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The thermodynamic approach to density-functional theory (DFT) is used to derive a versatile theoretical
framework for the treatment of finite-temperature (and in the limit, zero-temperature) Bose-Einstein condensates
(BECs). The simplest application of this framework, using the overall density of bosons alone, would yield
the DFT of Nunes [J. Phys. B 32, 4293 (1999)]. It is argued that a significant improvement in accuracy may
be obtained by using additional density fields: the condensate amplitude and the anomalous density. Thus, two
advanced schemes are suggested, one corresponding to a generalized two-fluid model of condensate systems,
and another scheme, which explicitly accounts for anomalous density contributions and anomalous effective
potentials. The latter reduces to the Hartree-Fock-Bogoliubov approach in the limit of weak interactions. For
stronger interactions, a local-density approximation is suggested, but its implementation requires accurate data
for the thermodynamic properties of uniform interacting BEC systems, including fictitious perturbed states of
such systems. Provided that such data become available (e.g., from quantum Monte Carlo computation), DFT
can be used to obtain high-accuracy theoretical results for the equilibrium states of BECs of various geometries

and external potentials.
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I. INTRODUCTION

Our understanding of quantum-degenerate dilute Bose gas
systems has increased dramatically since the experimental
achievement of Bose-Einstein condensation (BEC) in ultracold
dilute alkali gases in 1995 [1-3]. The explosive growth
of knowledge of these systems has enriched both atomic-
molecular-optical physics and many-body physics. Landmark
developments include the realization of control over the inter-
action strength through magnetic-field tuning of a Feshbach
resonance [4,5], the generalization for fermion systems, where
the crossover between BCS-type and BEC superfluidity has
been observed [6], nonlinear atom optics [7], mixed-phase
condensates with different hyperfine states [8,9], mixtures
of different bosonic atoms (e.g., Na-Rb) [10], mixed Bose-
Fermi ultracold dilute-gas systems [11,12], and studies where
optical potentials have been imposed on condensate systems,
including systems in optical lattices, which are analogous
to condensed-matter systems with either weak or strong
correlations [13]. In the present paper, advanced methods for
evaluating the finite-temperature equilibrium properties of a
single-component dilute system of degenerate bosonic atoms
in an external potential will be studied.

A dilute gas of atoms behaves classically as long as the
thermal de Broglie wavelength Ay = +/27h%/mkgT is smaller
than the mean spacing between atoms n~'/3, where T is the
temperature, n is the gas density, and m is the atomic mass.
Quantum degeneracy for a gas of bosonic atoms ensues when
the atomic wave packets begin to overlap (i.e., when Ay >
n~173), and a condensate becomes populated. For a uniform
noninteracting bosonic system, the critical temperature 7, is
given by the condition nA3. = ¢(3/2) =~ 2.612, where ¢ is the
Riemann ¢ function. As the temperature is lowered further, the
kinetic energy of a uniform noninteracting gas decreases and
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vanishes in the T — 0 limit. For a trapped noninteracting gas,
all the bosons occupy the ground state in this limit, with the
zero-point kinetic energy density balancing that of the external
potential.

In realistic Bose-Einstein-condensed systems, interactions
cannot be ignored, as the interaction-energy density is typically
not small compared with the kinetic-energy density (or with
that of the external potential). For systems that are dilute
enough for the mean spacing between atoms to be much larger
than the range of the atomic potential [14], the interactions can
be well modeled with a contact interaction with an effective
coupling constant g = 4h%ay/m, which is proportional to
the two-body s-wave scattering length a( (see Ref. [15]). At
zero temperature, the strength of the interactions is quantified
by the gas parameter nag. In many practical applications, this
parameter is very small because ag is of nanometer scale,
whereas, the density of the alkali atoms at the moment of
condensation is on the order of several atoms per cubic
micrometer. A reasonably good description of such systems
can be obtained by using the first-order expression for the
interaction energy. Nevertheless, for high accuracy, terms
beyond the first order should be taken into account because
the density at the center of the trap increases dramatically as
the system is cooled below the condensation temperature and
because the relative magnitude of the leading correction is of
order 10@ rather than of order nag. Furthermore, the value
of ay can be made much larger near a Feshbach resonance,
driving the system into a strongly interacting regime. At finite
temperatures, the effects of the interactions are more involved
as the ratio gn/kpT is also an appropriate measure of the
strength of the interactions in addition to the gas parameter.
If the gas parameter is small, this ratio also is small at the
transition temperature, but it can become arbitrarily large upon
decreasing the temperature.
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In this paper, a finite-temperature density-functional theory
(DFT) approach to treat degenerate bosonic gases is developed.
It is well known that DFT provides both a rigorous conceptual
framework and a set of highly accurate practical tools for
calculating the ground-state properties of interacting electron
systems (for an introduction to DFT, see Refs. [16—18]).
Today, most calculations of the electronic structure of atoms,
molecules, and solids are carried out using the Hohenberg-
Kohn-Sham DFT approach introduced in the 1960s [19,20].
DFT has been generalized in many ways, e.g., to treat systems
at finite temperature [21], systems subject to time-dependent
external fields [22-24], superconducting electronic systems
[25], and systems as diverse as nuclei [26], classical fluids [27],
spin-density waves [28], and superfluid liquid He [29,30].
Another development in DFT is the suggestion of using
the principles of equilibrium thermodynamics to establish
the finite-temperature version of DFT as a fundamental
thermodynamic representation of the free energy, viewing the
ground-state DFT as the T — 0 limit of this representation
[17,31]. Here, we follow this approach and apply it to dilute-
gas bosonic systems.

DFT is a method for calculating the energy and den-
sity distribution of an inhomogeneous system. Within the
Kohn-Sham approach, it employs a noninteracting reference
system, which has the same density distribution n(r) as
the fully interacting system. This noninteracting system is
associated with an effective potential, which is distinct from
the external potential of the interacting system. The effects of
the interactions may be included in a local approximation,
which involves a simple integral over space and, at each
point r, accounts for the difference in energy per particle
between homogeneous noninteracting and interacting systems
of density n(r) (for electrons, a Hartree term is used to
account for the long-range part of the Coulomb interactions).
Moreover, for electrons at zero temperature, this difference
in energy between homogeneous systems can be described
by the well-known Wigner interpolation formula [32] or the
Gunnarsson-Lundqvist formula [33], and precise quantum
Monte Carlo calculations are available [34]. Although the
local-density approximation (LDA) already achieves surpris-
ingly high accuracy for many electronic systems, an even
higher precision is required for applications, e.g., in chemistry,
motivating the ongoing development of more sophisticated
approaches. Note that DFT is not, in principle, a method
for calculating the excitation spectra of the systems studied,
although the spectrum of the Kohn-Sham reference system
often fits the spectrum of the interacting system quite well
(DFT has even become a standard tool for evaluating band
structure for electrons in periodic crystals, although, in
principle, it is only a zeroth-order approximation in the context
of the methods devised for calculating such quantities, such as
the GW method [35]).

