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Theory of four-wave mixing of matter waves from a Bose-Einstein condensate
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A recent experimenfDeng et al., Nature (London) 398 218 (1999] demonstrated four-wave mixing of
matter wave packets created from a Bose-Einstein condensate. The experiment utilized light pulses to create
two high-momentum wave packets via Bragg diffraction from a stationary Bose-Einstein condensate. The
high-momentum components and the initial low-momentum condensate interact to form a new momentum
component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional
guantum- mechanical description, based on the slowly-varying-envelope approximation, for four-wave mixing
in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation. We apply this formulation
to describe the experimental observations and to make predictions. We examine the role of phase-modulation,
momentum, and energy conservatigr., phase matchingand particle number conservation in four-wave
mixing of matter waves, and develop simple models for understanding our numerical results.

PACS numbse(s): 03.75.Fi, 67.90+z, 71.35.Lk

[. INTRODUCTION to generate a fourth that is phase conjugate to the probe,
where the probe is weak and causes negligible depletion of
Nonlinear optics has been made possible by the nonlineahe pump. Lawet al.[10] also suggested analogies between
nature of the interaction between light and matter and by thénteractions in multiple spin-component condensates and
development of intense light sources that can probe the norfeur-wave mixing. Goldstein and Meystid 1] develop a
linear regime of this interaction. Nonlinear optical processesheory of 4WM in multicomponent BECs based on an alge-
include three- and four-wave mixingWM) processe$e.g., braic angular momentum approach to obtain the modes of
second harmonic generation and third harmonic genepationthe coupled operator equations. Our treatment for a single
In 4WM three waves(or light pulse$ mix to produce a spin-component condensate is based on the time-dependent
fourth. In this paper we detail our studies of 4WM of coher- Gross-Pitaevskii equatiofGPE), which has proved to be
ent matter waves. Trippenba@t al. [1] proposed a 4WM highly successful in describing the properties of a variety of
experiment using three colliding Bose-Einstein condensatactual BEC experimenfgl]. Thus, our treatment is for a zero
(BEC) wave packets with different momenta. Degigal. [2] temperature condensate. It also can describe 4WM with or
successfully demonstrated 4WM in an experiment with threavithout the presence of a trapping potential.
BEC wave packets, which interact in a nonlinear manner to The nature of 4WM in BEC collisions of matter waves is
make a fourth BEC wave packet. Here we greatly elaboratenlike 4WM for optical wave packet collisions in dispersive
on and further develop the theory and describe numericahedia[12—-14. The nonlinearity in the case of BEC is intro-
simulations of the 4WM output that agree well with the ex-duced by collisions rather than by interaction with an exter-
perimental measurements of REZ]. nal medium, and the momentum and energy constraints im-
The experimental study of nonlinear atom optics is madeposed are different in the two cases. The kinetic energy of
possible by the advent of Bose-Einstein condensation of dimassive particle waves is quadratic in the wave vector of the
lute atomic gasefs,4] and the atom “laser’[5], a source of particles and given by7#(k)?/2m, whereas the energy of a
coherent matter waves analogous to the output of opticgbhoton is linear in the vacuum wave vector of the phdton
lasers. A set of optical light pulses incident on a parent conand is given byic|k|. Moreover, the momentum of massive
densate with momentufd, =0 can, by Bragg scattering], particle waves is linear in the wave vector of the particles
create two new daughter BEC wave packets with momentand given byik, whereas for light in a dispersive medium, it
P, and P;. Four-wave mixing in a single spin-component is proportional to the product of the frequency of the light
condensate occurs as a result of the nonlinear self-interacticind the refractive index(w), where the refractive index
term in the Hamiltonian for a BEC when three such BECdepends upon frequendgnd the propagation direction in
wave packets with momen®,, P,, andP; collide and in-  nonisotropic media Hence, conservation of energy does not
teract. The nonlinear self-interaction can generate a new general guarantee conservation of momentum in optical
BEC wave packet with a new momentutyp=P;— P,+ Ps. AWM. Clearly, complications involving the properties of an
The possibility of nonlinear effects in atom optics hasadditional medium does not arise in the BEC case. In any
been long recognizef’]. Goldsteinet al. [8] proposed that case, the creation of new BEC wave packets in 4WM is
phase conjugation of matter waves should be possible itimited to cases when momentum, energy, and particle num-
analogy to this phenomenon in nonlinear optics, includingoer conservation are simultaneously satisfied.
the case of multiple spin-component condensg®@sThey In this paper we develop a general three-dimensi(3ia)
considered the case where a “probe” BEC wave packet indescription of four-wave mixing in single-spin-component
teracts with two counterpropagating “pump” wave packetsBose-Einstein condensates using a mean-field approach simi-
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lar to the time-dependent GPE, also known as the nonlinear (a)
Schralinger equation4]. We introduce the slowly-varying-
envelope approximatiofSVEA), a very powerful tool that

not only gives insight into the nature of 4WM but also gives

a set of four coupled equations for the four interacting BEC
waves that are more computationally tractable for numerical
simulations of the time-dependent dynamics. Section Il ex-
plains the experimental situation we have in mind and devel-

ops the basic theoretical methods. Section Il describes the
results of our numerical calculations and compares these to P,=P-P,+P;
the NIST experimenf2]. Finally, in Sec. IV we present a

summary and conclusion.

(b) © e

Il. THEORY OF MATTER-WAVE FOUR-WAVE MIXING ® allowed P, @
wavepackets  @P,
In this section we describe the theoretical tools used in

our study of 4WM of matter waves. Section Il A reviews O
how high-momentum components of a BEC can be formed P o
using optical Bragg pulses to prepare the initial configuration : ® Py
for the “half collision” event. Section Il B specifies the pa- ©
rameters that describe the strength of the various physical P @
effects that play a role in 4WM: diffraction, potential energy, @
nonlinear self-energy, and collisions between the different @ e ©

momentum wave packets. This section also describes how to

transform between 1D, 2D, and 3D calculations involving  FIG. 1. Momentum space view of the wave packets participat-
the GPE. This is important because, without the slowly-ing in the four-wave mixing procesga) Conservation of momen-
varying-envelope approximation that we introduce below,tum in the laboratory framgb) A set of possible wave packets in
full 3D calculations are too computationally expensive tothe laboratory frame with momenta that satisfy the phase-matching
carry out for the actual experimental conditions. Hence, theonditions in Sec. Il C, namelyP,| = |Ps|cosé.

