results.

PACS number~s!: 03.75.Fi, 67.90.1z, 71.35.Lk
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I. INTRODUCTION

Nonlinear optics has been made possible by the nonlin
nature of the interaction between light and matter and by
development of intense light sources that can probe the n
linear regime of this interaction. Nonlinear optical proces
include three- and four-wave mixing~4WM! processes~e.g.,
second harmonic generation and third harmonic generati!.
In 4WM three waves~or light pulses! mix to produce a
fourth. In this paper we detail our studies of 4WM of cohe
ent matter waves. Trippenbachet al. @1# proposed a 4WM
experiment using three colliding Bose-Einstein condens
~BEC! wave packets with different momenta. Denget al. @2#
successfully demonstrated 4WM in an experiment with th
BEC wave packets, which interact in a nonlinear manne
make a fourth BEC wave packet. Here we greatly elabo
on and further develop the theory and describe numer
simulations of the 4WM output that agree well with the e
perimental measurements of Ref.@2#.

The experimental study of nonlinear atom optics is ma
possible by the advent of Bose-Einstein condensation of
lute atomic gases@3,4# and the atom ‘‘laser’’@5#, a source of
coherent matter waves analogous to the output of opt
lasers. A set of optical light pulses incident on a parent c
densate with momentumP150 can, by Bragg scattering@6#,
create two new daughter BEC wave packets with mome
P2 and P3. Four-wave mixing in a single spin-compone
condensate occurs as a result of the nonlinear self-interac
term in the Hamiltonian for a BEC when three such BE
wave packets with momentaP1 , P2, andP3 collide and in-
teract. The nonlinear self-interaction can generate a n
BEC wave packet with a new momentumP45P12P21P3.

The possibility of nonlinear effects in atom optics h
been long recognized@7#. Goldsteinet al. @8# proposed that
phase conjugation of matter waves should be possible
analogy to this phenomenon in nonlinear optics, includ
the case of multiple spin-component condensates@9#. They
considered the case where a ‘‘probe’’ BEC wave packet
teracts with two counterpropagating ‘‘pump’’ wave packe
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to generate a fourth that is phase conjugate to the pro
where the probe is weak and causes negligible depletio
the pump. Lawet al. @10# also suggested analogies betwe
interactions in multiple spin-component condensates
four-wave mixing. Goldstein and Meystre@11# develop a
theory of 4WM in multicomponent BECs based on an alg
braic angular momentum approach to obtain the modes
the coupled operator equations. Our treatment for a sin
spin-component condensate is based on the time-depen
Gross-Pitaevskii equation~GPE!, which has proved to be
highly successful in describing the properties of a variety
actual BEC experiments@4#. Thus, our treatment is for a zer
temperature condensate. It also can describe 4WM with
without the presence of a trapping potential.

The nature of 4WM in BEC collisions of matter waves
unlike 4WM for optical wave packet collisions in dispersiv
media@12–14#. The nonlinearity in the case of BEC is intro
duced by collisions rather than by interaction with an ext
nal medium, and the momentum and energy constraints
posed are different in the two cases. The kinetic energy
massive particle waves is quadratic in the wave vector of
particles and given by (\k)2/2m, whereas the energy of
photon is linear in the vacuum wave vector of the photonk
and is given by\cuku. Moreover, the momentum of massiv
particle waves is linear in the wave vector of the partic
and given by\k, whereas for light in a dispersive medium,
is proportional to the product of the frequency of the lightv
and the refractive indexn(v), where the refractive index
depends upon frequency~and the propagation direction i
nonisotropic media!. Hence, conservation of energy does n
in general guarantee conservation of momentum in opt
4WM. Clearly, complications involving the properties of a
additional medium does not arise in the BEC case. In a
case, the creation of new BEC wave packets in 4WM
limited to cases when momentum, energy, and particle n
ber conservation are simultaneously satisfied.

In this paper we develop a general three-dimensional~3D!
description of four-wave mixing in single-spin-compone
Bose-Einstein condensates using a mean-field approach
©2000 The American Physical Society08-1
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lar to the time-dependent GPE, also known as the nonlin
Schrödinger equation@4#. We introduce the slowly-varying
envelope approximation~SVEA!, a very powerful tool that
not only gives insight into the nature of 4WM but also giv
a set of four coupled equations for the four interacting B
waves that are more computationally tractable for numer
simulations of the time-dependent dynamics. Section II
plains the experimental situation we have in mind and de
ops the basic theoretical methods. Section III describes
results of our numerical calculations and compares thes
the NIST experiment@2#. Finally, in Sec. IV we present a
summary and conclusion.

II. THEORY OF MATTER-WAVE FOUR-WAVE MIXING

In this section we describe the theoretical tools used
our study of 4WM of matter waves. Section II A review
how high-momentum components of a BEC can be form
using optical Bragg pulses to prepare the initial configurat
for the ‘‘half collision’’ event. Section II B specifies the pa
rameters that describe the strength of the various phys
effects that play a role in 4WM: diffraction, potential energ
nonlinear self-energy, and collisions between the differ
momentum wave packets. This section also describes ho
transform between 1D, 2D, and 3D calculations involvi
the GPE. This is important because, without the slow
varying-envelope approximation that we introduce belo
full 3D calculations are too computationally expensive
carry out for the actual experimental conditions. Hence,
SVEA must be explicitly checked in 2D against the full G
solution. Section II C describes the details of the SVEA a
proximation for 4WM. Then Sec. II D introduces a simp
estimate for the 4WM output. Finally, Sec. II E shows ho
the effect of elastic scattering between atoms in differ
momentum wave packets can be accounted for. This pro
causes loss of atoms from the wave packets and lowers
4WM output.

Let us consider three BEC wave packets moving w
central momentaP1 , P2, andP3. Such moving wave packet
can be created, for example, by optically induced Bragg
fraction of a condensate@6#. If these three wave packet
overlap spatially, the self-energy of the atoms can prod
matter-wave 4WM, just as the third-order Kerr type nonl
earity can produce optical 4WM in nonlinear media. One c
imagine a number of scenarios in which 4WM can occur
matter-wave interactions. One can consider a ‘‘whole co
sion’’ in which three initially separated BEC wave packe
collide together at the same time, or a ‘‘half collision’’ i
which the wave packets are initially formed in the same c
densate at~nearly! the same time. Although we considere
the ‘‘whole collision’’ case in Ref.@1#, the ‘‘half collision’’
case is easier to realize experimentally@2# using the above-
mentioned Bragg diffraction technique@6#. In what follows,
we consider only this configuration, in which the three wa
packets initially overlap because they have been create
copies of the initial condensate. These wave packets h
different nonvanishing central momenta and therefore t
fly apart from one another after they have been created.

