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Adiabatic molecular dynamics: two-body and many-body aspects
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Beer–Sheva 84105, Israel
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We compare various types of adiabatic dynamics that occur during atomic collisions and molecular dynamics.
Born–Oppenheimer and non-adiabatic effects in molecular dynamics are contrasted with the time-dependent
Landau–Zener transition problem for transitions that occur when a parameter in the Hamiltonian is varied
slowly, and these are contrasted with the coherent many-body transitions that occur for a degenerate gas of
atoms when an external parameter is tuned slowly near a Feshbach resonance to create loosely bound molecules.
Analysis of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms shows that
the dependence of the remaining atomic fraction on the sweep rate � varies from exponential Landau–Zener
behaviour for a single pair of particles to a power-law dependence for large particle number N.

Keywords: adiabatic dynamics; Landau–Zener transition; coherent many-body effects; Feshbach resonance

1. Introduction: two-body collision dynamics

Numerous phenomena in atomic, molecular and optical

physics are naturally described in an adiabatic formula-

tion wherein the internal basis states are parametrically

dependent upon a relative coordinate [1–7], or upon

time [8–16], which slowly varies. Adiabatic here means

‘slow’, and therefore is quite distinct from adiabatic in

the thermodynamic sense [17,18].
In the adiabatic representation of collisions between

atoms, one takes the full wave function � (r,R) and

represents it in the form of a product of an internal wave

function for the electrons, � (r,R), which depends

parametrically on the relative coordinate R and a

relative nuclear-coordinate wave function F(R) [2,3]:

�jðr;RÞ ¼
X
i

�iðr;RÞFi;jðRÞ: ð1Þ

Here, r represents the internal set of coordinates, i.e.
the electronic coordinates. The Schrödinger equation

at energy E for the nuclear wave function F(R) is

obtained by taking matrix elements with the internal

wave functions �i(r,R) over the internal degrees of

freedom r of the full Schrödinger equation,

(HNþHel))¼E), where HN and Hel are the nuclear

and electronic Hamiltonian, respectively. In atomic

units we obtain [3]

�
1

2�

d2

dR2
IþUðRÞ �

1

2�
2A

d

dR
þ B

� �� �
F ¼ EF; ð2Þ

where A and B are the first and second derivative
coupling matrices and U(R) is the potential matrix

obtained by solving the electronic problem at inter-

nuclear coordinate R. The matrix A is anti-hermitian

and is given by

AijðRÞ ¼ �iðr;RÞ
d

dR

����
�����jðr;RÞ

� �
r

; ð3Þ

and the second derivative coupling matrix B is

BijðRÞ ¼ �iðr;RÞ
d2

dR2

�����
������jðr;RÞ

* +
r

: ð4Þ

The second derivative term B is neither Hermitian
nor anti-Hermitian. Nevertheless, 2A(R)(d/dR)þB(R)

is Hermitian. The terms in Equation (2) involving A

and B are usually referred to as non-adiabatic

correction terms. In this representation, the radial

derivative coupling terms coming from the nuclear

angular momentum terms are not explicitly shown, i.e.

they are buried in the matrix U. In this language, the

adiabatic Born–Oppenheimer approximation corre-

sponds to neglecting the first and second derivative

coupling terms, and the non-adiabatic calculation is

carried out by including them. An identical formalism

can be used for treating electronic conductance in

mesoscopic waveguide systems [4], where the deforma-

tions of the waveguide (constrictions and openings of

the waveguide down the channel) are modeled through
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the dependence of the mode functions �i(r,R) on the
orthogonal degrees of freedom of the waveguide R,
and r is the coordinate along the waveguide axis (i.e. in
the language of chemical reaction dynamics, the
reaction coordinate).

Another aspect of adiabaticity, and a measure of
non-adiabaticity, is manifest in the time-dependent
quantum mechanical paradigm called the Landau–
Zener (LZ) problem. This refers to a problem first
solved by Landau and Zener in 1932 [8], wherein a
two-level system whose energy difference varies line-
arly in time with a rate of change � is coupled by a
constant coupling matrix element V. The time-depen-
dent 2� 2 Hamiltonian matrix can be written as

HðtÞ ¼
�1 V
V �2 þ �t

� �
: ð5Þ

We need to find the transition probability of finding
the system in one state, say state 2 as t!1, if it was in
state 1 as t!�1. For infinitely slow variation of the
rate of energy difference, �¼ 0, no transition between
levels takes place. For finite �, the transition prob-
ability PLZ depends exponentially on the inverse rate of
change of the energy difference [8]:

PLZ ¼ exp �
2�V2

�

� �
: ð6Þ

This expression is not analytic in the rate of energy
change �, hence a perturbation expansion in � cannot
yield this result.