SVEA must be explicitly checked in 2D against the full GP
solution. Section Il C describes the details of the SVEA ap
proximation for 4WM. Then Sec. Il D introduces a simple
estimate for the 4WM output. Finally, Sec. Il E shows how

space of the wave packets which we consider here. Two
daughter condensate wave packets with momBatand P
are created from a parent condensate with mean momentum

. . Lo =0. Figure Za) shows these three momenta in the lab
1
the effect of elastic scattering between atoms in dlfferen{r)ame in which the experiment is carried out at two different

momentum wave packets can be accounted for. This procegs, - during the early stage of the “half collision” when

causes loss of atoms from the wave packets and lowers thgey sill overlap spatially, and at a later time when they have
4WM output. . _spatially separated into four distinct wave packets. Wélet
Let us consider three BEC wave pa_ckets moving withjje along thex axis of the coordinate system, afg make
central moment#®,, P,, andP;. Such moving wave packets some angled with respect to thex axis. Nonlinear 4WM
can be created, for example, by optically induced Bragg diftreates a fourth wave packet with moment&y= P, — P,
fraction of a condensatg6]. If these three wave packets +p, We demonstrate below in Sec. Il C that four-wave
overlap spatially, the self-energy of the atoms can producenixing of matter waves is only possible if there exists a
matter-wave 4WM, just as the third-order Kerr type nonlin-coordinate frame in which the mixing is degenerate, that is,
earity can produce optical 4WM in nonlinear media. One carall four P/ values in this frame have the same magnitude.
imagine a number of scenarios in which 4WM can occur inFigure 2b) shows the degenerate frame corresponding to a
matter-wave interactions. One can consider a “whole colli-moving frame with velocityV 4eq= (P1 + P3)/(2m), wherem
sion” in which three initially separated BEC wave packetsis the atomic mass. The total momentum is zero in the de-
collide together at the same time, or a “half collision” in generate frame, and the wave packets move in oppositely
which the wave packets are initially formed in the same conmoving pairs. The anglé’ between the vecto®, andP; is
densate atnearly the same time. Although we considered arbitrary. In the laboratory frame, the anglds given by 6
the “whole collision” case in Ref[1], the “half collision” =0'/2, and the length of the vectd?, is given by |P,|
case is easier to realize experimentdly using the above- =|Ps|cos(). Figure 1b) shows a set of different possible
mentioned Bragg diffraction techniquli6]. In what follows,  values ofP,.
we consider only this configuration, in which the three wave . .
packets initially overlap because they have been created as A- Bragg pulse creation of high momentum components
copies of the initial condensate. These wave packets have We assume that the condensate has only a single spin
different nonvanishing central momenta and therefore thegomponent, and that its dynamics can be described by the
fly apart from one another after they have been created. GPE, which is known to provide an excellent account of
Figure Xa) shows the basic configuration in momentum condensate propertig¢d]
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packets evolve. The state gi=t;+ St provides the initial
condition for subsequent evolution of these three wave pack-
ets as they undergo nonlinear evolution.

The initial state at, immediately after the Bragg pulse
sequences can be approximated in a number of ways. In
principle one could set up a set of coupled GPEs for the
ground and excited atomic state components and explicitly
include the effect of coupling the light field to the excited
electronic state. A simpler approach would be to carry out an
adiabatic elimination of the excited state and develop an ef-
fective light-shift potential in which the ground state atoms

P, move. If such approaches are carried out in this case, they
| show that the light acts as a “sudden” perturbation such that
P, each of the wave packets with central momemta P, and

P; is to a very good approximation simply a “copy” of the

parent condensate att; [15]. Thus, the initial condition
0=20 approximated as being comprised of three BEC wave pack-
S o -
, During P 3

Y

(b) Degenerate frame

immediately after the application of the Bragg pulses can be

Pl"

Half-Collision V(rt)=V(rt) > fPexpiP-r/if), ()
=1
After
Separation wheref;=N;/N is the fraction of atoms in wave packet
P and=? ,f;=1 so the norm ofF remains unity.
4

After the formation of the wave packets with momenta

P,, P,, andP5, the initial wave function in Eq(2) evolves,

jand the wave packets with the different momenta separate.
During this separation,the nonlinear term in the GPE gener-
ates a wave packet with central momentiy=P;—P,

+ P53, as long as the constraints discussed in relation to Figs.
1 and 2 are satisfied. Energy and momentum are conserved
during the wave packet evolution. This can be readily
checked by verifying thatdE(t)/dt=0 and dP(t)/dt=0,

where
where Tr=(—hz/2m)Vr2 is the kinetic energy operator,

V(r,t) is the external potential imposed on the atoi&l,
=N(4mayh?/m) is the atom-atom interaction strength that
is proportional to thesswave scattering length, (assumed
to be positivg, m is the atomic mass, an is the total is the energy per particle and
number of atoms. The numerical methods for solving the
GPE are described below in Sec. IlI.

First, we use the GPE to obtain the ground state conden- . - .
sate in the trapping potential at time=0, W(r,t=0). This IS the momentum per particle. We have verified numerically

condensate wave function is centered aroun®, and nor-  that energy and momentum are indeed conserved in our cal-
malized to unity. We assume, as is the case in the Nisfulations described in Sec. III.

experimentg 2], that the trapping potential(r,t) is turned

off at t=0 and that the condensate is allowed to evolve B. Characteristic time scales and dimensionless parameters
under the influence of only the mean-field interaction until | this subsection we discuss characteristic time scales
time t;. This includes the special casg=0. We could {nat can be used to estimate the importance of the various
equally well treat the case of leaving the trap on, and Wefects occurring during the dynamics for a particular set of
would obtain similar results. Equatiofi) determines the eyperimental parameters. It is convenient to use the Thomas-
evolved condensate wave functidi(r,t,). After this period  Fermi (TF) approximation(4] to give quantitative estimates

of free evolution, the Bragg pulses are applied to create thgf the size of the condensate and the time scales character-
wave packets with moment , P, andP;. The momentum  izing the dynamics. In the TF approximation, one neglects

differences|P;—P;| are much larger than the momentum the kinetic energy operator in the time-independent nonlinear
spread of the initial parent BEC wave packet. The experi-gchrglinger equation

mental time scalét for creating these wave packets is short
(=70 us) compared to the time scale on which the wave

FIG. 2. (a) Lab frame view of the four-wave mixing process,
showing the four wave packets at early time while they are stil
interacting and at late time after they have separdt®ddegener-
ate frame view of the same cases agan

aw(r,) 2
ih— = =T+ V() +NU W)W (rt), (D)