Figure 1~a! shows the basic configuration in momentu
02360
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space of the wave packets which we consider here. T
daughter condensate wave packets with momentaP2 andP3
are created from a parent condensate with mean momen
P150. Figure 2~a! shows these three momenta in the l
frame in which the experiment is carried out at two differe
times: during the early stage of the ‘‘half collision’’ whe
they still overlap spatially, and at a later time when they ha
spatially separated into four distinct wave packets. We letP3
lie along thex axis of the coordinate system, andP2 make
some angleu with respect to thex axis. Nonlinear 4WM
creates a fourth wave packet with momentumP45P12P2
1P3. We demonstrate below in Sec. II C that four-wa
mixing of matter waves is only possible if there exists
coordinate frame in which the mixing is degenerate, that
all four Pi8 values in this frame have the same magnitu
Figure 2~b! shows the degenerate frame corresponding t
moving frame with velocityVdeg5(P11P3)/(2m), wherem
is the atomic mass. The total momentum is zero in the
generate frame, and the wave packets move in oppos
moving pairs. The angleu8 between the vectorsP28 andP38 is
arbitrary. In the laboratory frame, the angleu is given byu
5u8/2, and the length of the vectorP2 is given by uP2u
5uP3ucos(u). Figure 1~b! shows a set of different possibl
values ofP2.

A. Bragg pulse creation of high momentum components

We assume that the condensate has only a single
component, and that its dynamics can be described by
GPE, which is known to provide an excellent account
condensate properties@4#

FIG. 1. Momentum space view of the wave packets particip
ing in the four-wave mixing process.~a! Conservation of momen-
tum in the laboratory frame.~b! A set of possible wave packets i
the laboratory frame with momenta that satisfy the phase-matc
conditions in Sec. II C, namely,uP2u5uP3ucosu.
8-2
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i\
]C~r ,t !

]t
5~Tr1V~r ,t !1NU0uCu2!C~r ,t !, ~1!

where Tr5(2\2/2m)¹ r
2 is the kinetic energy operator

V(r ,t) is the external potential imposed on the atoms,NU0
5N(4pa0\2/m) is the atom-atom interaction strength th
is proportional to thes-wave scattering lengtha0 ~assumed
to be positive!, m is the atomic mass, andN is the total
number of atoms. The numerical methods for solving
GPE are described below in Sec. III.

First, we use the GPE to obtain the ground state cond
sate in the trapping potential at timet50, C(r ,t50). This
condensate wave function is centered aroundr50, and nor-
malized to unity. We assume, as is the case in the N
experiments@2#, that the trapping potentialV(r ,t) is turned
off at t50 and that the condensate is allowed to evo
under the influence of only the mean-field interaction un
time t1. This includes the special caset150. We could
equally well treat the case of leaving the trap on, and
would obtain similar results. Equation~1! determines the
evolved condensate wave functionC(r ,t1). After this period
of free evolution, the Bragg pulses are applied to create
wave packets with momentaP1 , P2, andP3. The momentum
differencesuPi2Pj u are much larger than the momentu
spread of the initial parent BEC wave packet. The exp
mental time scaledt for creating these wave packets is sh
~'70 ms! compared to the time scale on which the wa

FIG. 2. ~a! Lab frame view of the four-wave mixing proces
showing the four wave packets at early time while they are s
interacting and at late time after they have separated.~b! Degener-
ate frame view of the same cases as in~a!.
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packets evolve. The state att25t11dt provides the initial
condition for subsequent evolution of these three wave pa
ets as they undergo nonlinear evolution.

The initial state att2 immediately after the Bragg puls
sequences can be approximated in a number of ways
principle one could set up a set of coupled GPEs for
ground and excited atomic state components and explic
include the effect of coupling the light field to the excite
electronic state. A simpler approach would be to carry out
adiabatic elimination of the excited state and develop an
fective light-shift potential in which the ground state atom
move. If such approaches are carried out in this case,
show that the light acts as a ‘‘sudden’’ perturbation such t
each of the wave packets with central momentaP1 , P2 and
P3 is to a very good approximation simply a ‘‘copy’’ of th
parent condensate att5t1 @15#. Thus, the initial condition
immediately after the application of the Bragg pulses can
approximated as being comprised of three BEC wave pa
ets,

C~r ,t2!5C~r ,t1!(
i 51

3

f i
1/2exp~ iPi•r /\!, ~2!

where f i5Ni /N is the fraction of atoms in wave packeti,
and( i 51

3 f i51 so the norm ofC remains unity.
After the formation of the wave packets with momen

P1 , P2, andP3, the initial wave function in Eq.~2! evolves,
and the wave packets with the different momenta separ
During this separation,the nonlinear term in the GPE gen
ates a wave packet with central momentumP45P12P2
1P3, as long as the constraints discussed in relation to F
1 and 2 are satisfied. Energy and momentum are conse
during the wave packet evolution. This can be read
checked by verifying thatdE(t)/dt50 and dP(t)/dt50,
where

E~ t !5^C~ t !uS Tr1
1

2
U0uCu2D uC~ t !& ~3!

is the energy per particle and

P~ t !52 i\^C~ t !u“uC~ t !& ~4!

is the momentum per particle. We have verified numerica
that energy and momentum are indeed conserved in our
culations described in Sec. III.

B. Characteristic time scales and dimensionless parameters

In this subsection we discuss characteristic time sca
that can be used to estimate the importance of the var
effects occurring during the dynamics for a particular set
experimental parameters. It is convenient to use the Thom
Fermi ~TF! approximation@4# to give quantitative estimate
of the size of the condensate and the time scales chara
izing the dynamics. In the TF approximation, one negle
the kinetic energy operator in the time-independent nonlin
Schrödinger equation

mC5~Tr1V~r ,t !1NU0uCu2!C, ~5!

ll
8-3
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MAREK TRIPPENBACH, Y. B. BAND, AND P. S. JULIENNE PHYSICAL REVIEW A62 023608
wherem is the chemical potential, to obtain the followin
analytical expression for the wave function:uC(r )u25@m
2V(r )#/NU0 for r such thatV(r )<m and C~r !50 other-
wise. The TF approximation is valid for sufficiently larg
numbers of atomsN. It is convenient to define the geometr
average of the oscillator frequencies for an asymmetric h
monic potential asv̄5(vxvyvz)

1/3. The size of the conden

sate is then given by the TF radiusr TF5A2m/(mv̄), where
the TF approximation to the chemical potentialm is deter-
mined by the normalization of the wave function to unity a
is given bym5 1

2 (15U0N/4p)2/5(mv̄2)3/5. Hence, the TF ra-
dius r TF scales withN as N1/5. The size of the TF wave
packet in the i 5x, y, and z directions is r TF( i )
5(v̄/v i)r TF .