In response to the above-mentioned experimental develop-
ments, several authors developed DFT methods for dilute-gas
bosonic systems. An early attempt to develop a DFT with a
high-accuracy Bogoliubov-type treatment of the Kohn-Sham
system was made in Ref. [36], which employs both the
density distribution n(r) and the condensate amplitude ®(r) as
functional variables. According to the analysis to be described
here, such a high-level treatment actually requires the use of
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three independent functional variables, as discussed in Sec. VI.
A straightforward application of DFT to boson systems,
based on the density n(r) alone, was suggested by Nunes
[37]. For ground states (i.e., at T = 0), this approach results
in a modified Gross-Pitaevskii (G-P) equation, containing
terms that are nonlinear in the coupling constant g. It has
been applied to experimentally relevant regimes [38] and
generalized, e.g., for time-dependent potentials [39], and to
address issues particular to strictly one-dimensional systems
[40]. The possibility of a generalization for finite temperatures
was noted by Nunes [37], but it is inferior compared to
the two-fluid approach [41] (not to be confused with the
Landau two-fluid approach to superfluids), which was already
available at the time. Specifically, the two-fluid approach
achieves improved accuracy by treating the condensate com-
ponent ® and the thermal component n — |®|?> separately,
with the two components subject to different potentials (the
interplay between the two components can also be studied
experimentally [42]). Note, however, that Ref. [41] considered
large systems with very weak inhomogeneities, for which
finite-size effects are negligible, and one may assume local
thermodynamic equilibrium. For such weakly inhomogeneous
systems, application of a sophisticated DFT is superfluous.
Also note that the two-fluid approach is less accurate than the
field-theoretic approach in the Popov approximation, which
was applied at roughly the same time [43].

Two different versions of DFT for bosons will be presented
in what follows, based on the systematic thermodynamic
approach. One version is based on treating the total density n =
(1) and the condensate amplitude ® = () as two density
components. Correspondingly, the Kohn-Sham reference sys-
tem is a noninteracting boson system, which has the same n(r)
and ®(r) distributions and is subject not only to an effective
noninteracting potential v,;(r), but also to a fictitious potential
Mi(r), which couples directly to the condensate amplitude
@(r). This version, which may be called ®-DFT, reduces to the
two-fluid approach of Ref. [41] in the limit of weak interactions
and large systems. It allows for inclusion of appropriate
nonlinear-in-g terms for stronger interactions as well as
application to systems with significant inhomogeneities. The
second version treats the anomalous density A = () as
a third density, resulting in a Kohn-Sham system, which is
also subject to an anomalous potential &, (r), for which a
generalized Bogoliubov-type treatment is appropriate. This
version is referred to as anomalous DFT (A-DFT) and bears
some resemblance to the electronic DFT devised for super-
conducting systems [25]. In the limit of weak interactions,
it reproduces the Hartree-Fock-Bogoliubov model (a further
approximation to which yields the Popov model [44]).

In order to apply an LDA for the interaction effects, one
needs results for uniform systems, as discussed previously. For
dilute Bose gases, some results as a function of the density n
are available at both vanishing [37,45] and finite [44,46—48]
temperatures. However, application of the advanced DFT
versions discussed in the following requires generalization of
these results to functions not only of the density, but also of
the condensate amplitude for ®-DFT and of the anomalous
density for A-DFT. These generalized interacting systems are
analogous to spin-polarized uniform electronic systems, data
for which is in standard use within the LDA for electrons.
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The difference is that manipulating the condensate amplitude
@ or the anomalous density A requires the use of fictitious
potentials, whereas, the spin density can be modified by
subjecting the system to a physically realizable magnetic
field. As the uniform systems that are under consideration are
fictitious anyway, and the results are obtained by theoretical
methods (such as the quantum Monte Carlo work mentioned
earlier [34]), the realizability or not of the fields is of
little importance. Obtaining high-accuracy results for the
generalized uniform systems is beyond the scope of the present
paper, and, at this stage, we will content ourselves with
expressions for the interaction effects, which are valid for first
order in g (for A-DFT, this corresponds to the Hartree-Fock-
Bogoliubov model as noted previously), with one exception:
The leading-order results for A-DFT will allow us to deduce
next-to-leading-order results for ®-DFT (see Sec. V). For
dilute gases, the first-order approximation to A-DFT is wholly
sufficient, except for special cases with particularly strong
interactions, which are realizable near Feshbach resonances
[4,5]. Tt is also relevant to note that homogeneous systems
with attractive interactions (negative scattering lengths ag) are
absolutely unstable at long wavelengths, but inhomogeneous
attractive systems may have metastable dilute-gas states and
have been studied experimentally (see the last item in Ref. [5]).
®-DFT and A-DFT may be applied to such systems with
the leading-order expressions for the interactions, whereas,
a higher-accuracy local-density approach is, in principle,
unworkable because there can be no accurate thermodynamic
results for the relevant interacting homogeneous system
(except at uninterestingly low densities, where thermal ex-
citations stabilize the long-wavelength perturbations). The
high-accuracy methods developed here are therefore limited
primarily to systems with repulsive interactions.

The outline of the paper is as follows. Section II introduces
the general formalism of DFT in the thermodynamic language.
Section III presents ®-DFT: It applies the principles of DFT
to nonuniform BECs, using the total density n(r) and the
condensate amplitude ®(r) as free variables. The presentation
includes the Thomas-Fermi approximation for the Kohn-Sham
system, which is applicable when the inhomogeneities are
weak, and the first-order approximation to the interaction
energy. In Sec. IV, a more general DFT scheme is developed
wherein, apart from n(r) and ®(r), the anomalous density
A(r) also is used as a third free variable. In this case, the O(g)
approximation leads to the Hartree-Fock-Bogoliubov system.
Here too, the Thomas-Fermi approximation is introduced.
Section V demonstrates one of the advantages of A-DFT
by showing how a result for a homogeneous system, which
is available with its O(g) approximation, can be obtained
within ®-DFT only if more complicated higher orders are
included. Section VI presents a discussion of this comparison,
concluding remarks, and suggestions for future research.

II. FINITE-TEMPERATURE DFT

The purpose of this section is to introduce the relevant
concepts of DFT. The thermodynamic approach of Ref. [17]
is followed and generalized to cases with several density
distributions. This will allow not only the total density of
particles n(r), but also the condensate amplitude ®(r) and
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the anomalous density A(r) to be used as free variables, as
discussed before.

The Hamiltonian of the inhomogeneous system may be
written as H = I:IHi + AI:Iim, where I:Iim includes all the
interaction terms and PAIni is a noninteracting (quadratic in
field-operators) Hamiltonian, for which accurate solutions are
obtainable at an acceptable computational cost. A is a con-
tinuous parameter specifying the strength of the interactions,
with A =1 for the full interacting system and A =0 for
the noninteracting case. The single-particle fields specifying
the inhomogeneity, such as the potential terms containing the
external potential v(r) and other fields B(r), are included
in ﬁni, and these couple to the densities n(r) and m(r),
respectively. In the interest of generality, the exact nature of
B(r) and m(r) will not be specified yet, but as an example, one
may keep in mind electrons in a magnetic field B(r), which
couples to the spin density (magnetization) m(r) [31].