1
E()=(¥ ()| T+ §Uo|‘1’|2)|‘1'(t)> 3

P(t)=—iA(W ()| V]¥(1)) (4)

wW=(T,+V(r,t)+NUo|¥|?) W, (5)
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where u is the chemical potential, to obtain the following of Eq. (2) for ¥ requires a grid smaller thark) . This
analytical expression for the wave function (r)|?=[ u requirement limits practical calculations to two dimensions
—V(r)]/NUq for r such thatV(r)<u and ¥(r)=0 other-  (2D). We will introduce an approximation in the next section
wise. The TF approximation is valid for sufficiently large that allows three-dimensioné&8D) calculations by eliminat-
numbers of atomsl. It is convenient to define the geometric ing the rapidly varying phase factors from the equations to
average of the oscillator frequencies for an asymmetric harbe solved.

monic potential ag= (wxwywz)l’3 The size of the conden- We find it convenient to use reduced dimensionless vari-

[ ables to calculate the dynamics. The most commonly used
sate is then given by the TF radiug-= y2u/(mo), where set of reduced dimensionless variables in BEC problems in-
the TF approximation to the chemical potentjalis deter-

mined by the normalization of the wave function to unity andVOIVes. using “trap units [4] Here_however, except f(_)r de-
termining the initial conditions at=0, the trap potential is

is given byp = %(1_5U0N/47T)12//55(m“’2)3/.5- Hence, the TF ra-  tymed off, and trap units are not particularly relevant. Since
dius rye scales withN as N™®. The size of the TF wave \ye do both 2D and 3D calculations, some care is needed in
packet in the i=x, y, and z directions is rre(i)  developing a set of units. The primary requirement to simu-
=(w/ w))r1g. late 3D experiments with a 2D model is that the relations
In order to estimate the importance of the various terms irbetween the characteristic time scalgg,, t.,, andty, , are
the GPE, we seV=0 for free wave packet evolution and as determined by experiment. We have done this by scaling
rewrite Eq.(1) in terms of characteristic time scalgs: for  the solution of thed-dimensional time-dependent GPE by a
diffraction, andty, for the nonlinear interaction, in the fol- d-dimensional volume so that the coefficient of the nonlinear
lowing mannef1,16—19: term depends only on the dimension and the chemical poten-
tial u. By scaling the condensate wave function #s

A i: K a_2+,9_2 1 |wp ©) =W/ \r%, thed-dimensional time-dependent GPE for a har-
! tor\gx2  ay? a9z ta W2 monic potential with frequencies;, j=1,...d can be

written as

The diffraction time and the nonlinear interaction time are
given by tpp=2mr3J#, ty =(NUo|¥|%/%) "1, respec-

— d
tively. Here|W¥|? is the maximum value of¥(r)|?, i.e., ihﬁq’(r) _ h? ‘72\1' (2 E o2 2)\If(r)

|'W |?=|¥(0)|? hence in the TF approximatioty'= w/#. a 2mE ax =1 2 M

The smaller the characteristic time, the larger is the corre- a2

sponding term in the GPE. We also define the collision du- +( ™ ) |‘l_f(r)|2\?(r) 7)
ration timet.,=(2r1p)/v, wherev=(P;—P;)/m is the ini- T(2+d2)/#™ '

tial relative velocity of wave packets 1 and 3. Thyg, is the

time it takes the wave packets 1 and 3 to move so that they

just touch at their TF radii, and therefore no longer overlapHere W is dimensionless for ang, and the knownu for
The ratiot.,/ty. gives an indication of the strength of the the 3D problem can be transferred to an equivalent time-
nonlinearity during the collision. The larger the ratio of dependent GPE for a 2D calculation. Furthermore, if we de-
teo/tne, the stronger the effects of the nonlinearity duringfine the reduced unit of lengtig, to bexg=r¢, define the
the overlap of the wave packets. These characteristic timgsnit of time, tg, such thaﬁR:mxé/(Zh), and use the nor-

stand in the ratiodpr:teo -t = LN re) 116l (630N), o7 avion conditionf| W |2d%/x%=1, we preserve the ratios
where\ is the De Broglie wavelength associated with the : :

. ) .. _between the most important time scales of the problem. The
wave packet velocityv. Experimental condensates with i | d d | d d

Ity,>1 can be readily achieved. Thus, the nonlinear term - ca time scaléy_ depends only onure and is inde-

Leal/tL pendent of dimension. The speC|f|c relations_between the 3D
will have time to act while the BEC wave packets remamnonllnear counlin arametu multiplying [ (r)[2% (r)
physically overlapped during a collision. Another relevant. Eq. (7 dTJ 9 deZD h py. 9 If-
time scale in the dynamics is the characteristic condensaf@ g.(7) an an , the respective se energy pa-

o T . . rameters in 1D and 2D ar®J;P=5/(27)U3, and U3
expansion time,,,= "~ . In the typical experiments mod- 5" 3p d .
eled belowfpe> o> o>t =13U; . These values fod; insure that the chemical po-
DF~ tex| co| NL - ; . :
In addition to time scales, there are several natural lengtfe"tial w1e (@nd all the time scal¢sre the same as in 3D.
scales that are important: the sizg of the condensate, the
scale Ak) ! of phase variation across the parent condensate

. C. Slowly-varying-envelope approximation
as it expands and develops a momentum spfiekl due to

the mean field potential, and the scaké)("* of phase varia- Let us consider the case when the total wave function
tion due to the fast imparted momentwh=7%k’, wherep’  consists of four Wave packets moving with different central
is the common magnitude of the momentum for the packet§romentaP;=#k;,i=1,...,4. Wewrite the wave function