An interesting twist on the Landau–Zener problem
involves transitions in multistate curve crossing pro-
blems. These may be represented intuitively as a
sequence of two-state crossings and avoided crossings.
In the absence of turning points near the crossings, one
would expect that the crossings should occur in the
causal ordering of the crossing points along the
direction of motion. It is, however, known from
quantum close-coupling calculations that certain coun-
terintuitive transitions may also be allowed [7,19,20], in
which the causal arrangement may be broken, letting
the second crossing point precede the first one with
respect to the direction of motion. Such transitions,
shown as the dashed curve in Figure 1, are generally
forbidden in analytical semiclassical theories of multi-
state curve crossing, but can be incorporated with
special care [7].

Landau–Zener models [8] can also been used to
describe collisions of ground and excited laser cooled
alkali atoms in the presence of near-resonant light
when spontaneous emission or fine-structure changing
collisions complicate the collision process [5,6].
Typically, these collisions lead to loss of atoms from

traps when the excited state e decays due to radiative or

fine-structure-changing processes to a loss channel p.

The Landau–Zener models only begin to fail at low

temperatures, e.g. less than or nearly equal to

T¼ 1,�K, and at large intensities [5]. The probability

of exiting on the loss channel p when one starts at large

distances in the ground state channel g is given by

Pp ¼ jSgpj
2 ¼ PepðRinÞJeðRinÞ; ð7Þ

where the probability Pep¼ |Sep|
2 measures the quan-

tum probability of the e! p inner zone process due to

the inner curve-crossing process, Rin is the location of

this inner zone curve crossing, and the quantum flux

Je(Rin) is the quantum mechanical probability of

reaching the inner zone on the excited state e, i.e. of

getting to the crossing point Rin on the excited state e.
Here, we shall explore the generalisation of the

Landau–Zener problem to many-body dynamics. We

shall do so within the context of a problem of

production of molecules or Cooper-pairs, from a gas

of degenerate fermionic atoms having two spin states

equally populated, by slowly changing the magnetic

field strength in the region near a Feshbach resonance.

When the atomic gas is degenerate, the collisions that

occur near the Feshbach resonance cannot be viewed

as collisions of individual atoms, two-at-a-time, to

form a molecule, but the atomic collisions in the gas

are collective. As a result, the nature of the slow time-

dependence changes from the two-body Landau–Zener

type of process to a collective behaviour having a

power law rate, rather than an exponential rate

behaviour.

V1

V2

V3

R

V

Figure 1. Schematic of a counterintuitive crossing
of potentials. Transitions in such an arrangement are usually
modeled as a sequence of two Landau–Zener crossings,
but this is not adequate to describe the counterintuitive
crossing. An analytic treatment of such crossings has been
developed [7].

350 Y.B. Band et al.
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Algebraic approaches to quantum scattering have
been pioneered by Levine and colleagues [21].

2. Many-body dynamics

We consider the collisionless, single bosonic mode
Hamiltonian [22–27] for a degenerate gas of spin-up
and spin-down fermions which can associate with a
loosely bound molecular state whose energy varies with
time because of the time-dependent sweep of an
external magnetic field about values close to the
Feshbach resonance field,

H ¼
X
k, �

�kc
y
k, � ck, � þ EðtÞ b

y
0 b0

þ g
X
k

ck,"c�k,# b
y
0 þH:c:

 !
; ð8Þ

where �k¼h�2k2/2m is the kinetic energy of a fermionic
atom with mass m, and g is the atom–molecule
coupling strength. The molecular energy "(t)¼ �t is
linearly swept at a rate � through resonance to induce
adiabatic conversion of fermionic atoms to Bose
molecules. The annihilation operators for the atoms,
ck,�, obey fermionic anticommutation relations,
whereas the molecule annihilation operator b0 obeys
a bosonic commutation relation.