The focus of this section is the thermodynamic treatment.
The statistical-physics problem of obtaining the grand poten-
tial © from the Hamiltonian A will be tackled in Secs. III
and IV, where specifics of the Hamiltonian for bosons will be
given. In Sec. IT A, the foundation of DFT will be laid out, by
explaining how the densities (rather then the external fields)
can be regarded as the free functional variables, which specify
the inhomogeneous system. This is a direct generalization
of Legendre transforms [i.e., of the replacement of one free
variable (e.g., the chemical potential ) by another (e.g., the
total number of particles N)]. Section II B explains how, within
the DFT framework, the interacting system can be related to
a specific Kohn-Sham noninteracting reference system and
how the effects of interactions can be approximated, based on
knowledge of homogeneous interacting systems (the LDA).

A. Legendre transforms and the Hohenberg-Kohn theorems

Our starting point uses the grand potential Q([v(r) —
w,B(r)],T,A), which depends on the temperature 7 and the
chemical potential p as well as the specifics of the Hamiltonian
H. The square brackets emphasize the functional character
of Q (i.e., the fact that its value depends on the potential,
which is itself a function of position). The notation also makes
explicit the fact that the grand potential depends only on the
difference v(r) — u, not the values of v(r) and u separately.
The derivatives of the grand potential, with respect to its
functional variables, are

682

682
n(r) =~ mr) = 3B M) (D

At this point, these equalities merely introduce notation for
the derivatives; the fact that n(r) really is the density will
become evident in the statistical-physics discussion of Sec. III.
The different signs used here are a matter of convention related
to the fact that the potential v(r) repels the density n(r),
whereas, the “magnetic field” B(r) attracts the “magnetic-
moment” density m(r), as the magnetic energy density is given
by —m(r) - B(r).

We will use the fact that the grand potential €2 is concave
in its functional variables, i.e., when it is evaluated at any
two points [v,B;] and [v;,B;] (at fixed T > 0, A and p),
and at their midpoint [Ul/z,B]/z] with Vi = %(Ul + vy),
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By = %(Bl + B,), the mean of the values obtained at the
two arbitrary points is strictly smaller than the value at the
midpoint %(Ql + ) < Q> (each one of these points is, of
course, a set of functions of position, as appropriate for a
functional). This property, along with others, which we will
tacitly assume (e.g., differentiability of 2 for finite systems
at finite temperatures) can be proven by statistical mechanics
methods (incidentally, €2 is also concave in A and 7', but this
will not be used here). The concavity of €2 guarantees that there
exists a one-to-one relationship between the potentials and
the densities. This corresponds to the first Hohenberg-Kohn
theorem [19,21]. Thus, a particular inhomogeneous system
can be identified by its densities n(r) and m(r), instead of
specifying the fields v(r) and B(r).

It is convenient to demonstrate this graphically, together
with the Legendre transforms to be introduced next, using one
of the scalar variables of €2, the chemical potential u. The
corresponding partial derivative of 2 is

02
N=—-——, 2)
ou
where N = f dr n(r) is the total particle number. The one-to-
one character of the relationship between p and N follows
from the monotonic dependence of the derivative of N with
respect to the variable u, see Fig. 1. Next, consider the
combination 2(x) + w/N and maximize it over all values of
w for a given N. The maximum is clearly unique because the
combination is concave in u. By considering the derivative,
one finds that, at the maximum, p obeys the condition of
Eq. (2). This maximum value of the combination is called the
Helmholtz free energy,

F(N) = milx Q(u) + uN = Q(u) + PLN|;L: N(u)=N- 3)

The last equality refers to the equivalent procedure of choosing
w according to the condition of Eq. (2), rather than maximizing.
The Legendre transform from Q(u) to F(N) has a simple
geometric interpretation (see Fig. 1): The graph of Q as a
function of p has tangents of slope — N, and, for a point ()
on the graph, the intercept of the tangent line with the vertical
axis occurs at F(N) = Q + uN.

The function F(N), describing the family of tangents
(intercept as a function of slope) for the curve €2(w), contains
the same information regarding the physical system as the
original function €(w) but is, in certain applications, more

(b)

FIG. 1. (a) Legendre transform to obtain F(N) from Q2(u) (see
text). (b) Legendre transform back from F(N) to 2(1¢). The minimiza-
tion procedure for the inverse Legendre transform is demonstrated in
the second panel.
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convenient. It follows, from Eq. (2), that the derivatives

of F are
oF < oF ) (89) @
ov " \aa ), = \an )
where the last equality represents a derivative with respect
to a variable not involved in the Legendre transform. As
i increases with N, the function F(N) is convex (it is
concave relative to the other variables, A and 7). Thus, an
inverse Legendre transform may be applied [e.g., by defining
Q,(N) = F(N) — N and by identifying the grand potential
as Q(u) = miny €2, (N) (see the right panel in the figure)].
The inverse transform differs from the original Legendre
transform only in signs.

In the case of functional variables, a geometric inter-
pretation requires a multitude of horizontal axes (one for
each spatial point) with high-dimensional tangent hyperplanes
instead of tangent lines, but the principle is the same. Thus, the
Hohenberg-Kohn free energy of DFT is introduced through a

functional Legendre transform:

FHK([nvm]vTaA) = Q([U - MvB]aTvA)
—fdr[(v—u)n—B-m]. 4)

Here, the functional variables [v — w,B] on the right-hand side
(RHS) are determined by maximization or, equivalently, by
requiring the physical condition of Eq. (1) (the argument r of
the functions is omitted for brevity). The functional derivatives
of F]-n( are

8FHK7 B(r) = (SFi
on (r) ém (1)

The Hohenberg-Kohn free energy Fuk([n,m],T,A) is the
generalization of the Helmholtz free energy to inhomogeneous
systems.

The inverse Legendre transform allows one to obtain the
grand potential from the Hohenberg-Kohn free energy:

w—o(r) = (6)

Qv — w,Bl.T,A) = Fux([n,m],T,A)
+/dﬁ@—MM—qu.(ﬂ

Here, n and m on the RHS are determined either by Eq. (6) or
equivalently by minimization. The second Hohenberg-Kohn
theorem corresponds to the latter statement: The RHS of
Eq. (7), when evaluated for an interacting system (A = 1)
at given external potentials v = vVex(r) and B = By (r) and
minimized over the density distributions n(r) and m(r), gives
the physical value of the grand potential 2 at the physical
density distributions. Although we will make no direct use of
this minimization principle here, relying instead on Eq. (6),
its importance in providing both a physical picture and an
avenue for developing numerical algorithms is not to be
underestimated.

B. The Kohn-Sham equations

The power of DFT stems from the feasibility of finding
accurate and simple approximations for the complicated many-
body interaction effects in the free energy Fyg. Kohn and Sham
exploited the fact that the noninteracting effects are much
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simpler to deal with and, nevertheless, contain the lion’s share
of the physics of the full system. To introduce the Kohn-Sham
scheme, the first step is to separate the Hohenberg-Kohn free
energy into two contributions,

Fux([n,m],T,A = 1) = Fy([n.m],T) + Fin([n,m],T),  (8)

where the noninteracting free energy Fy; of the Kohn-Sham
system is defined as Fyx in the absence of interactions (i.e.,
at A =0), and the term Fj, is defined as the difference
between the full Fygx at A = 1 and Fy; (i.e., it contains all
of the complicated interaction effects). In DFT for electrons,
it is standard to further separate the interaction term into a
simple Hartree long-range interaction term and an exchange-
correlation term, which is usually considerably smaller and
for which approximations are sought and employed. As will
be clarified later, for neutral atoms interacting with short-range
potentials, the Hartree (direct) and the exchange contributions
are of comparable (often equal) magnitudes, and, therefore,
we proceed with lumping the interactions into a single term.