in the degenerate fram&ig. 1). These stand in the relation &as

(k") 1< (Ak) l<rqe. The grid spacings in numerical cal-

culations are determined by the necessity to resolve the wave Pir=S ®.(r.exdi(k-r—wt 8
function on its fastest scale of variation. Thus, using the form (n)=2, ®i(rnexditki-r-ait)], ®
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in order to separate out explicitly the fast oscillating phasdour momenta are equal in magnitude and can be divided
factors representing central momentdik; and kinetic en- into two pairs of opposite vectors. This explains the use of
ergy E;=fiw;=%%k?/2m. The slowly varying envelopes the conjugated pairs of symbols,i*) and (,j*) in our
®,(r,t) vary in time and space on much longer scales tharmotation. The total number of particles, in all wave packets,
the phases. The number of atoms in each wave packet i§ a conserved quantity. The geometrical configuration of the
N;=NJy|®(r,t)|?d®, and zi“lei:N is a constant. Al- Wwave packet momenta in the degenerate frame are illustrated
though the S|0w|y Varying enve|0pé4(r,t:0) is unpopu- in Flg Z(b) In the figure we see two paiI’S of Conjugate wave
lated initially, it evolves and becomes populated as a resuRackets(1,3) and(2,4). All four momenta are equal in mag-
of the 4WM process. If we substitute the expanded form ofitude and moment®; andP; are opposite as are the mo-
the wave function in Eq(8) into the GPE, collect terms mentaP; and P,. The angled depicted in the figure is
multiplying the same phase factors, multiply by the complexcompletely arbitrary. Howeverd~0 is not allowed, since
conjugate of the appropriate phase factors, and neglect ale wave packets would no longer be distinguishable. Figure
terms that are not phase matcliptiase matched terms have 1(b) shows a range of possib values for wave packets in
stationary phases, do not oscillate, and satisfy Ef®.and  the lab frame that satisfy the phase-matching conditions in
(11) below], we obtain a set of coupled equations for theEgs. (10) and (11). These conditions only allowP;|
slowly varying envelope®;(r,t): =|P3|cos().
4WM can be viewed as a process in which one patrticle is
annihilated in each wave packet belonging to an initially
populated pair of wave packets and simultaneously one par-
ticle is created in each of two wave packets of another pair,
one of which is initially populated and the othéwave
packet 4 is initially unpopulated. Hence, using Fig(k? in
the moving degenerate frame, 4WM removes one atom from
each of the “pump” wave packets 1 and 3, and places one
9) atom in the “probe” wave packet 2 and one atom in the
4WM output wave packet 4. This picture is a consequence of
where the delta functions represent Kronecker deltathe nature of the nonlinear terms in the four SVEA equa-
functions that are unity when the argument vanishes. Mixingions. It is this bosonic stimulation of scattering that mimics
between different momentum components can result fronﬁhe stimulated emission of phOtOﬂS from an optical nonlinear
the nonvanishing nonlinear terms in E§), which satisfy —medium.
the phase matching constraints required by momentum and The full SVEA equations for 4WM are explicitly given by
energy conservation

2

i &
_ ——V2+V(r,t)”q)i(rat)

J
5+(ﬁki/m)-V+h om

i
:—%NUO E, 6(ki+ki*_kj_kj*)
i*jj*

X 5(wi+wi*—wj—w]-*)CIDI-*(r,t)‘Di**(r,t)CDj(r,t),

d i (—h?
Ki+kix—kj—kj«=0, (10 keI m)- Vo | S V2V }cbl(r,t)
k?+ ki — k= k7, =0. (11) |
= — = NUg(|®@1]2+2|D,|?+ 2| D3|+ 2| D42 Dy
Each of the indices,i*,j,j* may take any value between 1 h
and 4. Equation$10) and(11) are automatically satisfied in i
two cases(a) i=i*=j=j* (all indices are equalor (b) j — =NU®,P,P% , (12

=i#j*=i* (two pairs of equal indicesThe corresponding h

terms describe what is called in nonlinear optics cross and
self modulation terms respectively. The cross and self-phase
modulation terms do not involve particle exchange between
different momentum components. In the absence of the trap-
ping potential they modify both amplitude and phase of the

wave packet through the mean field interaction. Particle ex-

2

_ 2
5= V2V

a i
—p F(ka/m) V4 o }%(r,t)

fi

=—i—NU |D,|2+ 2| D4 |%4 2| D 5|2+ 2| D y|2) D
O( 2 1 3 4 ) 2

change between different momentum wave packets occurs
only when all four indices in Eq9) are different, and con-
servation of momentum and energy of the atoms participat-
ing in the exchange process occurs. A setofipledequa-
tions involving wave mixing between the various momentum
components is therefore obtained.

The momentum conservation of EQ.0) implies k; + ki«
=k;+kj»=x. It is always possible to construct a special
reference frame, which we call tlteegenerate framewvhere
x=0. Consequently, in this framle = — ki« andk;= —K;x.

In addition energy conservation in Ed.1) imposes the con-
dition [kj|=|k;| in the degenerate frame. In this frame all
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2
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i
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2 1ty =NUy| ¥ (0)|?/4. Upon squaring this equation, and in-

9 —h
2
E“L(ﬁkﬂm) V4 7 (_Zm v +V(r,t)) Dy(r,t) tegrating over all space, the total growth in the 4WM output
. of, is
I 4
:_%NUO(|¢4|2+2|<I>1|2+2|CI>2|2+2|<I>3|2)<I>4
i
— —NUy®, D% d,. (15) SN 8t \?
7 NUo®1P3 g 5f4:W4~f1f2f3(t—) _ (18
NL

The left-hand side of these equations describes the motion of
the wave packets due to their kinetic and potential energies. i i
The right-hand side describes the effect of the phase matchdd'tS: the 4WM signal should grow quadratically at early
nonlinear interaction terms. The last term on the right-handimes. If we takeét to be the total interaction timg,, de-
side of each of the SVEA equations is a source term whicfined in Sec. Il B, then an estimate of the total 4WM output
either creates or destroys atoms in the wave packet beirfgiaction is
propagated. The other terms on the right hand side of the
equations account for the self- and cross-phase modulation.
These phase modulation terms provide an effective potential 2
I N4(tcol) tcoI
for each wave packet that accelerates the atoms in it and f,= mflfzfg(_) ) (19
modifies its internal momentum distribution. N t
Before we propagate the SVEA equations, the initial
wave function of the parent condensate is determined using
the time-dependent GPE. First, the propagation is in imagil his should be an upper bound on the 4WM output, since the
nary time to obtain the initial eigenstate in the presence ofmutual interaction of the packets due to the self- and cross-
the magnetic potential. Then, after turning off the magnetiqgohase modulation termghe self- and cross-interaction en-
potential, the free evolution in the absence of a trapping poergy term$, and their separation from one another wtien
tential is calculated to provide the initial condition in E8).  ~t.,, will lower the output. Using the TF approximation
This free evolution causes a spatially varying phase to del/tNL=,u/h~N2’5 andtCO,:ZrTF/u~N1/5. Thus, the output
velop across the cqnder)sate as '|t_e:-xpands. in the absencep{ction N, /N~ (NYSN25)2
the trapping potential. Given the initial condition, the SV_EA which was discussed in R&®], will be checked in our nu-
equations can be used to propagate the envelope function Pr{] - :
X : erical calculations below.
each wave packet, using the same numerical method used to
propagate the ordinary time-dependent GPE.

scales asN®5. This scaling,

E. Elastic scattering loss
D. Simple approximations and scaling withN
An estimate of the number of atoms that will be trans- Atoms from two different momentum wave packets can

ferred to the 4WM wave packet can be developed as followsiNdergos-wave elastic scattering that removes the atoms
To get the small signal growth at early times, multiply both {fom the packets and scatters them inte teradiang20].