In order to estimate the importance of the various term
the GPE, we setV50 for free wave packet evolution an
rewrite Eq.~1! in terms of characteristic time scalestDF for
diffraction, andtNL for the nonlinear interaction, in the fol
lowing manner@1,16–19#:

]C

]t
5 i F r TF

2

tDF
S ]2

]x2
1

]2

]y2
1

]2

]z2D 2
1

tNL

uCu2

uCmu2GC. ~6!

The diffraction time and the nonlinear interaction time a
given by tDF52mrTF

2 /\, tNL5(NU0uCmu2/\)21, respec-
tively. Here uCmu2 is the maximum value ofuC(r )u2, i.e.,
uCmu25uC(0)u2; hence in the TF approximation,tNL

215m/\.
The smaller the characteristic time, the larger is the co
sponding term in the GPE. We also define the collision
ration timetcol5(2r TF)/v, wherev5(P32P1)/m is the ini-
tial relative velocity of wave packets 1 and 3. Thus,tcol is the
time it takes the wave packets 1 and 3 to move so that t
just touch at their TF radii, and therefore no longer overl
The ratio tcol /tNL gives an indication of the strength of th
nonlinearity during the collision. The larger the ratio
tcol /tNL , the stronger the effects of the nonlinearity duri
the overlap of the wave packets. These characteristic ti
stand in the ratiostDF:tcol :tNL51:l/(2pr TF) :r TF/(6a0N),
wherel is the De Broglie wavelength associated with t
wave packet velocityv. Experimental condensates wit
tcol /tNL@1 can be readily achieved. Thus, the nonlinear te
will have time to act while the BEC wave packets rema
physically overlapped during a collision. Another releva
time scale in the dynamics is the characteristic conden
expansion timetexp5v̄21. In the typical experiments mod
eled below,tDF@texp.tcol.tNL .

In addition to time scales, there are several natural len
scales that are important: the sizer TF of the condensate, th
scale (Dk)21 of phase variation across the parent condens
as it expands and develops a momentum spread\Dk due to
the mean field potential, and the scale (k8)21 of phase varia-
tion due to the fast imparted momentumP85\k8, whereP8
is the common magnitude of the momentum for the pack
in the degenerate frame~Fig. 1!. These stand in the relatio
(k8)21!(Dk)21!r TF . The grid spacings in numerical ca
culations are determined by the necessity to resolve the w
function on its fastest scale of variation. Thus, using the fo
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of Eq. ~2! for C requires a grid smaller than (k8)21. This
requirement limits practical calculations to two dimensio
~2D!. We will introduce an approximation in the next sectio
that allows three-dimensional~3D! calculations by eliminat-
ing the rapidly varying phase factors from the equations
be solved.

We find it convenient to use reduced dimensionless v
ables to calculate the dynamics. The most commonly u
set of reduced dimensionless variables in BEC problems
volves using ‘‘trap units’’@4#. Here however, except for de
termining the initial conditions att50, the trap potential is
turned off, and trap units are not particularly relevant. Sin
we do both 2D and 3D calculations, some care is neede
developing a set of units. The primary requirement to sim
late 3D experiments with a 2D model is that the relatio
between the characteristic time scales,tDF, tcol , andtNL , are
as determined by experiment. We have done this by sca
the solution of thed-dimensional time-dependent GPE by
d-dimensional volume so that the coefficient of the nonline
term depends only on the dimension and the chemical po
tial m. By scaling the condensate wave function asC

5C̄/Ar TF
d , thed-dimensional time-dependent GPE for a ha

monic potential with frequenciesv j , j 51, . . . ,d can be
written as

i\
]C̄~r !

]t
52

\2

2m (
j 51

d
]2C̄

]xj
2

1S (
j 51

d
1

2
mv j

2xj
2D C̄~r !

1S pd/2

G~21d/2! DmTFuC̄~r !u2C̄~r !. ~7!

Here C̄ is dimensionless for anyd, and the knownmTF for
the 3D problem can be transferred to an equivalent tim
dependent GPE for a 2D calculation. Furthermore, if we
fine the reduced unit of length,xR , to bexR5r TF , define the
unit of time, tR , such thattR5mxR

2/(2\), and use the nor-

malization condition* uC̄u2ddr /xR
d51, we preserve the ratio

between the most important time scales of the problem.
nonlinear time scaletNL depends only onmTF and is inde-
pendent of dimension. The specific relations between the
nonlinear coupling parameterU0

3D multiplying uC̄(r )u2C̄(r )
in Eq. ~7! andU0

1D andU0
2D , the respective self-energy pa

rameters in 1D and 2D areU0
1D55/(2p)U0

3D , and U0
2D

5 15
16 U0

3D . These values forU0
d insure that the chemical po

tential mTF ~and all the time scales! are the same as in 3D.

C. Slowly-varying-envelope approximation

Let us consider the case when the total wave funct
consists of four wave packets moving with different cent
momentaPi5\k i ,i 51, . . . ,4. Wewrite the wave function
as

C~r ,t !5(
i 51

4

F i~r ,t !exp@ i ~k i•r2v i t !#, ~8!
8-4
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THEORY OF FOUR-WAVE MIXING OF MATTER WAVES . . . PHYSICAL REVIEW A 62 023608
in order to separate out explicitly the fast oscillating pha
factors representing central momentum\k i and kinetic en-
ergy Ei5\v i5\2ki

2/2m. The slowly varying envelopes
F i(r ,t) vary in time and space on much longer scales th
the phases. The number of atoms in each wave pack
Ni5N*VuF i(r ,t)u2d3r , and ( i 51

4 Ni5N is a constant. Al-
though the slowly varying envelopeF4(r ,t50) is unpopu-
lated initially, it evolves and becomes populated as a re
of the 4WM process. If we substitute the expanded form
the wave function in Eq.~8! into the GPE, collect terms
multiplying the same phase factors, multiply by the comp
conjugate of the appropriate phase factors, and neglec
terms that are not phase matched@phase matched terms hav
stationary phases, do not oscillate, and satisfy Eqs.~10! and
~11! below#, we obtain a set of coupled equations for t
slowly varying envelopesF i(r ,t):

F ]

]t
1~\k i /m!•“1

i

\ S 2
\2

2m
¹21V~r ,t ! D GF i~r ,t !

52
i

\
NU0 (

i* j j *
d~k i1k i* 2k j2k j* !

3d~v i1v i* 2v j2v j* !F j* ~r ,t !F i*
* ~r ,t !F j~r ,t !,

~9!

where the delta functions represent Kronecker de
functions that are unity when the argument vanishes. Mix
between different momentum components can result fr
the nonvanishing nonlinear terms in Eq.~9!, which satisfy
the phase matching constraints required by momentum
energy conservation

k i1k i* 2k j2k j* 50, ~10!

ki
21ki*

2
2kj

22kj*
2

50. ~11!