The adiabatic conversion efficiency is insensitive to
the details of the atomic dispersion provided that all
atomic levels are swept through. Figure 2 shows exact
numerical results for the adiabatic conversion of five
atom pairs into molecules, for different values of the
atomic level spacing (and hence of the Fermi energy
EF). It is evident that, while the exact dynamics
depends on EF, levels are sequentially crossed, leading
to the same final efficiency regardless of the atomic
motional timescale. In particular, in the limit as �! 0
it is possible to convert all atom pairs into molecules.

Since the exact energies "k do not affect the final

fraction of molecules, we use a degenerate model

[26,27], with �k¼ � for all k. We define the operators

[27,28]:

J� ¼
b
y
0

P
k ck,"c�k,#

ðN=2Þ3=2
Jþ ¼

P
k c

y
�k,#c

y
k,"b0

N=2ð Þ
3=2

J z ¼

P
k, � c

y
k, �ck, � � 2b

y
0 b0

N
ð9Þ

where N ¼ 2b
y
0 b0 þ

P
k;� c

y
k;�ck;� is the conserved total

number of particles. It is important to note that

J�,Jþ,J z do not span SU(2) as [Jþ,J�] is a

quadratic polynomial in J z. We also define

J x¼JþþJ� and J y¼�i(Jþ�J�). Up to a

c-number term, Hamiltonian (8) takes the form

H ¼
N

2
�ðtÞJ z þ g

ffiffiffiffi
N

2

r
J x

 !
; ð10Þ

where �(t)¼ 2��"(t). Defining a rescaled time

� ¼
ffiffiffiffi
N

p
gt, we obtain the Heisenberg equations of

motion for the association of a quantum-degenerate

gas of fermions,

d

d�
J x ¼ �ð�ÞJ y;

d

d�
J y ¼ ��ð�ÞJ x þ

3
ffiffiffi
2

p

4
J z � 1ð Þ

J z þ
1

3

� �
�

ffiffiffi
2

p

N
1þ J zð Þ;

d

d�
J z ¼

ffiffiffi
2

p
J y; ð11Þ

which depend on the single parameter

�ð�Þ ¼ �ðtÞ=
ffiffiffiffi
N

p
g ¼ ð�=g2NÞ�. We note parenthetically

that precisely the same set of equations, with

JJ z!�JJ z and g! g/2, is obtained for a two-

1(a) (b)

0.75

0.5

0.25

0
150 75 0 −75 −150 −75 −150150 75 0

m
ol

ec
ul

ar
 f

ra
ct

io
n

(EF−αt)/g (EF−αt)/g

EF=0
EF=20g
EF=60g
EF=100g

Figure 2. Many-body collective dynamics of adiabatic passage from a fermionic atomic gas into a molecular BEC for five pairs
of fermionic atoms. (a) Sweep rate �¼ 2g2 N, (b) Sweep rate �¼ g2 N/4. Overall efficiency is independent of atomic dispersion in
both (a) and (b).
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mode atom–molecule BEC [28], providing another
perspective on the recently observed mapping between
the two systems [26,27].

The mean-field limit of Equations (11) is obtained
by replacing J x,J y, and J z by their expectation values
u, v, and w, which correspond to the real and imaginary
parts of the atom–molecule coherence and the atom–
molecule population imbalance, respectively, and
omitting the quantum noise term

ffiffiffi
2

p
ð1þ J zÞ=N. In

this limit, the equations depict the motion of a
generalised Bloch vector on a two-dimensional surface,
determined by the conservation law

u2 þ v2 ¼
1

2
ðw� 1Þ2ðwþ 1Þ: ð12Þ

Hamiltonian (10) is then replaced by the classical form

Hðw; 	;�Þ ¼
gN3=2

2
�wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ wÞð1� wÞ2

q
cos 	

� �
;