sides of the dynamical equation for the rate of changdgf ~ ThiS becomes important when the mean-free pgth becomes
where for simplicity we keep only the 4WM term on the comparable to or smaller than the condensate isize The
right-hand side of the equation, mean-free-path is ¢n) !, where o=8wa§ is the elastic

scattering cross section amdis the mean density. Profuse
elastic scattering of this type has been recently observed
[21]. This mechanism can also affect the 4WM process since
loss of atoms from the moving packets reduce the nonlinear
by a small time incremenét to get the growths®, in &,  Source terms in the SVEA equations. Although the cl'oud of
during ot elastically scattered atoms can not be simply described by
the mean-field picture, the loss of atoms from the wave pack-
ets due to this elastic scattering mechanism can be described
. NUo . ot in terms of the SVEA. This is because each momentum com-
0Pa~—l (f1f2f3)l/27|qf|zqf5t% - (f1f2f3)llzmqf' ponent is treated separately, and the loss terms due to elastic
(17) scattering can be added to the SVEA equations.
The elastic scattering loss is incorporated by adding loss
Heref;=N;/N is the initial fraction of atoms in wave packet terms to the right-hand side of the envelope equations in the
i, and we assume thdt; = fil’z\If at early times, because the form of imaginary potentials that are proportional to the den-
three wave packets initially satisfy this relation. Since mostsity of the “other” momentum component involved in the
of the growth takes place in the center of the packets wherelastic scattering. The full SVEA equations for 4WM, in-
V¥ is the largest, the factaiUy|W|%/% is approximated by cluding the effects of elastic scattering 1688, are given by

o, .
W:_%NUOCI)]_(I)Zq)a’, (16)
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J i [—h?2 i i
St T (ka/m) -V + %V2+V(r,t)”cbl(r,t)=—gNuo(|cI>1|2+2|<b2|2+2|c1>3|2+2|<b4|2)c1>1—%Nuocb@zcb;

- 2 | 2|2 1 2 |q)3|2q)1

- > | 42D, (20)
d i (—h? 2 i 2 2 2 2 i *
E+(ﬁk2/m).v+% WV +V(r,t) <I>2(r,t):—gNU0(|d>2| +2|(D1| +2|<I>3| +2|(D4| )@2—%NUO<I>4<I>1(D3

- > |y [2D,— > | D3| °D,

- > | 42D, (21)
J ([ —h? 2 i 2 2 2 2 i *
E+(ﬁk3/m)-v+% WV +V(r,t) <I>3(r,t):—%NU0(|(I>3| +2|(I>1| +2|(I>2| +2|(I>4| )®3—%NUO<I>4CD1(D2

- 2 | 1|2 37 2 |q)2|2¢)3

- 2 |(I)4|2(I)3’ (22)
J = 2 i 2 2 2 2 i *
E+(ﬁk4/m)-v+% HV +V(r,t) <D4(r,t):—%NUO(|<I>4| +2|d>1| +2|<I>2| +2|d>3| )®4—%NUO<I>1®2<D3

- 2 |CI)1|2CD4— 2 |¢)2|2CD4

(ﬁ|k -k |/m)crN

-— | 4|20, (23

2

|
There are three elastic scattering loss terms for each SVE [ll. NUMERICAL SIMULATIONS
momentum componen®; arising from the interaction of
each momentum component with the other three momentum
components. The factor &fin the loss terms is due to the  In the NIST experimen{2], the initial sodiumF,Mg
fact that these are equations for the amplitudes, not the der1,—1 condensate is comprised of magnetically confined
sities. atoms in a TORtime-orbiting-potentigl trap without a dis-
The density dependence of the elastic scattering lossernible noncondensed fraction. The trap is adiabatically ex-
terms is identical to that of the mean-field interaction termspanded to reduce the trap frequencies insthg, andz di-
since both terms are due to elastic scattering. It is of interesiections to 84, 59, and 42 Hgthe frequency ratios are
to compare the strengttsize of the coefficientof the loss w0, w,=1:1//2:1/2). After adiabatic expansion, the trap
term due to elastic scattering with the nonlinear term in theg switched off by removing the confining magnetic fields.

GPE. The nonlinear term has a coefficielo/f  The condensate freely expands during a delay time
=4ghag/m, whereas the loss term for interaction of paCketS=600,us after which a sequence of two Bragg pulses of

A. Experimental configuration

i andj has a coefficientv o=4# |k;— kjlaglm, wherev is
the relative velocity. The rati®=(3vo)/(Ug/%) of loss to
mean-field terms for packets 1 and 3 in Fig. 1 is

R:2|k1|a0. (24)

This ratio is about 0.06 for the NIST 4WM experimd2{.

589 nm wavelength creates the two moving wave packets 2
and 3. Each 3Qus Bragg pulse is composed of two linearly
polarized laser beams detuned from thg§;3,F=1, Mg
—1—-3P35,, F=2Mg=2 transition by aboutA/2w

—2 GHz to suppress spontaneous emission and scattering
of the optical waves by the atoms. The frequency difference
between the two laser beams of a single Bragg pulse is cho-
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0.80 ‘ ‘
1.5%10° atoms

(@)

-0.20 ‘ ‘ ‘
2

(b) 0.80 ! !
0.60

x/rTF

FIG. 3. (a) Cuts along the, y andz axes of the parent conden-
sate wave functiol’(x,y,z,t=0) for N=1.5x 10° atoms in a trap

with harmonic frequencies of 84, 59.4, and 42 Hz in the respective

X, ¥, andz directions. The arrows show the TF radiig(i) in the
i=x,y,z directions. The curves labeledx;” “ y,” and “z,” re-
spectively represent R#(x,0,0,0)), RgW¥(0y,0,0)], and
RgW¥(0,02,0)]; ImW¥(x,y,z0)] is identically zero for each case.
(b) Cuts along thex axis of R¢¥(x,0,0t=t,)] and Inf ¥ (x,0,0%
=t,)] for t;=600 us.
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FIG. 4. Cut in thek, direction k,=k,=0) of the squared mo-
mentum distributior}¥ (k,t)|? for the wave functions in Fig. 3 for
t;=0 andt;=600 us.

linear time isty =96.2us. The Thomas Fermi radius is
rq+g=20.3 um. Since the separation velocity defined in Sec.
II B is v=0.0691 m/s for light of wavelength 589 nm, the
physical separation time,,=2r1s/v=687us in the NIST
experiment, and indeed is longer than the nonlinear time.

The characteristic condensate expansion timg,= ot
=1.89 ms for a trap witho=2m(84/y2) s 1. The charac-
teristic diffraction timetDF=2mr$F/h=300 ms provides by
far the longest time scale in the dynamics. Thus, there is
negligible diffraction on the time scale of the experiment.