It follows, from Eq. (8), that each of the derivatives in
Eq. (6) can also be written as a sum of two terms,

Vext(T) = Vi () — vjpe(T),

Bext(r) = Bni(r) - Bint(r)a

where we have used subscripts ext and ni to denote the
potentials corresponding to the [n,m] densities for A =1
and for A = 0, respectively, and the interaction potentials are
defined as

€))

8Fint 8Rnl
sn(r)’ sm(r)’

with a convention for the signs which is opposite that of Eq. (6).
The external potentials and/or fields [vex,Bexc] are known a
priori in standard applications, whereas, the noninteracting
potentials [vyi,By;] (traditionally called effective potentials),
which are required to reproduce the same density distributions
[n,m] as in the fully interacting system, but without interac-
tions, are not initially known and must be found. Equation (9)
immediately gives

Vin (1) = Bin(r) = — (10)

Vpi (1) = Vexe(T) + vjne(1),
Bni(r) = chl(r) + Bint(r)’

which gives the noninteracting or effective potentials in
terms of the externally applied fields plus a contribution
due to interactions. The system of noninteracting particles
in these effective potentials serves as the reference system
for DFT calculations—this is the Kohn—Sham system already
referred to.

Equation (11) represents a self-consistent requirement,
which lies at the heart of the Kohn-Sham scheme: Given
an initial guess for the density distributions and a practical
approximation for the interaction contribution, this relation
specifies the potentials for the noninteracting reference (Kohn-
Sham) system. This reference system may be solved us-
ing the known tools for noninteracting particles (e.g., the
single-particle Schrodinger equation with the Fermi-Dirac
distribution for the occupations of the electrons). The new
densities may then be used as an improved guess, yielding

(1)
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new values for the noninteracting potentials, in an iterative
fashion. The iterations are stopped once self-consistency has
been achieved to the desired accuracy.

The approximation to be used for Fj, remains to be
specified. We will limit attention here to LDAs of the type
suggested (for electrons) by Kohn and Sham [20]. Within this
approach, the interaction term is approximated by using the
properties of uniform interacting systems:

Foc = [ dt fu(e)m(e), (12)
Here, fin(n,m) is the contribution of interactions to the
Hohenberg-Kohn free energy of a uniform system with
densities n and m, calculated per unit volume. With this simple
expression for the interaction term, the functional derivatives
defining the contribution to the potentials, Eq. (10), can easily
be taken

a in
Vi (1) = aL (n(r),m(r)),
n
. (13)
Bin () = — = (n(r), m(r)).

Knowledge of fiy(n,m) comes from outside of DFT. The
uniform system is much simpler than the nonuniform system
in principle, but evaluation of the many-body effects, even
in the uniform case, can require sophisticated techniques.
For example, for electron systems, quantum Monte Carlo
techniques have been employed, as already noted. Once the
results are found, the function fi,(n,m) can be tabulated or
otherwise efficiently represented. Thus, DFT allows one to
import the results of sophisticated calculations for uniform
systems and to use them as input for the calculations of
inhomogeneous systems.

It is of interest to note that the thermodynamic derivation
used here is constructive. For example, it immediately gives

the exact relation Fiy = fol dA (0F/3A) with the integrand

(0F/0A) equal to 02/0A = (Hiy), which, in the context of
electrons, has been called the adiabatic connection formula
[49] and has been derived via a much less direct route.
For weakly interacting bosons, it is appropriate to approx-
imate the integrand by its noninteracting value at A = 0.
As we will see in the following, this yields a particularly
simple approximation for Fj,, which is again local [i.e., of the
form of Eq. (12)].

III. DFT FOR BOSONS—®-DFT

In this section, a version of DFT adapted to bosonic systems,
in which the condensate will be treated as a separate field
(the condensate field @), in addition to the density, will be
developed. A system of identical bosonic atoms of mass m in an
external potential vex(r) can be described, in second-quantized
notation, by the Hamiltonian,

22
I-?:/drx@T _hV
2m

where the interaction term involves a two-body interaction
potential V(r — r’). This potential has a hard-core repulsive
form at small interatomic separations and a long-range
attractive van der Waals form outside the core. As explained in

+ vext) 1/,} + I:Iint, (14)
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Sec. I, for a dilute gas, with the typical distance between atoms
much larger than the range of the potential, only the s-wave
scattering contribution is significant, and the interaction can
fully be characterized by a single parameter a, the s-wave
scattering length.

The scattering length ay is typically on the order of nanome-
ters, while the typical distance between the atoms n13,
in experiments, is on the order of hundreds of nanometers.
Therefore, one may use a Hamiltonian with a point interaction,

A = §/drww 7. (15)

where a high-momentum cutoff 71k, is implied (i.e., no attempt
to describe the components of the field ¢/ on length scales
as small as the range of the interaction potential is made).
Note that physical quantities derived from this Hamiltonian
depend on both the interaction strength g and the cutoff k..
For example, the s-wave scattering length is related to the
parameters in the Hamiltonian by ag ~ gm/4mh?* only to
leading order in g, with corrections of order kca%, which will
be assumed small. This undesirable feature may be avoided
by using a short-range pseudopotential [45,50], an option that
will not be made explicit here but is necessary when large
values of ag are encountered (Feshbach resonances). Note that
different forms of Hi, are legitimate within DFT as developed
later and are associated with different interaction contributions
Fin.. Thus, when the pseudopotential form of I:Iim is used
and the corresponding changes are made in Fjy, all of the
DFT expressions to be derived in the following will remain
valid (expressions for Fj, beyond the leading order are not
included in the present paper). Furthermore, one may include,
for example, three-body interactions, simply by modifying Fi
appropriately.

A. The grand potential and the free energy

For a bosonic system coupled to a particle reservoir at
chemical potential 1 and temperature T, the grand potential
may be written as

Hw
Qv — u,n,n*1,T,A) = —kBTlnTrexp(— ), (16)
kT
where the trace is over the full many-body Hilbert space.
Fictitious potential fields n(r) and n*(r), which break the
particle-number conservation symmetry, have been included
here in order to couple to the condensate fields P(r)
and ®*(r), which will be introduced shortly. The grand-
canonical Hamiltonian " = A — N with N as the number
operator, is

. o B2V .
H(M):\/dr{'(ﬂT<— +v—u)l//
2m

—m/?*—n*lﬂ}JrAI%m. (17)

It will be convenient to treat n(r) and n*(r) [and, similarly,
®(r) and d*(r), see later] as independent, and to set them
equal to the complex conjugates of each other at the end of
the calculation. Clearly, the physical fictitious fields vanish,
Next(r) = 1%, (r) = 0, but the noninteracting or effective fields
Mi(r) = nine(r) may be significant.
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The statistical-physics definition of Eq. (16) fulfills all the
thermodynamic requirements assumed in Sec. II. Specifically,
it follows directly from Eq. (16) that €2 is concave [51]. Its
functional derivatives are as described in Eq. (1), where we
can now identify the density as