ð13Þ

with 	¼ arctan(v/u).
The atom–molecule adiabatic passage and the

degree of non-adiabaticity can be ascertained using
the method published previously [29]. The eigenvalues
of the atom–molecule system at any given value of �
correspond to the fixed points (u0,v0,w0) of the
classical Hamiltonian (13) or the mean-field limit of
Equations (11):

v0 ¼ 0;

ffiffiffi
2

p

4
ðw0 � 1Þð3w0 þ 1Þ ¼ �u0: ð14Þ

The number of fixed points depends on the parameter
�. The point u0¼ v0¼ 0,w0¼ 1 is stationary for any
value of �. Using Equations (12) and (14), other fixed
points satisfy

ð3w0 þ 1Þ2

4ðw0 þ 1Þ
¼ �2: ð15Þ

For sufficiently large detuning, j�j >
ffiffiffi
2

p
, Equation (15)

has only one solution in the range �1�w0� 1.
Therefore, there are only two (elliptic) fixed points,
corresponding to the solution of Equation (15), and
(u, v, w)¼ (0,0,1). As the detuning is changed, the first
fixed point smoothly moves from all-molecules
towards the atomic mode. At detuning � ¼ �

ffiffiffi
2

p
a

homoclinic orbit appears through the point (0,0,1)
which bifurcates into an unstable (hyperbolic) fixed
point remaining on the atomic mode, and an elliptic
fixed point which starts moving towards the molecular
mode. Consequently, in the regime j�j <

ffiffiffi
2

p
there are

two elliptic fixed points and one hyperbolic fixed point,
corresponding to the unstable all-atoms mode.
Another crossing occurs at � ¼

ffiffiffi
2

p
when the fixed

point which started near the molecular mode coalesces

with the all-atoms mode. The frequency of small

periodic orbits around the fixed points, �0, is found by

linearization of the dynamical equations (11) about

ðu0; v0;w0Þ and using (15) to obtain

�0

g
ffiffiffiffi
N

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð1� 3w0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� w0Þð3w0 þ 5Þ

4ðw0 þ 1Þ

s
: ð16Þ

Hence, for j�j <
ffiffiffi
2

p
the period of the homoclinic

trajectory beginning at (0,0,1) diverges.
Transforming w,	 into action-angle variables I,�,

the non-adiabatic probability � at any finite sweep rate

� is related to the action I accumulated during the

sweep [8,29,30],

�2 ¼
�I

2
¼

1

2

Z 1

�1

RðI; �Þ _�
d�
_�
; ð17Þ

where R(I,�) is related to the generating function of the

canonical transformation w,	! I,�. We note that,

unlike the linear [8] or Josephson [29,30] case, where

the tunneling probability is linearly proportional to the

action increment �I, our choice of variables (9) causes

the atomic population at the end of the sweep (and

hence, �) to be proportional to the square root of �I

(since u2(tf)þv2(tf)/|
P

k,� nk,�(tf)|
2, where nk,�(tf) is the

population in state |k,�i at the final time tf). Equation

(17) depicts the familiar rule that in order to attain

adiabaticity, the rate of change of the adiabatic fixed

points through the variation of the adiabatic parameter

�, RðI; �Þ _�, should be slow with respect to the

characteristic precession frequency �¼�0 about these

stationary vectors. For an adiabatic process where
_�= _� ! 0 the action (which is proportional to the

surface area enclosed within the periodic orbit) is an

adiabatic invariant, so a zero-action elliptic fixed point

evolves into a similar point trajectory. Action is

accumulated mainly in the vicinity of singularities

where _� ¼ �0 ! 0 For linear adiabatic passage [8],

such singular points lie exclusively off the real axis,

leading to exponential Landau–Zener (LZ) transition

probabilities. However, when nonlinearities are domi-

nant, as in the Mott-insulating Josephson case [29,30]

and our case, there are real singularities, leading to

power-law dependence of the transfer efficiency on the

sweep rate.
For atom–molecule conversion, a real singularity of

the integrand in (17) exists at w0¼ 1, where the

frequency vanishes as �0 � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1� w0Þ

p
, as is clear

from (16). Hence, most of the non-adiabatic correction

is accumulated in the vicinity of this point (all-atoms

for fermions and all-molecules for bosons).