Each of the indicesi ,i * , j , j * may take any value between
and 4. Equations~10! and~11! are automatically satisfied in
two cases:~a! i 5 i * 5 j 5 j * ~all indices are equal! or ~b! j
5 iÞ j * 5 i * ~two pairs of equal indices!. The corresponding
terms describe what is called in nonlinear optics cross
self modulation terms respectively. The cross and self-ph
modulation terms do not involve particle exchange betw
different momentum components. In the absence of the t
ping potential they modify both amplitude and phase of
wave packet through the mean field interaction. Particle
change between different momentum wave packets oc
only when all four indices in Eq.~9! are different, and con-
servation of momentum and energy of the atoms particip
ing in the exchange process occurs. A set ofcoupledequa-
tions involving wave mixing between the various momentu
components is therefore obtained.

The momentum conservation of Eq.~10! implies k i1k i*
5k j1k j* 5k. It is always possible to construct a spec
reference frame, which we call thedegenerate frame, where
k50. Consequently, in this framek i52k i* andk j52k j* .
In addition energy conservation in Eq.~11! imposes the con-
dition uk j u5uk i u in the degenerate frame. In this frame a
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four momenta are equal in magnitude and can be divi
into two pairs of opposite vectors. This explains the use
the conjugated pairs of symbols (i ,i * ) and (j , j * ) in our
notation. The total number of particles, in all wave packe
is a conserved quantity. The geometrical configuration of
wave packet momenta in the degenerate frame are illustr
in Fig. 2~b!. In the figure we see two pairs of conjugate wa
packets~1,3! and~2,4!. All four momenta are equal in mag
nitude and momentaP18 andP38 are opposite as are the mo
menta P28 and P48 . The angleu depicted in the figure is
completely arbitrary. However,u'0 is not allowed, since
the wave packets would no longer be distinguishable. Fig
1~b! shows a range of possibleP2 values for wave packets in
the lab frame that satisfy the phase-matching conditions
Eqs. ~10! and ~11!. These conditions only allowuP2u
5uP3ucos(u).

4WM can be viewed as a process in which one particle
annihilated in each wave packet belonging to an initia
populated pair of wave packets and simultaneously one
ticle is created in each of two wave packets of another p
one of which is initially populated and the other~wave
packet 4! is initially unpopulated. Hence, using Fig. 2~b! in
the moving degenerate frame, 4WM removes one atom fr
each of the ‘‘pump’’ wave packets 1 and 3, and places o
atom in the ‘‘probe’’ wave packet 2 and one atom in t
4WM output wave packet 4. This picture is a consequenc
the nature of the nonlinear terms in the four SVEA equ
tions. It is this bosonic stimulation of scattering that mimi
the stimulated emission of photons from an optical nonlin
medium.

The full SVEA equations for 4WM are explicitly given b
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2
i

\
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F ]
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2m
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52
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NU0~ uF4u212uF1u212uF2u212uF3u2!F4

2
i

\
NU0F1F2* F3 . ~15!

The left-hand side of these equations describes the motio
the wave packets due to their kinetic and potential energ
The right-hand side describes the effect of the phase mat
nonlinear interaction terms. The last term on the right-ha
side of each of the SVEA equations is a source term wh
either creates or destroys atoms in the wave packet b
propagated. The other terms on the right hand side of
equations account for the self- and cross-phase modula
These phase modulation terms provide an effective pote
for each wave packet that accelerates the atoms in it
modifies its internal momentum distribution.

Before we propagate the SVEA equations, the init
wave function of the parent condensate is determined u
the time-dependent GPE. First, the propagation is in ima
nary time to obtain the initial eigenstate in the presence
the magnetic potential. Then, after turning off the magne
potential, the free evolution in the absence of a trapping
tential is calculated to provide the initial condition in Eq.~2!.
This free evolution causes a spatially varying phase to
velop across the condensate as it expands in the absen
the trapping potential. Given the initial condition, the SVE
equations can be used to propagate the envelope functio
each wave packet, using the same numerical method us
propagate the ordinary time-dependent GPE.

D. Simple approximations and scaling withN

An estimate of the number of atoms that will be tran
ferred to the 4WM wave packet can be developed as follo
To get the small signal growth at early times, multiply bo
sides of the dynamical equation for the rate of change ofF4,
where for simplicity we keep only the 4WM term on th
right-hand side of the equation,

]F4

]t
52

i

\
NU0F1F2* F3 , ~16!

by a small time incrementdt to get the growthdF4 in F4
during dt:

dF4'2 i ~ f 1f 2f 3!1/2
NU0

\
uCu2Cdt'2 i ~ f 1f 2f 3!1/2

dt

tNL
C.

~17!

Here f i5Ni /N is the initial fraction of atoms in wave packe
i, and we assume thatF i5 f i

1/2C at early times, because th
three wave packets initially satisfy this relation. Since m
of the growth takes place in the center of the packets wh
C is the largest, the factorNU0uCu2/\ is approximated by
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1/tNL5NU0uC(0)u2/\. Upon squaring this equation, and in
tegrating over all space, the total growth in the 4WM outp
d f 4 is

d f 45
dN4

N
' f 1f 2f 3S dt

tNL
D 2

. ~18!

Thus, the 4WM signal should grow quadratically at ea
times. If we takedt to be the total interaction timetcol de-
fined in Sec. II B, then an estimate of the total 4WM outp
fraction is

f 45
N4~ tcol!

N
' f 1f 2f 3S tcol

tNL
D 2

. ~19!

This should be an upper bound on the 4WM output, since
mutual interaction of the packets due to the self- and cro
phase modulation terms~the self- and cross-interaction en
ergy terms!, and their separation from one another whent
'tcol , will lower the output. Using the TF approximatio
1/tNL5m/\;N2/5 and tcol52r TF /v;N1/5. Thus, the output

fraction N4 /N;(N1/5N2/5)2 scales asN6/5. This scaling,
which was discussed in Ref.@2#, will be checked in our nu-
merical calculations below.

E. Elastic scattering loss

Atoms from twodifferent momentum wave packets ca
undergos-wave elastic scattering that removes the ato
from the packets and scatters them into 4p steradians@20#.
This becomes important when the mean-free path beco
comparable to or smaller than the condensate sizer TF . The

mean-free-path is (sn̄)21, where s58pa0
2 is the elastic

scattering cross section andn̄ is the mean density. Profus
elastic scattering of this type has been recently obser
@21#. This mechanism can also affect the 4WM process si
loss of atoms from the moving packets reduce the nonlin
source terms in the SVEA equations. Although the cloud
elastically scattered atoms can not be simply described
the mean-field picture, the loss of atoms from the wave pa
ets due to this elastic scattering mechanism can be desc
in terms of the SVEA. This is because each momentum co
ponent is treated separately, and the loss terms due to el
scattering can be added to the SVEA equations.