82 ~ ~
nr) = —— = (W @)Pr (), (18)
v(r)

and the condensate field,

o(r) = — = (Y(r)), (19)

an*(r)

with the corresponding expression for ®* implied. The entropy
and interaction energy are given by

982 N Q2
S = _B_T’ Eint = (Hint) = 3_A (20)
The principles of DFT detailed in Sec. II may now be
applied, with the fictitious potential and the condensate field
replacing the “magnetic” terms B(r) and m(r). Thus, the
Hohenberg-Kohn free energy is

Fug([n,®,9*1,T,A)

= Q[v = ul.T.A) - /dl‘{(v —mwn —n*® —nd*},

2n
and its derivatives are
8 Fux 8 Fux

=—(v—p), = n*, 22
o (v—p) 50 n (22)

oF oF
R=—S, % =& (23)

oT oA

B. The Kohn-Sham equations

Next, we apply the Kohn-Sham approach, based on the par-
tition in Eq. (8) of Fyk into a term describing a noninteracting
reference system and an interaction term. The noninteracting
reference system (i.e., the Kohn-Sham system) is described by
the grand-canonical Hamiltonian (we drop the p superscript
to simplify notation),

. . thZ R ~ ~
Hy = [dr [I//T <— . + Upi — M) b — ! — U:iw] )

(24)

with the noninteracting (or effective) potentials given by
Eq. (11). The field operator i(r) may be written in terms
of the condensate field ®(r) and a residual operator field ¢(r):

U (r) = O(r) + H(r). (25)

The requirement ($(r)) =0, cf. Eq. (19), is associated with a
modified G-P equation,

K2v2
(— . + Upi — M> D = ny;. (26)
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This condition leads to the vanishing of the linear-in-¢' (and,
similarly, in ¢) terms in the Hamiltonian,

. . . o RV? R
Hy = Hyp + Heon = /dl‘ |:¢’)]L <_ + Ui — Hv) 0]
2m
1
- E(ﬂniq’*-i‘??:iq))] , (27)

~

and, hence, to (¢(r)) = 0. A partial cancellation of the term
involving the condensate field has occurred here, and we have
introduced notation separating thermal and condensate parts.

The Schrodinger equation associated with the thermal part
of the Hamiltonian is

n*v?
— + Vni — i =€jp; 28
( m ni M) @ iPj (28)
for the single-particle wave functions ¢; and their eigenval-
ues ¢; (i.e., the single-particle energies measured from the
chemical potential). Using eigenstate creation and annihilation
operators,

= "gima; =Y gimal, (29
J J

one may rewrite this effective noninteracting many-body
Hamiltonian as

Ay = edla;. (30)
J

Then, it becomes straightforward to evaluate the statistical-
mechanical properties of this noninteracting Kohn-Sham
system. The grand potential, Eq. (16), also separates into two
parts,

ni([vni — 1, is 1, T) = Quen([vni — 11,T)

+ Qeon([Vni — i), (31)

where
Qu([vn — ul.T) = kgT X,-:ln |:1 — exp <—];—JT)} (32)

(the requirement that the chemical potential be lower than
the ground state of the Schrodinger equation min; ¢; > 0 is
manifest here), and

1
Quon(lni — 1) = = 5 / dr (" +750).  (33)

The Schrodinger equation, Eq. (28), determines the eigen-
values in Qy, and the Kohn-Sham form of the G-P equation,
Eq. (26), determines the condensate field in €2.,,. Note that the
effective noninteracting potential vy; appears in both, whereas
the fictitious potential 7,; appears only in the latter, and that
Qcon does not depend on the temperature 7.

Turning to the functional derivatives, one finds that the
density distribution, Eq. (18), becomes

n(r) = nth(r) + ncon(r)

- lo;(r)]?
 L—exp(e;/T)— 1

J

+ O*(r)P(r), (34)

PHYSICAL REVIEW A 83, 023612 (2011)

together with ® = —§Q2.0n/n;;. These relations not only are
obvious from Eq. (25), but also can be derived from Eq. (26).
Explicitly, one takes its variation and multiplies by ®* to obtain

n2v?
o* <_ 2 + Uy — M) 5P + P*P (Svni = (b*577ni’ (35)
m

where the first term may be identified as n}; §®, and
8Qcon = /dr(—@* 81 — P Sy + DD Supy) (36)

follows.
The Hohenberg-Kohn free energy is

Fi([n,®,®%].T) = Fu([n — ®*®L.T) + Foonl P, 7], (37)

with

Fan([ng].T) = kBTZm |:1 —exp (_I;_JT)}

J

- / dr nen(ons — 1), (38)

and

v
Foon[®,d*] = /dr P* (— >CD. (39)
2m

As is generally the case with Legendre transforms, the RHS of
Eq. (38) is evaluated at the potential vy;(r) which corresponds
to the given density ny(r), and it is difficult to make it more
explicit. However, use of Eq. (26) has yielded a significant
simplification in the condensate term, defined as Fio, =
Qeon— [ dr [(vni — Wncon — N ®* — 0 @], resulting in the
explicit form of Eq. (39). The rule for Legendre transforms
of sums, such as Q,; = Q2 + Qcon, 1S that each term can be
transformed separately, 2, into Fy, and Qo into Feop, but the
sum must be evaluated as Fyi[n] = Funlnm] + Feonlcon] With
the conditions n = ny + neon and 8 Fy/8nm = 6 Feon/SMcon
implied. In the present case, the contribution of the condensate
to the density n¢oy, = ®*® is known in terms of the condensate
amplitude, which is itself a free variable, and no implicit
relationship remains to be evaluated. In other words, the fact
that 6Qcon/0vni = ®*P is trivially related to 6Q2on/0n =
—& plays a significant simplifying role, resulting in Feop
depending only on & and ®* and Fy, depending only on
n— ®*o,

To summarize, the Kohn-Sham equations for a system of
bosons are Eq. (26) for the condensate field, Eqgs. (28) and (34)
for the density, and vy = Vext + Vine and np; = Nine for the
effective potentials from Eq. (11). For an LDA, we have

Vint = 0fint/0n,  Ning = —0fine/0P”, (40)
where specific expressions for the interaction energy density
Sfint(n,®,0*) will be suggested in the following. Once these
Kohn-Sham equations have been solved, the grand potential
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may be evaluated as

Q= Qi + Fiy — /dl’ [(Vni — Vexe)n — (nniq)*+n:iq))]
€j
= ;kBT In |:1 — exp <_kB_T>:|

1
+ /dr |:(fim — RVi) + E(Uimq)*‘f"?i*mcb)} .4

Here, the integral is a generalized subtraction of the dou-
ble counting of the interaction energy included in the
single-particle energies, as customarily occurs in Hartree-like
schemes.

Note that, for fermions, there is no condensate term, and, in
the low-temperature limit, F; is simply the kinetic energy K.
The temperature and entropy can be thought of as a correction
that is necessary at finite temperatures. For noninteracting
bosons, one still has Fy, = K + T'S, but both terms vanish
as the temperature is lowered, and for large condensates,
the zero-point kinetic energy F.o, also may be negligible.
In such cases, one has no significant contribution to the
Hohenberg-Kohn free energy from the Kohn-Sham system
and F =~ Fj in the low-temperature limit.