B. Simulations of the NIST experiments

Our solution to the time-dependent GPE uses a standard
split-operator fast Fourier transform method to propagate an
initial state forward in time[23]. The initial stateW(r,t
=0) of the condensate in the trap is found by iteratively
propagating in imaginary time. Figure 3 shows examples of a
3D parent condensate wave functidr{x,y,z,t) for two dif-

sen to fulfill a first-order Bragg diffraction condition that ferent times. Theé=0 solution shows the wave function in
chgnges the momentum state of the atoms without changinge harmonic trap, and tte=t; =600 us solution shows the
their internal state. The first Bragg pulse is composed of tW@yave function after 60Qus of free evolution without a trap

mutually perpendicular laser beams of frequenaigsand
vg=v,—50 kHz, and wave vectors ankl,=kx and Kg
=k§/. This pulse sequence causes a fractigrof the BEC
atoms to acquire momentuRy =1 (k,—Kz) =fik(X+y). A
second set of Bragg pulses is applied 29 after the end of
the first Bragg pulse sequence. This pulse is composed
two counterpropagating laser beams with frequenzgjgand

vg=v,—100 kHz, and wave vectors arid,=kx and Kg
—kx. This pulse sequence causes a fracfigiof the BEC
atoms to acquire momentuﬁ’gzh(ka—kﬂ)=2ﬁk§<. Thus,

potential. Although thé=0 wave function in Fig. @) has a
constant phaséaken to be Q) it is apparent from Fig. ®)
that the evolution leads to the development of phase modu-
lation across the condensate, i.e., the wave function develops
a spatially dependent phase, and therefore an imaginary part
the wave function. This is due to the evolution of the
condensate under the influence of the mean field term
NUo|W(r,t)|2, when the trapping potential is no longer
present. An analytic form for the spatially dependent phase
which evolves can be obtained in the Castin-Dum model
[24]. As we show below, this phase modulation is important

there are three initial condensate wave packets with momentar 4WM. There is very little physical expansion of the con-
P,=0, P, andP5 as shown in Fig. 1. The respective wave densate after 600us, since the condensate densities

packet population$;=1—f,—f3, f,, andfs, have a typical
ratiof,:f,:f3=7:3:7.

|W(r,t)|? are nearly the same for the wave functions in Figs.
3(a) and 3b). However, Fig. 4 shows that the acceleration

The number of atoms could be varied between around 3lue to the mean field is already quite evident in the momen-

X 10° and 3x10°. As a typical example, we takB=1.5
X 1P atoms in the trap. Taking,=2.8 nm[22], the non-

tum distribution att=600 xS, which is much broader than

that att=0. The two peaks nesk=*5r;7 in the t=t;
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FIG. 5. Comparison ofN4(t)/N versust—t, for 2D and 3D
calculations for 1.5 10° atoms. The trap is the same as in Fig. 3.
The Bragg pulses are applied 628 after the trapping potential is ‘ ‘ ‘ : :
turned off and are over at timg. -2 0 2 -2 0 2

600 ps
2 Apply Bragg pulses 2

e
=600 us distribution indicate the formation of accelerated 24(©)

condensate particles which will lead to condensate expansiol
at later times.

Our treatment for applying Bragg pulses uses the mode
given by Eq.(2). This approximation neglects detailed dy-
namics during the application of the Bragg pulses. Each ini-
tial wave packet at timet, after the Bragg pulses is a copy 2 600 + 190 ps 2] 600 + 760 ps
of the parent condensate wave functiortatt; with popu- 2 0 2 2 0 2
lation fraction f;=N;/N. Unless stated otherwise, we will X/ree X/rye
always use the ratib, : f,:f;=7:3:7 ofpopulation fractions
as typical of the NIST experimef2]. We let the three BEC
wave packets evolve fdr>t,~t; using three different ver-
sions of the time-dependent GPE. Two of them are 2D ver
sions, and one is the 3D-SVEA version. The 2D-full version
uses the GPE, E@l), to evolve the initial stat& in Eq. (2).
The 2D-SVEA version uses the SVEA form in Eq42—  overlap with each other, although they still have some over-
(15) for the evolution. A typical 2D calculation used a grid lap with wave packet 3. As the wave packets begin to move
of discretex,y points within a box B¢ wide in thex andy  apart, the output saturates negrt,~t.,(x)/2 and ap-
directions centered ox=y=0. In order to resolve the rapid proaches its final value whe-t,~t.,. There is a signifi-
phase variations due to tre") factor, the 2D-full calcu- cant difference between the 3D-SVEA and 2D-SVEA output
lation required arx,y grid of up to 4096<4096 points. On fraction. The 4WM output is lower for the 3D case. This is
the other hand, the 2D-SVEA only requires a ¥228 x,y because the nonlinear 4WM process depends on the spatial
grid to achieve comparable accuracy. The 3D-SVEA calcuoverlap of the moving wave packets. The packets are not as
lations added a# wide box in thez direction, and ax,y,z ~ well-overlapped geometrically in 3D as in the 2D model.
grid of 128x128x64 was sufficient. Henceforth, all our calculations are 3D-SVEA ones, unless

Figure 5 compares the 4WM output fractiofy(t) stated otherwise.
=N,(1)/N for the three different types of calculation for the  Figure 6 shows a sequence of contour images of the time
case ofN=1.5x10° atoms. The 2D-full and 2D-SVEA cal- evolution of the wave packets from the time the trap is
culations give the same results within numerical accuracyurned off att=0 to the time of separation of the four wave
and cannot be distinguished on the graph. We take this to bgackets. The contours show tkéntegrated column density
a strong justification of the SVEA, and a strong indication=_, [®(x,y,z,t)|?dz, from the 3D-SVEA calculation(The
that it will be equally trustworthy in the 3D calculations. In constructive and destructive interference fringes in the wave
both 2D and 3D cases, the output grows quadratically apacket overlap region due to theé'" phase factors is not
early time, as predicted by E(L8). The arrows indicate the shown since it would require very high resolution to repre-
characteristic nonlinear timig, and the collision time.,. sent it with sufficient accuracyPanel(a) shows the eigen-