Differentiating Equation (15) with respect to t, we

352 Y.B. Band et al.
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find that the response of the fixed-point velocity to a
linear sweep rate is given by

_w0 ¼
4�

g
ffiffiffiffi
N

p
ðw0 þ 1Þ3=2

3w0 þ 5
: ð18Þ

We can now find the action-angle variable � in terms
of w0: � ¼

R
_� dt ¼

R
�0 ðdw0= _w0Þ. In the vicinity of the

singularity we have �0 � g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1� w0Þ

p
and

_w0 �
ffiffiffi
2

p
�=g

ffiffiffiffi
N

p
, resulting in

� ¼
g2N

�

ffiffiffi
2

p

3
ð1� w0Þ

3=2: ð19Þ

Using Equation (19), we finally find that, near the
singularity, _� ¼ �0 � g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð1� w0Þ

p
is given in terms of

� as

_� ¼ 3

ffiffiffiffi
N

2

r
g�

 !1=3

�1=3: ð20Þ

Substituting (20) and _� ¼ � into Equation (17) we find
that the non-adiabatic correction depends on � as

� / �1=3: ð21Þ

So far, we have neglected the effect of quantum
fluctuations, which are partially accounted for by the
source term ð

ffiffiffi
2

p
=NÞð1þ J zÞ in Equations (11). As a

result, we found that _w0 does not vanish as w0

approaches 1. Consequently, the remaining atomic
population is expected to scale as the cubic root of the
sweep rate if the initial average molecular fraction is
larger than the quantum noise. However, starting
purely with fermion atoms (or with molecules made of
bosonic atoms), fluctuations will initially dominate the
conversion process. Equation (15) should then be
replaced by

� ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0 þ 1
p

3w0 þ 1

4
�

w0 þ 1

Nðw0 � 1Þ

� �
; ð22Þ

demonstrating that our previous treatment around
w0¼ 1 is only valid provided that |w0(ti)�1|� 1/N.
For a smaller initial molecular population, Equation
(18) should be replaced by

_w0 ¼
�

g
ffiffiffiffi
N

p
3w0 þ 5

4ðw0 þ 1Þ3=2
þ

w0 þ 3

Nðw0 þ 1Þ1=2ðw0 � 1Þ2

� �	
:

ð23Þ

Hence, in the vicinity of w0¼ 1 the eigenvector velocity
in the w direction vanishes as _w0 ¼ ð

ffiffiffiffi
N

p
�=g

ffiffiffi
8

p
Þ

ðw0 � 1Þ2. The characteristic frequency _� is now
proportional to (��)�1 instead of Equation (20) so
that �I/�2, and [31,32]

� / �: ð24Þ

Equations (24) and (21) constitute the main results
of this work. We predict that the remnant atomic
fraction in adiabatic Feshbach sweep experiments will
scale as a power-law with sweep rate due to the curve
crossing in the nonlinear case. The dependence is
expected to be linear if the initial molecular population
is below the quantum-noise level (i.e. when
1�w0(ti)� 1/N), and cubic-root when fluctuations
can be neglected (i.e. for 1�w0(ti)� 1/N). We note
that a similar linear dependence was predicted for
adiabatic passage from bosonic atoms into a molecular
BEC [31].

The analytical predictions illustrated above are
confirmed by numerical simulations. Figure 3 shows
� versus dimensionless inverse sweep rate g2/� N.
Exact many-body numerical calculations for particle
numbers in the range 2�N� 800, carried out using
published methodology [26], are compared with a
mean-field curve (solid green line), computed numeri-
cally from the mean-field limit of Equations (11).
The log–log plot highlights the power-law depen-
dence, obtained in the slow ramp regime �< g2 N,
whereas the log–linear insert plot demonstrates
exponential behaviour (for N¼ 2). For a single pair
of particles, N¼ 2, the quantum association problem
is formally identical to the linear LZ paradigm,
leading to an exponential dependence of � on sweep
rate. However, as the number of particles increases,
many-body effects come into play, and there is a
smooth transition to a power-law behaviour in the
slow ramp regime �< g2 N. We note that this is
precisely the regime where Equation (17) can be used
to estimate � I and � [8]. The many-body
calculations converge to the mean-field limit, corre-
sponding to a linear dependence of � on �, as
predicted in Equation (24).

Equation (17) reflects our discussion on char-
acteristic timescales. In order to attain adiabaticity,
the rate of change of the adiabatic fixed points
through the variation of the adiabatic parameter
�, RðI; �Þ _�, should be slow with respect to the
characteristic precession frequency _� ¼ �0

about these stationary vectors. The action
increment is proportional to the ratio of these two
timescales.