1. The Thomas-Fermi approximation

Many of the relevant BEC systems studied experimentally
involve a large number of bosonic atoms, in the thousands
or millions, in a smooth external potential. In such cases, it
is appropriate to introduce the Thomas-Fermi approximation
[15] (adapted from many electron systems), which takes the
density of single-particle states in phase space to be (277) 3
and uses the classical relationship ¢ = % 4+ vpi(r) — w. Thus,
the local density of states is approximated as

< d’p Ipl?
A (27'rh)38 (8 T o Uni (1) + M)
my/2mle — vpi(r) + 1]

d(e,r) =

= Ofe — vy(r) + ] e ., 42
and the overall density of states is given by
de)=Y 8z —¢;) = /drd(s,r). (43)
J

With this approximation, there is no need to solve the
Schrodinger equation, Eq. (28), which is the step that is most
significant in terms of computational resources. Expressions,
such as Egs. (32) and (34), are then evaluated as simple
integrals over the corresponding density of states, Eqgs. (43)
or (42), respectively. For example, the noninteracting grand
potential, from Egs. (32) and (43), becomes

Qu = ks TA7> / dr f <vk _T“) , (44)
B

where A7 is the thermal de Broglie wavelength mentioned in
Sec. I, and

—Ix

4 o —a?—x e
== [ dgma—er ==Y as)

=1
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withx = (vp; — w)/kpT and g is a scaled momentum variable.
The function f(x) is known as the polylogarithm or de
Jonquiere’s function and is plotted in Fig. 2. It varies from
—¢(5/2) to 0 as x is varied from O to oo [the Riemann
¢ function evaluates to ¢(5/2) = 1.341,...]. Its derivative
(also plotted), which varies from ¢(3/2) = 2.612,... to 0,
determines the density,

() = 273 7 (”kB—_T”) . (46)

Its Legendre transform (cf. the figure again) is

f) = max{f(x) —ux}, (47)

withu = )\3Tnth, the dimensionless density, and this determines
the noninteracting Hohenberg-Kohn free energy as

Fa(lnwl, T) = kpTAy> / dr fO3nm). (48)

The Thomas-Fermi approximation is appropriate for sys-
tems with gradual inhomogeneities. It may be applied to
the condensate component as well, by simply dropping the
gradient term in Eq. (26), which amounts to neglecting the
zero-point energy of the condensate F,, =~ 0 [this corresponds

(@ 0.0 ol bl b e b b 3
-0.20 F o
-0.40? %2
-0.60 4 C i~

2 15 C

< -0.80 ] : I

] E1=
-1.0 4 . F
1 \/(X) :
-1.2 4 < £ 0.5
] ~ — F
S5 7 s s Y
0 05 1 15 2 25 3 35 4
chemical potential, x
() 00—l vl b bl
Az — F
-0.20€ f@ = fw 3
0401\ / e-l
1< F I
~ -0.60 F =

Pt Z/ E-2 g

“~ -0.80 ] o
104, F o,
_1.25, ey £
LA e

0 0.5 1 1.5 2 2.5
density, u

FIG. 2. (Color online) Relationships for the thermal components
according to the Thomas-Fermi approximation: f is the scaled grand
potential, x is the scaled effective potential, u is the scaled density,
and f is the scaled Hohenberg-Kohn free energy. (a) The function
f(x) (full line) and its derivative u(x) (dotted line). (b) The Legendre
transform f () (full line) and its derivative —x(«) (dotted line). Note
that the derivatives are simply inverse functions.
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to Qcon f dr (vy; — n)®*® in the present notation]. As
mentioned in Sec. I, when all the finite-size effects due to
the inhomogeneities in the system are indeed negligible, it
is appropriate to use a local-equilibrium approach with the
density n(r) at each position taken as that, which, for an
infinite system, would correspond to the given local value
of the chemical potential p — vex(r). Applications of DFT
for such situations approach the local-equilibrium results. For
@-DFT, the condensate amplitude ®(r) relaxes to the value
corresponding to an infinite system of density n(r), and, thus,
there is no pointin including it as a separate functional variable.

C. Interaction effects

In order to complete the DFT description, an approximate
description of the interaction term Fiy([n,®,P*],T) must
be specified. As noted at the end of Sec. II, the simplest
approximation is obtained by equating the integrand in the
adiabatic connection formula with its value for noninteracting
bosons,

Fou([n,®,®*].T) ~ /dr%[an—(Q*Q)z], (49)

or fint = (g/2)[2n2 — (®*P)?] in the notation of Eq. (12). The
factor of 2 in the brackets comes from counting both the direct
and the exchange contributions, and the subtraction comes
from the fact that exchange is not relevant to the condensate’s
interaction with itself. From Eq. (40), this leads to
Vine = 281,  Nine = g(O* D), (50)
or to
Uni = Vext + 287, Tni = g((D*(b)CD. (51)

Using the latter in Eq. (26) gives the G-P equation,

h*v?
( = o Ve — - Qg + g@*@)@b =0. (52
As mentioned in Sec. I, here, the interaction terms differ from
the simple 2gn appearing in the effective potential due to
the absence of an exchange contribution to the condensate-
condensate interactions. The first-order approximation of
Eq. (49), with fi, quadratic in n, &, and ®*, leads to
simplification of Eq. (41) for the grand potential, resulting
in Q =Qy — f fintdr, where the subtraction of the double
counting of the interaction energy is explicit. This simplifica-
tion is not as dramatic as it may seem, as the subtraction can
only be evaluated after the Kohn-Sham system of equations
has been solved (either with or without the Thomas-Fermi
approximation for the thermal cloud and for the condensate).

Note that Eq. (52) is identical to the G-P equation
derived from the field-theory approach in the Popov
approximation [44]. The present level of description, with
the Thomas-Fermi approximation for the density of the
thermal component, Eq. (46), reproduces the two-fluid
description of finite-temperature BECs [41] mentioned in
Sec. I. The present ®-DFT provides a route for improvements
in this description, based on improved evaluations of
fint(n, ®,9*,T). In fact, we will see, in Sec. V, that such
improvements can be appreciable even when the interactions
are not particularly strong. Furthermore, ®-DFT allows
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treatment of systems with significant inhomogeneities,
which are not describable by the simple two-fluid
equations.

Before closing this section, it is appropriate to describe
the differences in treatment which are obtained for a DFT
of bosons with only a single density. At zero temperature,
one has ny =0 or n = ®*®, a single-density treatment
would have fi,(n) = gn?/2, and the G-P equation [Eq. (52)
without ng] arises as the ground-state solution of the
Schrodinger equation and need not be derived by shift-
ing the quantum operator as in Eq. (26). Thus, in this
limit, the present treatment does not differ significantly from
the single-density DFT treatment suggested by Nunes [37].
Substantial differences do arise at finite temperatures, where a
single-density treatment with a first-order local approximation
would have fin = (g/2){2n> — [n — {(3/2)k}3]2}, and the
corresponding effective potential vegr = Vext + g(n + ngy) with
g = {(3/2))»}3 would still give rise to an equation for the
ground state, which is essentially the correct G-P equation, but
the excited states would be subject to the wrong potential. In the
limit of weak inhomogeneities, the situation can be remedied.
The Thomas-Fermi approximation holds with vy — =0
at points with a condensate [i.e., with n > ¢(3 /2)%;3]. The
corresponding free-energy function is f(u) with u = A3Tn and
is to be continued for large densities u > £(3/2). According
to the rules for Legendre transforms, Eq. (47), it is simply
linear in this regime. The solution of the Kohn-Sham system
of equations for points with v,;(r) = u would then seem to be
ambiguous, as there is a range of densities for a single value of
the effective potential, but the condition vex(T) + vip(n(r)) =
i may be used to determine the density n(r) instead. If the
interaction energy fin(n) correctly accounts for the difference
between the reference system and the interacting system, then
the correct results for the free energy and the density distribu-
tion are guaranteed to be obtained. It is only in the presence of
significant inhomogeneities that the weakness of this approach
(i.e., the effect of its having essentially the same potential in
the Schrodinger and the G-P equations) will show up.