In addition, the figure showk.(x)=t.,/\2. The latter is state density in the harmonic trap. Pati®lshows the wave
the time it takes wave packets 1 and 2 to move so that thegacket att=t, just after the Bragg pulses have fired. Since
just touch at their Thomas-Fermi radii in tikedirection. At there is negligible expansion in the density profile during the
that time wave packets 1 and 2 no longer have significaninitial 600 us of free evolution, the wave packet is very

|v/rn= 0

FIG. 6. Contour plots of integrated column density from the
3D-SVEA calculations v andy for N=1.5x 10 and the same
trap as for Fig. 3. Panels) through(f) show the time development
of the wave packets from the time the trap is turned off until the
wave packets physically separate.
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0'20 I I I I L1l L1l L1l L1l 0.15 I ‘ I ‘ I L1l L1l L1l ‘ I L1l
il - 7 1.5%10° atoms C
] r ] tl =0 C
0.15 — N = 5.0x10° = ] E
] i Z 0.10 -
% ] L S, ] t =600 us C
% - |- z ] 1
Z 0.10 - P ] F
" . N = 1.5x10° F = ] r
Al i “0.050 = = 1200ps -
0.050] = ] E
3 N = 0.2x10° F ] t = 1800 ps r
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FIG. 7. Comparison oN,(t)/N versust-t, for 0.2x10°, 1.5 FIG. 8. Comparison ol,(t)/N versust-t, for 1.5x 1° atoms.

x 10, and 5.0< 10° atoms. The trap is the same as in Fig. 3. The The different curves show cases where the Bragg pulses are applied
Bragg pulses are applied 600s after the trapping potential is att;=0, 600, 1200, and 180@s after the trapping potential is
turned off. turned off ¢,~t,). The trap is the same as in Fig. 3.

sr|]m|Iar tohthat n p%ntleda_). Hohwevzr, W? Iea(;ned from ';'g' 3 eqguations responsible for 4WM vanjslrrom these calcula-
that a phase modulation has developed across the wae\(i ns it seems clear that 4WM should be much stronger if the
packet. This does not S.hOW up In th‘? ‘?'?”S'ty proﬁle. Pan rap is left on instead of being turned off. These calculations
(c) for t-t,=190 us indicates some initial motion by the indicate that the 4WM output of the NIST experimdgy

moving wave packets. In P*’?‘”ﬁ” the spread .Of th? three ight be as much as a factor of 2 higher if there had not been
wave packets due to their different momenta is evident, an 00 us of free evolution before the Bragg pulses were ap-
in panel (e) the separation of the 4WM wave packet is plied'u

clearly apparent. Pan&t) shows the four wave packets after We expect the 4WM output will be larger if the wave

almost complete separationtat,= 760 us, which is larger packets stay together for a longer interaction tirgg. The
tha:_tco|=6787 MS. th tout fraction.(t)/N interaction time can be changed by changing the velocity of
_ rlgure 7 compares the output frac iy (1)/N versus the wave packets. Figure 9 plok,(t)/N versus time for
time for three different initial total atom numbefé=0.2 1.5 10° atoms for the original case shown in Figs. 7 and 8
10, .1'5X 10, and 5'0.< 10°, andt; =600 us. Aga|r_1, Al and for two new cases where the interaction times are
early times the quadratic dependence of the fraction as 8hanged by factors of 0.7 and 2. This is achieved in the code
function of time is clearly evident. After a quadratic rise at by scaling the momentum wave vectors by factors of 1/0.7
e_arly time, thg output saturates and even undergoes OSCIIIg'nd 1/2, respectively. Our calculations show that the 4WM
tions before finally settling down to a final value whén output is reduced by a factor of 0.6 in the first case and

> 1o The oscillations oN,(t)/N in time develop and be- i, ea5eq by a factor of 2 in the second. In principle, veloci-
come more pronounced as the initial number of atoms in-

creases. These are due to back transfer from 4 and 4
packets to thé=1 and 3 packets due to the mutual coupling
between the packets. A closer examination of the detailec
time evolution shows that the transfer occurs on the trailing 20
edge of the wave packets where they are still substantially
overlapped. WheiN is large enough, the wave packets ex- £ 0.15
perience significant distortion in shape by the time they sepa;r
rate. The output fractioiN,(t)/N clearly increases with\. 610

@
Y
G

1.5x10° atoms
(= 600 ps

Scale by 2

Figure 8 shows the output fractidi,(t)/N versus time = | Mo scaling
for 1.5x 10° atoms for four different values of the free evo- 0,050 iQua dratic L
lution time t;=0, 600, 1200, and 180@s. The self-phase T growth . (x)T Scaleby 07 ©
modulation resulting from the nonlinear self-energy interac- <> ol E

tion reduces the 4WM output ds increases. This is analo- 00 4=
gous to the destruction of third harmonic generation due to 0 100200 300 t_fO(z 9 500600 700 800

self- and cross-phase modulation in nonlinear opfis), 2

and occurs because the phase modulation destroys the phaserg. 9. comparison oR,(t)/N versust-t, for 1.5x 1¢° atoms.
matching that is necessary for 4WM to develop. Ror The trap is the same as in Fig. 3. The Bragg pulses are applied 600
>1c0, the number of atoms in the different wave packets nous after the trapping potential is turned off. The three different
longer change, since the wave packets are well separatedrves are for the cases where the separation times are scaled by
(exchange of the number of bosonic atoms between waviactors of 0.7, 1, and 2 by scaling the separation velocities by 1/0.7,
packets can no longer occur when the terms in the dynamical, and 1/2.
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0.006 //03]3/
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time (s) FIG. 12. Fraction of atoms in the 4WM output wave packet

FIG. 10. Growth ofN4(t)/N and N4(t)/N versust-t, for the N, /N versus the total number of initial atonscalculated in 2D,
case where a weak probe wave packet 2 with initial population3D. and 3D with inclusion of elastic scattering loss as discussed in
fraction 0.001 encounters strong “pump” wave packets with initial Sec. Il E. The open circles represent calculations using experimen-
fractions 0.4995. The trap is the same as in Fig. 3. The Bragg pulsdd! data[2] to determine the ratiol; :N:N3 rather than taking the

are applied 60Qus after the trapping potential is turned off. nominal valuesN; :N,:N3=7:3:7. Thetrap is the same as in Fig.
3. The Bragg pulses are applied 6@8 after the trapping potential

. . is turned off.
ties of the wave packets can be controlled by changing the

frequencies and angle of the two Bragg pulses that create
outcoupled wave packgd]. Thus, some degree of control
over the 4WM output should be possible by varying the in-
teraction time.