The elastic scattering loss is incorporated by adding l
terms to the right-hand side of the envelope equations in
form of imaginary potentials that are proportional to the de
sity of the ‘‘other’’ momentum component involved in th
elastic scattering. The full SVEA equations for 4WM, in
cluding the effects of elastic scattering loss@20#, are given by
8-6
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There are three elastic scattering loss terms for each S
momentum componentF i arising from the interaction o
each momentum component with the other three momen
components. The factor of12 in the loss terms is due to th
fact that these are equations for the amplitudes, not the
sities.

The density dependence of the elastic scattering
terms is identical to that of the mean-field interaction ter
since both terms are due to elastic scattering. It is of inte
to compare the strength~size of the coefficient! of the loss
term due to elastic scattering with the nonlinear term in
GPE. The nonlinear term has a coefficientU0 /\
54p\a0 /m, whereas the loss term for interaction of pack
i andj has a coefficient12 vs54p\uk i2k j ua0

2/m, wherev is

the relative velocity. The ratioR5( 1
2 vs)/(U0 /\) of loss to

mean-field terms for packets 1 and 3 in Fig. 1 is

R52uk1ua0 . ~24!

This ratio is about 0.06 for the NIST 4WM experiment@2#.
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III. NUMERICAL SIMULATIONS

A. Experimental configuration

In the NIST experiment@2#, the initial sodiumF,MF

51,21 condensate is comprised of magnetically confin
atoms in a TOP~time-orbiting-potential! trap without a dis-
cernible noncondensed fraction. The trap is adiabatically
panded to reduce the trap frequencies in thex, y, andz di-
rections to 84, 59, and 42 Hz~the frequency ratios are
vx :vy :vz51:1/A2:1/2). After adiabatic expansion, the tra
is switched off by removing the confining magnetic field
The condensate freely expands during a delay timet1

5600 ms, after which a sequence of two Bragg pulses
589 nm wavelength creates the two moving wave packe
and 3. Each 30ms Bragg pulse is composed of two linear
polarized laser beams detuned from the 3S1/2,F51, MF
521→3P3/2, F52,MF52 transition by about D/2p
522 GHz to suppress spontaneous emission and scatte
of the optical waves by the atoms. The frequency differen
between the two laser beams of a single Bragg pulse is c
8-7
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sen to fulfill a first-order Bragg diffraction condition tha
changes the momentum state of the atoms without chan
their internal state. The first Bragg pulse is composed of
mutually perpendicular laser beams of frequenciesna and
nb5na250 kHz, and wave vectors andka5kx̂ and kb

5kŷ. This pulse sequence causes a fractionf 2 of the BEC
atoms to acquire momentumP25\(ka2kb)5\k( x̂1 ŷ). A
second set of Bragg pulses is applied 20ms after the end of
the first Bragg pulse sequence. This pulse is compose
two counterpropagating laser beams with frequenciesna and
nb5na2100 kHz, and wave vectors andka5kx̂ and kb

52kx̂. This pulse sequence causes a fractionf 3 of the BEC
atoms to acquire momentumP35\(ka2kb)52\kx̂. Thus,
there are three initial condensate wave packets with mom
P150, P2 and P3 as shown in Fig. 1. The respective wa
packet populationsf 1512 f 22 f 3 , f 2, andf 3, have a typical
ratio f 1 : f 2 : f 357:3:7.

The number of atoms could be varied between aroun
3105 and 33106. As a typical example, we takeN51.5
3106 atoms in the trap. Takinga052.8 nm @22#, the non-

FIG. 3. ~a! Cuts along thex, y andz axes of the parent conden
sate wave functionC(x,y,z,t50) for N51.53106 atoms in a trap
with harmonic frequencies of 84, 59.4, and 42 Hz in the respec
x, y, andz directions. The arrows show the TF radiir TF( i ) in the
i 5x,y,z directions. The curves labeled ‘‘x,’’ ‘‘ y,’’ and ‘‘ z,’’ re-
spectively represent Re@C(x,0,0,0)#, Re@C(0,y,0,0)#, and
Re@C(0,0,z,0)#; Im@C(x,y,z,0)# is identically zero for each case
~b! Cuts along thex axis of Re@C(x,0,0,t5t1)# and Im@C(x,0,0,t
5t1)# for t15600 ms.
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linear time is tNL596.2ms. The Thomas Fermi radius i
r TF520.3mm. Since the separation velocity defined in Se
II B is v50.0691 m/s for light of wavelength 589 nm, th
physical separation timetcol52r TF /v5687ms in the NIST
experiment, and indeed is longer than the nonlinear tim
The characteristic condensate expansion time,texp5v̄21

51.89 ms for a trap withv̄52p(84/A2) s21. The charac-
teristic diffraction timetDF52mrTF

2 /\5300 ms provides by
far the longest time scale in the dynamics. Thus, there
negligible diffraction on the time scale of the experiment.

B. Simulations of the NIST experiments

Our solution to the time-dependent GPE uses a stand
split-operator fast Fourier transform method to propagate
initial state forward in time@23#. The initial stateC(r ,t
50) of the condensate in the trap is found by iterative
propagating in imaginary time. Figure 3 shows examples o
3D parent condensate wave functionC(x,y,z,t) for two dif-
ferent times. Thet50 solution shows the wave function i
the harmonic trap, and thet5t15600 ms solution shows the
wave function after 600ms of free evolution without a trap
potential. Although thet50 wave function in Fig. 3~a! has a
constant phase~taken to be 0!, it is apparent from Fig. 3~b!
that the evolution leads to the development of phase mo
lation across the condensate, i.e., the wave function deve
a spatially dependent phase, and therefore an imaginary
of the wave function. This is due to the evolution of th
condensate under the influence of the mean field te
NU0uC(r ,t)u2, when the trapping potential is no longe
present. An analytic form for the spatially dependent ph
which evolves can be obtained in the Castin-Dum mo
@24#. As we show below, this phase modulation is importa
for 4WM. There is very little physical expansion of the co
densate after 600ms, since the condensate densiti
uC(r ,t)u2 are nearly the same for the wave functions in Fig
3~a! and 3~b!. However, Fig. 4 shows that the accelerati
due to the mean field is already quite evident in the mom
tum distribution att5600 ms, which is much broader tha
that at t50. The two peaks neark565r TF

21 in the t5t1

e

FIG. 4. Cut in thekx direction (ky5kz50) of the squared mo-
mentum distributionuC(k,t)u2 for the wave functions in Fig. 3 for
t150 andt15600 ms.
8-8
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THEORY OF FOUR-WAVE MIXING OF MATTER WAVES . . . PHYSICAL REVIEW A 62 023608
5600 ms distribution indicate the formation of accelerat
condensate particles which will lead to condensate expan
at later times.