IV. DFT FOR BOSONS WITH ANOMALOUS
TERMS—A-DFT

In this section, the thermodynamic approach will be used to
develop another version of DFT for bosonic systems, which re-
sults from adding a term of the form — f dr[EJ YT + x40
to the Hamiltonian. Here, £ (r) is a second fictitious potential—
an anomalous potential—which is to be set equal to zero in
the fully interacting system &, = 0. The fact that it does not
vanish in the Kohn-Sham reference system &,; # 0 will result
in a level of treatment generalizing that of Bogoliubov. In order
to assist the reader, here, the partitioning into subsections is
precisely parallel to that of Sec. III presenting ®-DFT.

A. The grand potential and the free energy

The thermodynamic treatment of the enlarged Hamiltonian
follows the same steps as earlier, with Eq. (16) defining the
grand potential, which acquires a [£,£*] dependence. The
corresponding derivative is

682 AA
A(r) = — = (Y)Y (r)), (53)
8&* (r)
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where £(r) and £*(r) as well as n(r) and n*(r) play the role of
B(r). The Legendre transform leading to the Hohenberg-Kohn
free energy is

Fux([n, ®,@*,A,A™], T, A) = Qv — u,n,n",§,*],T,A)
—/dr [(v — wn — nd*
—n*® —EAT —E*A], (54)
and we have the additional relation

8 Fuk
= *. 55
A & (55)

B. The Bogoliubov Kohn-Sham system

Here, the Kohn-Sham reference system is described by the
noninteracting Hamiltonian,

N . h2v2 R
Hni = /dl'l/fT (_ m +Uni _M) w

- / dr (g + 050 + E T 4 EGD) (56)

where the noninteracting effective potential v,; and auxiliary
fields ny;, &yj are again to be defined by Eq. (11) and determined
by the interactions. Shifting the field operator by a scalar as
in Eq. (25), lﬁ(r) = ®d(r) + qs(r) and requiring all terms linear
in the operators ¢ (and @) to cancel from the Hamiltonian,
yields, in this case,

K2v2
(— 5o Ui — u) D — ny — 26, =0.  (57)
m

The Kohn-Sham Hamiltonian becomes

I:Ini = ﬁnc + I:Icona (58)
with
h?v?

Fee [dr {Jﬁ(— +vm—u)<a—sm<w—s,:;¢¢3},

(59)

and Heon = —% [ dr (9, ®* + ;@) as before, Eq. (27). The
subscript nc represents the noncondensed part of the boson
system, which persists at zero temperature and, thus, should
not be referred to as a thermal component. Note the complete
cancellation of terms of type [dr&}®? in the effective
Hamiltonian—the contributions from ®*(- - -)®and &} d? are
equal and opposite due to Eq. (57). In contrast, the terms of
type f dr n,; ©* only partially cancel, leading to the % prefactor
in I—Lon.

The Hamiltonian H,. is quadratic in the field opera-
tors but does not conserve particle number. This form of
Hamiltonian is diagonalized by the Bogoliubov transformation
[52]. Following Fetter’s notation [53], the field operators may
be written as

2m

d) =Y u;mp; — vimp], (60)
J

and its Hermitian conjugate, where the primed sum runs
only over positive energy solutions &; > 0. The ij and
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y; are bosonic creation and annihilation operators for the
Bogoliubov excitations of the system. The generalized
Schrodinger equation for the (u;,v;) wave functions is given
by

n?v?
|:— om + Upi —M] u; —ZEmvj =5juj,

2y 61)
|:— . —i—vni—,u] vj —2&u; = —&;v;.

This two-component system of equations, known as the
Bogoliubov—-de Gennes equation [53], is of the type H() =
EO'Z(Z) where H is a Hermitian matrix differential operator,
with inner product [ dr (u} vi*)az(’:);') = [druiu; —vjv))
involving the Pauli matrix o, = (g) _?). The normalization is
Jdr(luj* —|v;|*) = 1, and the orthogonality conditions are
Jdr (ufu; —viv;) = 0fori # jand [ dr (ufvi — viu’) =0
for all i and j with &;,&; > 0 [54].

Substituting Eq. (60) into Eq. (59), the Hamiltonian
becomes

A=Y & (pj P — / dr |u‘,.|2), (62)
J

which is now in the form of a simple harmonic oscillator for
each excitation mode j. With Eq. (62), expectation values
of different quantities at a temperature 7' can be evaluated,
using either Eq. (60) with (9;) = (p/) =0 and (pp) =
8ijlexp(E;/T) — 117", etc., or by explicitly calculating the
partition function and the grand potential and taking its
derivatives. One finds that (lﬂ(r)) = ®(r); the density is
n(r) = ny(r) + ®*®, with

2 2
luj]” + vl

—(HTHY = 12
nae(r) = ($1d) =) <exp(gj/kBT) — + vl ) (63)

J

and the anomalous density is A(r) = Ap(r) + ®2, with

an . 2
Anc(r) = (p¢h) =_Zujvj (exp(gj/kBT) -1 * 1>.

J

(64)

The grand potential of the Kohn-Sham system is 2, =
Qe + Qcon, With

gA
Qpe([vni — Mvgnivg:i]vT) ZZ {kBT In |:1 - eXp<_kB_JT>i|

J
—5_,-/dr|vj|2}, (65)

and  Qcon[vni — M,ﬂni,ﬁzi,éni,f,fi] = _% fdr(nniq>* + Tlﬁiq’)
as in Eq. (33). The Hohenberg-Kohn free energy, according
to Egs. (54) and (57), is Fy = Fuc + Feon, With

Foo([n — ®*®,A — P> A" — O], T)

= Z <kBT In[1 —exp(=&;/kpT)] — &, /dr|u,|2>

J

- / dr [e(vm — 1) — Ancks — A% Enl, 66)
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and Fo [P, D*] = fdr CD*(—F';—Zz)CD as in Eq. (39). The RHS
of Eq. (66) is evaluated, as before, with the potentials vy;,
&ni» and &, which reproduce the noncondensate parts of the
density and the anomalous density, through Egs. (61), (63),
and (64). Notice that the noncondensate contribution to each
of the thermodynamic quantities €2, n, A, and F can be
further divided into a temperature-dependent thermal part
and an athermal part [e.g., Qe = Qun + Qan in Eq. (65)].
The temperature dependence yields an exponential conver-
gence of the thermal parts, and only the athermal parts
substantially depend on the cutoff k. (the above-mentioned
rule for the evaluation of a Legendre transform of a sum
of two functions applies for F,. = Fy + Fypn, with the
requirements 8 Fy,/dng = 8 Fon/8nam and ng + nan = Age
implied).