Figure 10 showd ;(t) andf,(t) for the case of a wea

a . .
the awm output for smalN scales well withN®5, as esti-

mated from the simple model in Sec. Il D. The scaling with

NS/ for smallN is clearly evident in both 2D and 3D results.

k The latter is uniformly lower than the former, due to the

i=2 “probe” with initial population fraction 0.001 incident Smaller overlap of the wave packets in 3D because of geo-
metrical reasons, but saturates a little more slowly with in-

on two strong =1 and 3 “pump” wave packets with popu- . . ‘
lation fractions 0.4995. This is analogous to the phase corcreasingN than the former. At the highed values typical of

jugation process envisioned in RE8]. Here bosonic stimu- spdium condensates, this scaling from the simple model se-
lation, which removes 2 atoms from the “pump” packets 1 Mously overestimates the output, which begins to saturate

and 3 and puts them in packets 2 and 4, results in a Stron\gith_increasingN. - .
amplification of packet 2, which grows in atom number Figure 12 shows three curves giving the fraction of atoms

eight-fold as the 4WM sianal arows. in the 4WM output wave packet as a function of the initial
gFigure 11 shows 4W§/I ou%put fractioN,/N after the total number Of. atom!}l as cglculatgd bj(l.) ZD'SVEA and
half-collision is over {>t.,) as a function oN, plotted in a (2) 3D-SVEA simulations without including elastic scatter-

log-log plot. The figure shows the results for both the 2D_ing loss, and as calculated i) a 3D-SVEA simulation

SVEA and 3D-SVEA calculations. The dashed lines sho jincluding elastic scattering loss. In one set of calculations we
' used a ratio of atoms in the three initial wave packets of

N;1:N,:N3;=7:3:7. These calculations produce the three
- - smooth curves in Fig. 12. In another set of calculations, we
N T — i used the measured final fractions from the NIST experiment
! [2] to determine the initial ratiobl; :N,: N3, rather than tak-
ing the nominal values 7:3:7. The open circles in Fig. 12,
which no longer fall on a smooth line, show the 3D-SVEA

L
Jt, =600 ps

0.10

z without elastic scattering for these cases with experimental
Z70.010 - - scatter in initial conditions. The relatively small deviation of
] E the points from the solid curve for the 3D-SVEA without
. - elastic scattering show that the calculations with T8:7
00010 i i ratio is useful for generating a smooth curve to compare to

experimental data.
_ —— The effect of including loss from the BEC wave packets
10° 10° due to elastic scattering collisions was modeled using Egs.
N (20)—(23). The 4WM output reduction in Figure 12 due to
FIG. 11. N,/N dependence on the total number of atohis ~€lastic scattering ranges from 6% to 16 % in going frorf 10
calculated in 2D and 3D. The dashed lines show M5 depen-  to 10 atoms, and becomes more pronounced for large values
dence predicted by the simple theory in Sec. Il D. The trap is thedf N, with the loss due to elastic scattering reaching 36% for
same as in Fig. 3. The Bragg pulses are applied #6after the 5% 10° atoms. Elastic scattering of atoms from the different
trapping potential is turned off. momentum wave packets removes atoms from the four BEC

-
<
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(078 1 S T N N T A A condensates. The slowly-varying-envelope approximation is
3D (wjo elastic) _ . -~ a powerful tool that reduces the numerical grid requirements
0.10— - for calculating the time-dependent dynamics of fast-moving
0.080 wave packets with velocities greater than a photon recoil
velocity. We find that elastic scattering loss between atoms
E 0.060 — in the fast wave packets removes enough atoms from the
0.040 wave packets to affect the 4WM output. The quantum me-
., chanical 3D calculations presented here show good agree-
0.020 | « NIST data 3D (with elastic) | ment with experiment. .
* In spite of the strong analogy between atom and optical
00 = 4WM, there are fundamental differences. In optical 4WM,
0 L 10° N 210° 3 10° the energy-momentum dispersion relation is different than in

the massive boson case. Because we neither create nor de-

FIG. 13. Fraction of atoms in the 4WM output wave packetstroy atoms, the only 4WM processes allowed for matter
N4/N versus the total number of initial atoniécalculated in 3D waves are particle number conserving. This is not the case
without and with inclusion of elastic scattering loss as discussed ifor optical 4WM where, for example, in frequency tripling
Sec. Il E. The dots are experimental dp2a The trap is the same  three photons are annihilated and one is created. Particle,
as in Fig. 3. The Bragg pulses are applied @0after the trapping  energy and momentum conservation limit all matter 4WM
potential is turned off. processes to configurations that can be viewed as degenerate
. . AWM in an appropriate moving frame.
wave packets, and it thereby also lowers the nonlinear cou- We have c%%si(pjered AWM gsing condensates of the same
pling term that gives rise to the 4WM. Although th? MeaN-internal states. The internal states of the atoms can be
free-path for elastic collisions is on th_e_order of 10 times . changed by using Raman transitions. Thus, one can envision
f(_)r 1.5x10° atoms, _there are a _suff|_C|ent numk_)er of colli- scattering atoms in one internal state from the matter-wave
sions to mal_<e a noticable reduction in the nonllne_ar OUt_pUtgrating formed by atoms in a different internal hyperfine

Fma]ly, Fig. 13 compares our ?’.D'SVEA calculation, with state. It is also possible to study the details of 4WM between
correctlons' dug to elastic scattenng, to the observed OUtPixed atomic species. We are in the process of carrying out
4WM fract|c_Jn n (‘;he _NISThexperlme_nEZ]_. ThE_’ oxerall d uch calculations. Quantum correlations created by the non-
agreement is good, given the approximations in the mod§j,e,r hrocess could lead to the study of nonclassical matter-
and the scatter in the experimental data. The calculated cur ave fields, analogous to squeezed and other nonclassical
tends to be slightly larger than the mean of the measureg, ioq of |ight. It is of interest to investigate such cases. By

points, and in particylar, does not Seem to saturgte as fast rying the magnetic field to allow a Feshbach resonance to
largeN as the experimental data. Since systematic error bar@nange thel, coupling parameter, 4WM can be modified
were not given for the data, it is difficult to know whether dynamically %uring the dynamics,that occur as the wave

this slight disagreement is significant. There are clearly ap- acket fly apart, thus increasing or decreasing 4WM output.
proximations in the theory, such as using the GPE method uch studies ar,e also feasible

ignoring the dynamics during the application of the Bragg It is possible to modify the mean-field description of

pulses. There also are effects in the experiment that mng{WM, and more generally, Bragg scattering of BECs, by

have a bearing on the comparison. For example, Riy. & e ; ; ;
generalizing the GP equation to allow incorporation of mo-
Ref. [2] reported a best case of 10.6% 4WM output for mentum dependence of the nonlinear parameters, thereby

=1.7x10F atoms, although a lower figure near 6% reloortedputting the treatment of elastic and inelastic scattering on a

in Fig. 3 of Ref.[2] was more typical. The 10.6% output g footing. This will be presented elsewhei28].
would disagree with our calculations on the high side. This

indicates that there is sufficient uncertainty in the quantita-

tive aspects of the experiment to warrant a more systematic ACKNOWLEDGMENTS
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