Our treatment for applying Bragg pulses uses the mo
given by Eq.~2!. This approximation neglects detailed d
namics during the application of the Bragg pulses. Each
tial wave packeti at time t2 after the Bragg pulses is a cop
of the parent condensate wave function att5t1 with popu-
lation fraction f i5Ni /N. Unless stated otherwise, we wi
always use the ratiof 1 : f 2 : f 357:3:7 ofpopulation fractions
as typical of the NIST experiment@2#. We let the three BEC
wave packets evolve fort.t2't1 using three different ver-
sions of the time-dependent GPE. Two of them are 2D v
sions, and one is the 3D-SVEA version. The 2D-full versi
uses the GPE, Eq.~1!, to evolve the initial stateC in Eq. ~2!.
The 2D-SVEA version uses the SVEA form in Eqs.~12!–
~15! for the evolution. A typical 2D calculation used a gr
of discretex,y points within a box 5r TF wide in thex andy
directions centered onx5y50. In order to resolve the rapid
phase variations due to theei (k•r ) factor, the 2D-full calcu-
lation required anx,y grid of up to 409634096 points. On
the other hand, the 2D-SVEA only requires a 1283128 x,y
grid to achieve comparable accuracy. The 3D-SVEA cal
lations added a 4r TF wide box in thez direction, and anx,y,z
grid of 1283128364 was sufficient.

Figure 5 compares the 4WM output fractionf 4(t)
[N4(t)/N for the three different types of calculation for th
case ofN51.53106 atoms. The 2D-full and 2D-SVEA cal
culations give the same results within numerical accur
and cannot be distinguished on the graph. We take this t
a strong justification of the SVEA, and a strong indicati
that it will be equally trustworthy in the 3D calculations. I
both 2D and 3D cases, the output grows quadratically
early time, as predicted by Eq.~18!. The arrows indicate the
characteristic nonlinear timetNL and the collision timetcol .
In addition, the figure showstcol(x)5tcol /A2. The latter is
the time it takes wave packets 1 and 2 to move so that t
just touch at their Thomas-Fermi radii in thex direction. At
that time wave packets 1 and 2 no longer have signific

FIG. 5. Comparison ofN4(t)/N versust2t2 for 2D and 3D
calculations for 1.53106 atoms. The trap is the same as in Fig.
The Bragg pulses are applied 600ms after the trapping potential i
turned off and are over at timet2.
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overlap with each other, although they still have some ov
lap with wave packet 3. As the wave packets begin to mo
apart, the output saturates neart2t2'tcol(x)/2 and ap-
proaches its final value whent2t2'tcol . There is a signifi-
cant difference between the 3D-SVEA and 2D-SVEA outp
fraction. The 4WM output is lower for the 3D case. This
because the nonlinear 4WM process depends on the sp
overlap of the moving wave packets. The packets are no
well-overlapped geometrically in 3D as in the 2D mod
Henceforth, all our calculations are 3D-SVEA ones, unle
stated otherwise.

Figure 6 shows a sequence of contour images of the t
evolution of the wave packets from the time the trap
turned off att50 to the time of separation of the four wav
packets. The contours show thez-integrated column density
( i 51

4 *F i(x,y,z,t)u2dz, from the 3D-SVEA calculation.~The
constructive and destructive interference fringes in the w
packet overlap region due to theeik•r phase factors is no
shown since it would require very high resolution to rep
sent it with sufficient accuracy.! Panel~a! shows the eigen-
state density in the harmonic trap. Panel~b! shows the wave
packet att5t2 just after the Bragg pulses have fired. Sin
there is negligible expansion in the density profile during
initial 600 ms of free evolution, the wave packet is ve

FIG. 6. Contour plots of integrated column density from t
3D-SVEA calculations vsx and y for N51.53106 and the same
trap as for Fig. 3. Panels~a! through~f! show the time developmen
of the wave packets from the time the trap is turned off until t
wave packets physically separate.
8-9
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similar to that in panel~a!. However, we learned from Fig. 3
that a phase modulation has developed across the w
packet. This does not show up in the density profile. Pa
~c! for t-t25190 ms indicates some initial motion by th
moving wave packets. In panel~d! the spread of the thre
wave packets due to their different momenta is evident,
in panel ~e! the separation of the 4WM wave packet
clearly apparent. Panel~e! shows the four wave packets aft
almost complete separation att-t25760 ms, which is larger
than tcol5687 ms.

Figure 7 compares the output fractionN4(t)/N versus
time for three different initial total atom numbersN50.2
3106, 1.53106, and 5.03106, and t15600 ms. Again, at
early times the quadratic dependence of the fraction a
function of time is clearly evident. After a quadratic rise
early time, the output saturates and even undergoes os
tions before finally settling down to a final value whent
.tcol . The oscillations ofN4(t)/N in time develop and be
come more pronounced as the initial number of atoms
creases. These are due to back transfer from thei 52 and 4
packets to thei 51 and 3 packets due to the mutual coupli
between the packets. A closer examination of the deta
time evolution shows that the transfer occurs on the trail
edge of the wave packets where they are still substant
overlapped. WhenN is large enough, the wave packets e
perience significant distortion in shape by the time they se
rate. The output fractionN4(t)/N clearly increases withN.

Figure 8 shows the output fractionN4(t)/N versus time
for 1.53106 atoms for four different values of the free ev
lution time t150, 600, 1200, and 1800ms. The self-phase
modulation resulting from the nonlinear self-energy inter
tion reduces the 4WM output ast1 increases. This is analo
gous to the destruction of third harmonic generation due
self- and cross-phase modulation in nonlinear optics@25#,
and occurs because the phase modulation destroys the p
matching that is necessary for 4WM to develop. Fort
.tcol , the number of atoms in the different wave packets
longer change, since the wave packets are well separ
~exchange of the number of bosonic atoms between w
packets can no longer occur when the terms in the dynam

FIG. 7. Comparison ofN4(t)/N versust-t2 for 0.23106, 1.5
3106, and 5.03106 atoms. The trap is the same as in Fig. 3. T
Bragg pulses are applied 600ms after the trapping potential i
turned off.
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equations responsible for 4WM vanish!. From these calcula-
tions it seems clear that 4WM should be much stronger if
trap is left on instead of being turned off. These calculatio
indicate that the 4WM output of the NIST experiment@2#
might be as much as a factor of 2 higher if there had not b
600 ms of free evolution before the Bragg pulses were a
plied.