As long as _� does not vanish, the accumulated
action can be minimised by decreasing _�. For a
perfectly adiabatic process where _�= _� ! 0, the
action is an adiabatic invariant, so that a zero-
action elliptic fixed point evolves into a similar point
trajectory. For finite sweep rate, the LZ prescription
[8] evaluates the integral in (17) by integration in
the complex plain, over the contour of Figure 4,
noting that the main contributions will come

Molecular Physics 353
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from singular points, where _� approaches zero and
the integrand diverges. Since for a linear LZ system
there are no instabilities, all such singularities
are guaranteed to lie off the real axis, leading to
exponentially small LZ transition probabilities.

The situation changes for nonlinear systems,
where instabilities arise. We have shown that for
the atom–molecule system with fermion atoms, the
all-atoms mode becomes unstable to association
when the detuning hits the critical value of
�c ¼

ffiffiffi
2

p
. From Equation (16) it is clear that the

characteristic frequency _� ¼ �0 vanishes near w0¼ 1.
Consequently, there are singular points of the
integrand in (17) lying on the real axis. The poles
on the real axis lead to a power-law dependence of
the transfer efficiency on the sweep rate.

3. Comparison with experiment

We compare our mean-field numerical calculation

with published experimental data [34] on the narrow

Feshbach resonance in Figure 5. The theory agrees

very well with the experiment. However, since an

equally good exponential fit can be found [34], as

shown in Figure 5 (dashed line), the current

experimental data does not serve to determine

which of the alternative theories is more appropriate.

We have obtained similar agreement with experi-

mental data [35] on the 40K Feshbach resonance,

but data scatter and error bars are again too large to

conclusively resolve power-laws from exponentials.

Further precise experimental data for slow ramp

speeds and different particle numbers will be

required to verify or to refute our theory.

4. Summary and conclusion

The process by which atoms go to molecules in a

degenerate gas of fermions containing spin-up and

spin-down states as a magnetic field is slowly varied

with time near a Feshbach resonance corresponds

to a special case of a quantum phase transition.

A quantum phase transition is a qualitative change

in the ground state of a system as a result of a small

variation of an external parameter, e.g. a magnetic

field. Ideally, this phase transition occurs at

zero temperature, in contrast to thermodynamic

Figure 5. Fraction of remnant atoms, �, versus inverse ramp
speed 1= _B across the 543G resonance in a two-component
Fermi gas of [6] Li. The experimental data [34] (black
squares), which saturates at a remnant of 1/2 [33], and the
mean-field calculations (green solid curve) obey a linear
dependence on sweep rate beyond 0.5,ms/G. g2/� N is
multiplied by 0.5,ms/G to scale the abscissa for the calculated
results. Also shown as a dashed blue curve is the best
exponential fit to the data, �¼ 0.479 exp(��/1.3)þ 0.521.
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Figure 3. Many-body calculations for the fraction of
remnant atoms, �, versus dimensionless inverse sweep rate
for various particle numbers in the range N¼ 2–800. The
many-body results for a large number of particles converge
to the mean-field results (solid green line) of Figure 5.

Re(f)

Im
(f

) f0 (integrand singularities)

Figure 4. Contour of integration in Landau–Zener theory,
for calculating the integral in Equation (17). All singularities
lie off the real axis for the standard two-body Landau–Zener
transition. Here, the singularities lie on the real axis.
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phase transitions. It leads to the creation of
excitations whose density and scaling with the
rate of change of the external parameter is described
very generally by Kibble–Zurek theory [36]. Our
theoretical model of the Feshbach resonance asso-
ciation process is a special case of this mechanism.
Here, we have shown that many-body effects can
play a significant role in the atom–molecule conver-
sion process for degenerate fermionic atomic gases,
modifying the Landau–Zener exponential dependence
on sweep rate to a power-law dependence. This is
but one special case of a zero-temperature many-
body phase transition. The collective many-body
behaviour modifies the two-atom to molecule
process that is so well characterised for slow rates
of change of a parameter in the Hamiltonian to a
many-body behaviour characterised by a power-law
dependence on the sweep rate for the conversion
process.
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