We expect the 4WM output will be larger if the wav
packets stay together for a longer interaction timetcol . The
interaction time can be changed by changing the velocity
the wave packets. Figure 9 plotsN4(t)/N versus time for
1.53106 atoms for the original case shown in Figs. 7 and
and for two new cases where the interaction times
changed by factors of 0.7 and 2. This is achieved in the c
by scaling the momentum wave vectors by factors of 1/
and 1/2, respectively. Our calculations show that the 4W
output is reduced by a factor of 0.6 in the first case a
increased by a factor of 2 in the second. In principle, velo

FIG. 8. Comparison ofN4(t)/N versust-t2 for 1.53106 atoms.
The different curves show cases where the Bragg pulses are ap
at t150, 600, 1200, and 1800ms after the trapping potential is
turned off (t2't1). The trap is the same as in Fig. 3.

FIG. 9. Comparison ofN4(t)/N versust-t2 for 1.53106 atoms.
The trap is the same as in Fig. 3. The Bragg pulses are applied
ms after the trapping potential is turned off. The three differe
curves are for the cases where the separation times are scale
factors of 0.7, 1, and 2 by scaling the separation velocities by 1/
1, and 1/2.
8-10
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ties of the wave packets can be controlled by changing
frequencies and angle of the two Bragg pulses that creat
outcoupled wave packet@6#. Thus, some degree of contro
over the 4WM output should be possible by varying the
teraction time.

Figure 10 showsf 3(t) and f 4(t) for the case of a weak
i 52 ‘‘probe’’ with initial population fraction 0.001 inciden
on two strongi 51 and 3 ‘‘pump’’ wave packets with popu
lation fractions 0.4995. This is analogous to the phase c
jugation process envisioned in Ref.@8#. Here bosonic stimu-
lation, which removes 2 atoms from the ‘‘pump’’ packets
and 3 and puts them in packets 2 and 4, results in a str
amplification of packet 2, which grows in atom numb
eight-fold as the 4WM signal grows.

Figure 11 shows 4WM output fractionN4 /N after the
half-collision is over (t.tcol) as a function ofN, plotted in a
log-log plot. The figure shows the results for both the 2
SVEA and 3D-SVEA calculations. The dashed lines sh

FIG. 10. Growth ofN4(t)/N and N4(t)/N versust-t2 for the
case where a weak probe wave packet 2 with initial popula
fraction 0.001 encounters strong ‘‘pump’’ wave packets with init
fractions 0.4995. The trap is the same as in Fig. 3. The Bragg pu
are applied 600ms after the trapping potential is turned off.

FIG. 11. N4 /N dependence on the total number of atomsN
calculated in 2D and 3D. The dashed lines show theN6/5 depen-
dence predicted by the simple theory in Sec. II D. The trap is
same as in Fig. 3. The Bragg pulses are applied 600ms after the
trapping potential is turned off.
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the 4WM output for smallN scales well withN6/5, as esti-
mated from the simple model in Sec. II D. The scaling w
N6/5 for smallN is clearly evident in both 2D and 3D result
The latter is uniformly lower than the former, due to th
smaller overlap of the wave packets in 3D because of g
metrical reasons, but saturates a little more slowly with
creasingN than the former. At the higherN values typical of
sodium condensates, this scaling from the simple model
riously overestimates the output, which begins to satur
with increasingN.

Figure 12 shows three curves giving the fraction of ato
in the 4WM output wave packet as a function of the init
total number of atomsN as calculated by~1! 2D-SVEA and
~2! 3D-SVEA simulations without including elastic scatte
ing loss, and as calculated by~3! a 3D-SVEA simulation
including elastic scattering loss. In one set of calculations
used a ratio of atoms in the three initial wave packets
N1 :N2 :N357:3:7. These calculations produce the thr
smooth curves in Fig. 12. In another set of calculations,
used the measured final fractions from the NIST experim
@2# to determine the initial ratiosN1 :N2 :N3, rather than tak-
ing the nominal values 7:3:7. The open circles in Fig. 1
which no longer fall on a smooth line, show the 3D-SVE
without elastic scattering for these cases with experime
scatter in initial conditions. The relatively small deviation
the points from the solid curve for the 3D-SVEA withou
elastic scattering show that the calculations with the7:3:7
ratio is useful for generating a smooth curve to compare
experimental data.

The effect of including loss from the BEC wave packe
due to elastic scattering collisions was modeled using E
~20!–~23!. The 4WM output reduction in Figure 12 due t
elastic scattering ranges from 6% to 16 % in going from 15

to 106 atoms, and becomes more pronounced for large va
of N, with the loss due to elastic scattering reaching 36%
53106 atoms. Elastic scattering of atoms from the differe
momentum wave packets removes atoms from the four B

n
l
es

e

FIG. 12. Fraction of atoms in the 4WM output wave pack
N4 /N versus the total number of initial atomsN calculated in 2D,
3D, and 3D with inclusion of elastic scattering loss as discusse
Sec. II E. The open circles represent calculations using experim
tal data@2# to determine the ratiosN1 :N2 :N3 rather than taking the
nominal valuesN1 :N2 :N357:3:7. Thetrap is the same as in Fig
3. The Bragg pulses are applied 600ms after the trapping potentia
is turned off.
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wave packets, and it thereby also lowers the nonlinear c
pling term that gives rise to the 4WM. Although the mea
free-path for elastic collisions is on the order of 10 timesr TF
for 1.53106 atoms, there are a sufficient number of col
sions to make a noticable reduction in the nonlinear outp

Finally, Fig. 13 compares our 3D-SVEA calculation, wi
corrections due to elastic scattering, to the observed ou
4WM fraction in the NIST experiment@2#. The overall
agreement is good, given the approximations in the mo
and the scatter in the experimental data. The calculated c
tends to be slightly larger than the mean of the measu
points, and in particular, does not seem to saturate as fa
largeN as the experimental data. Since systematic error b
were not given for the data, it is difficult to know wheth
this slight disagreement is significant. There are clearly
proximations in the theory, such as using the GPE metho
ignoring the dynamics during the application of the Bra
pulses. There also are effects in the experiment that m
have a bearing on the comparison. For example, Fig. 2~b! of
Ref. @2# reported a best case of 10.6% 4WM output forN
51.73106 atoms, although a lower figure near 6% report
in Fig. 3 of Ref. @2# was more typical. The 10.6% outpu
would disagree with our calculations on the high side. T
indicates that there is sufficient uncertainty in the quant
tive aspects of the experiment to warrant a more system
experimental exploration of the 4WM signal. Other possi
sources of differences between theory and experiment
clude micromotion of the initial BEC in the time-orbitin
trap, laser misalignment, and a small finite temperature c
ponent of the BEC.

IV. SUMMARY AND CONCLUSIONS AND OUTLOOK

We have developed a full description of four-wave m
ing ~4WM! using a mean-field treatment of Bose-Einste

FIG. 13. Fraction of atoms in the 4WM output wave pack
N4 /N versus the total number of initial atomsN calculated in 3D
without and with inclusion of elastic scattering loss as discusse
Sec. II E. The dots are experimental data@2#. The trap is the same
as in Fig. 3. The Bragg pulses are applied 600ms after the trapping
potential is turned off.
02360
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condensates. The slowly-varying-envelope approximatio
a powerful tool that reduces the numerical grid requireme
for calculating the time-dependent dynamics of fast-mov
wave packets with velocities greater than a photon re
velocity. We find that elastic scattering loss between ato
in the fast wave packets removes enough atoms from
wave packets to affect the 4WM output. The quantum m
chanical 3D calculations presented here show good ag
ment with experiment.

In spite of the strong analogy between atom and opt
4WM, there are fundamental differences. In optical 4W
the energy-momentum dispersion relation is different than
the massive boson case. Because we neither create no
stroy atoms, the only 4WM processes allowed for mat
waves are particle number conserving. This is not the c
for optical 4WM where, for example, in frequency triplin
three photons are annihilated and one is created. Part
energy and momentum conservation limit all matter 4W
processes to configurations that can be viewed as degen
4WM in an appropriate moving frame.

We have considered 4WM using condensates of the s
internal states. The internal states of the atoms can
changed by using Raman transitions. Thus, one can envi
scattering atoms in one internal state from the matter-w
grating formed by atoms in a different internal hyperfi
state. It is also possible to study the details of 4WM betwe
mixed atomic species. We are in the process of carrying
such calculations. Quantum correlations created by the n
linear process could lead to the study of nonclassical ma
wave fields, analogous to squeezed and other nonclas
states of light. It is of interest to investigate such cases.
varying the magnetic field to allow a Feshbach resonanc
change theU0 coupling parameter, 4WM can be modifie
dynamically during the dynamics that occur as the wa
packet fly apart, thus increasing or decreasing 4WM outp
Such studies are also feasible.

It is possible to modify the mean-field description
4WM, and more generally, Bragg scattering of BECs,
generalizing the GP equation to allow incorporation of m
mentum dependence of the nonlinear parameters, the
putting the treatment of elastic and inelastic scattering o
firm footing. This will be presented elsewhere@26#.

ACKNOWLEDGMENTS

This work was supported in part by grants from the U
Israel Binational Science Foundation, the James Franck
national German-Israel Program in Laser-Matter Interact
~Y.B.B.! and the U.S. Office of Naval Research~P.S.J.!. We
are grateful to Eduard Merzlyakov for assisting with the 3
computations carried out on the Israel Supercomputer Ce
Cray computer. We thank Ed Hagley, Lu Deng, William D
Phillips, Marya Doery, and Keith Burnett for stimulating di
cussions on the subject.

t

in
8-12



es

d,
ton

e-

.
tt

s-

s.

ne,

a,
nt

D.
ol.

THEORY OF FOUR-WAVE MIXING OF MATTER WAVES . . . PHYSICAL REVIEW A 62 023608
@1# M. Trippenbach, Y. B. Band, and P. S. Julienne, Opt. Expr
3, 530 ~1998!.

@2# L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. B. Ban
P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rols
and W. D. Phillips, Nature~London! 398, 218 ~1999!.

@3# M. H. Andersonet al., Science269, 198 ~1995!; K. B. Davis
et al., Phys. Rev. Lett.75, 3969 ~1995!; C. C. Bradleyet al.,
ibid. 78, 985 ~1997!; see also C. C. Bradleyet al., ibid. 75,
1687 ~1995!.

@4# See reviews of BEC by F. Dalfovo, S. Giorgini, L. P. Pita
vskii, and S. Stringari, Rev. Mod. Phys.71, 463 ~1999!; A. S.
Parkins and D. F. Walls, Phys. Rep.303, 1 ~1998!.

@5# M. O. Meweset al., Phys. Rev. Lett.78, 582 ~1997!; B. P.
Anderson and M. A. Kasevich, Science282, 1686 ~1998!; E.
Hagleyet al., Science283, 1706~1999!; I. Bloch, T. W. Hän-
sch and T. Esslinger, Phys. Rev. Lett.82, 3008~1999!.

@6# M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K
Helmerson, S. L. Rolston, and W. D. Phillips, Phys. Rev. Le
82, 871 ~1999!.

@7# G. Lenz, P. Meystre, and E. W. Wright, Phys. Rev. Lett.71,
3271 ~1993!.

@8# E. Goldstein, K. Pla¨ttner, and P. Meystre, Quantum Semicla
sic. Opt.7, 743 ~1995!; E. Goldstein, K. Pla¨ttner, and P. Mey-
stre, J. Res. Natl. Inst. Stand. Technol.101, 583 ~1996!.

@9# E. Goldstein and P. Meystre, Phys. Rev. A59, 1509~1999!.
@10# C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett.81,

5257 ~1998!.
@11# E. Goldstein and P. Meystre, Phys. Rev. A59, 3896~1999!.
02360
s

,

.

@12# R. W. Hellwarth, Prog. Quantum Electron.5, 1 ~1977!.
@13# P. D. Maker and R. W. Terhune, Phys. Rev. A137, 801

~1965!.
@14# A. Yariv and D. M. Pepper, Opt. Lett.1, 16 ~1977!.
@15# M. Doery ~private communication!.
@16# R. J. Ballagh, K. Burnett, and T. F. Scott, Phys. Rev. Lett.78,

1607 ~1997!.
@17# H. Wallis, A. Rohrl, M. Naraschewski, and A. Schenzle, Phy

Rev. A 55, 2109~1997!.
@18# M. Trippenbach and Y. B. Band, Phys. Rev. A56, 4242

~1997!.
@19# M. Trippenbach and Y. B. Band, Phys. Rev. A57, 4791

~1998!.
@20# Y. B. Band, M. Trippenbach, J. P. Burke, and P. S. Julien

Phys. Rev. Lett.84, 5462~2000!.
@21# A. P. Chikkatur, A. Goerlitz, D. M. Stamper-Kurn, S. Gupt

S. Inouye, D. E. Pritchard, and W. Ketterle, e-pri
cond-mat/0003387.

@22# E. Tiesinga, C. J. Williams, P. S. Julienne, K. M. Jones, P.
Lett, and W. D. Phillips, J. Res. Natl. Inst. Stand. Techn
101, 505 ~1996!.

@23# J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Opt.10, 129
~1976!; M. D. Feit and J. A. Fleck,ibid. 17, 3390~1978!; 18,
2843 ~1979!.

@24# Y. Castin and R. Dum, Phys. Rev. Lett.77, 5315~1996!.
@25# Y. B. Band, Phys. Rev. A42, 5530~1990!.
@26# Y. B. Band, E. Tiesinga, J. P. Burke, and P. S. Julienne~un-

published!.
8-13