To summarize, the Kohn-Sham equations of A-DFT are
Eq. (57) for the condensate amplitude and Eq. (61) for the
noncondensate eigenstates and eigenvalues, together with the
corresponding expressions for the density and the anomalous
density, Eqs. (63) and (64), and together with the self-
consistent determination of the effective potentials through
Egs. (11) and (10). The interaction contribution to these
potentials will be made explicit in the following. Once this
system of equations has been solved, one may use the results
to obtain the grand potential for the interacting system, which
evaluates as

Q= Qe + f dr{ fit — v + AES + A%

in full analogy with Eq. (41) of ®-DFT.

1. Thomas-Fermi approximation for A-DFT

For applications involving a large number of bosons, a
Thomas-Fermi type of approximation can be formulated in the
presence of the anomalous potential as well. It is convenient
to refer to a momentum variable p = %K, with the density of
states in the single-particle phase space taken as (27771) >, as
earlier. The corresponding local-approximation wave function
(uk,vk) exp (ik - r) consists of plane waves with a bare energy
of ex(r) = (h2k%/2m) + vni(r) — 1 (including the position
dependence due to the effective potential). Equation (61) then
takes the form

& —Zéni u u
B Z))-sol) o

with the appropriate continuum normalization luk)? — ||* =
1. Solving this eigensystem of equations gives

ui = cosh 6y,
vk = (£/1nil) sinh 6,

& = e/ cosh 20 = /&g — 4|62, (69)

where tanh 26k = 2|&,|/éx.

When the noncondensate parts of the thermodynamic
quantities are expressed in terms of the solutions of the
Bogoliubov—de Gennes equation, they naturally have thermal
and athermal parts, as in Egs. (63)-(65). Here, it will be
convenient to introduce dimensionless functions fi, and fun
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for the corresponding contributions to the grand potential
within the Thomas-Fermi approximation,

_ Uni — U |%-ni|
Qe >~ kT 3/dr < , )
c = "BEAT fan kgT ' ksT

+ &K f dr fun (v“ig_“ 'i—') (70)

where &, = hzkf /2m is the cutoff energy, |&,| is used as
shorthand for ,/£%&,;, and the functions are defined as

4
fin(x,y) =—= [q*dgq In{l —exp[—/(g> + x)? — 4y2]},

N
(71)
and
2 1
fute5) = = [ #as @+ a7 -3 -0
(72)

[the notation x, y, X, and ¥ will be used later as shorthand for
the corresponding combinations in Eq. (70)]. Thus, the grand
potential of the Kohn-Sham system is the sum of three terms,
a condensate part, a thermal part, and an athermal part. As the
integral of the athermal part is divergent, we have used the
cutoff scale to express it in dimensionless terms (the cutoff
dependence of the thermal part is exponentially small and
has been ignored). The cutoff energy is large, and it will be
appropriate to expand f, for small values of its variables—see
the Appendix. In contrast, the temperature may be small, and
so, the whole range of fi;, will be relevant, except in specific
cases, such asat T = 0.

The square root in the integrand of Egs. (71) and (72) is the
normalized energy &, and for x = 2y or vy — pu = 2|&yl, it
has a linear dependence at small wavenumbers. This represents
the phonon branch of the excitation spectrum of the superfluid.
The present description also allows for situations with x > 2y,
which possess a gap in the spectrum at k = 0. As will be
discussed further in the following, this gap is not physical.

The Thomas-Fermi results for the density and the anoma-
lous density are

Ane(1) 2 A7 U (x,y) + K uan(%,5),

(73)
1 Sni -3 3 - -
Ane(r) = 2[5 [ wa, ) + Kwan® 9]
with the following notation for the derivatives:
8fth(x,)7) - - afath(f:y)
ax ax (74)
afwm (x,y) - 0 famn (X, )
Win(x,y) = ———F——, wWun(¥,y) = ——F_—.
dy ay

The entropy has a contribution only from the thermal part and
is given by

dr 5
Sni > kg / 3 <_§fth(x7)’) + xum(x,y) — ywth(X,Y)> .
T

(75)
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The Hohenberg-Kohn free energy becomes

kgT -
Fac([Mnes Ane, Al 1 T) / dr (f—3ﬁh(um,wm)
T

+ 5ck3 f;th(uathv wath)) ) (76)

where the Legendre transforms are defined as [again, the
minimization may be replaced by the requirements of Eq. (74)]

SunCin, wn) = H)}%X[fth(xsy) — XU + YW,

Satn (tath; Warn) = rg?}_?([falh(fsy) — Xath + YWan], 77
and are used with the conditions
Aty + Kothah = Mne, 223 W + 2k Wah = | Ancl, .
ko7 L _ g W g O Dfun
U OUath oW 0 Wath

Further details regarding fi, and f, are given in the Appendix
and, for fy,, also in Sec. V.

As for the ®-DFT of Sec. III, a local Thomas-Fermi
approach can be applied to the condensate amplitude & as
well, amounting to neglecting the derivative term in Eq. (57),
resulting in a completely local description.

C. Interaction effects

A local description of the interaction effects (LDA)
for the present application of DFT requires knowledge of
Sfine(n,®, 0%, A, A", T)—the interaction energy density for a
uniform system of density n, condensate amplitude &, and
anomalous density A, at temperature 7. Its derivatives will
determine the potentials of the reference system, which include

3 fint
A’
in addition to Eq. (40) for the interaction contribution to the
effective potential vy; and fictitious field ny;.

As in Sec. III, one may use the weakness of the interactions
in order to derive a simple approximation for fi, by evaluating
the interaction energy to leading order in the interaction
strength g,

&ni(1) = Eexe(1) + &in(r) = — (79)

i ™ §<|<1>|4 +41012(1) + 02 (dP) + D2 (BId)
+ (910 de)), (80)

due to the mixing of creation and annihilation operators in
Eq. (60), since expectation values of the type (¢¢) no longer
vanish. Similarly, Wick’s theorem becomes (ﬂé;&@) =
(B181) (Bsba) + (H]ba) (Blds) + (B]3)(B1ds). Using both
n=|®+ (¢p'¢) and A = O + (p¢) gives

fine ™ §<2n2 + A2 = 2(0%). 81)

This result can be interpreted as a triple counting of the
condensate term, compensated by a double subtraction—the

|®|* contribution appears in the direct ((lﬂ 1/}4)(12;r Vr3)), the
exchange ((1&1T Us) (1/}2T Ua)), and the anomalous
((I/A/I @) (fr3¥4)) term but physically should be accounted for
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only once. Using this approximation in Egs. (40) and (79) for
the effective potentials gives

Uni(r) =~ Uexl(r) + Zgn(r),
1ni(1) 2 2g|®(r)|* d(r), (82)

Ei(r) ~ —%A(r»

Substitution of this approximation into Eq. (57) gives the
generalized G-P equation

n*v?
<_ m + Vext — M + 2875 + g|d>(r)|2><1>+ gAnc(D* =0,

(83)

which contains an extra term involving A [cf. Eq. (52)]. These
potentials are also to be used in the Bogoliubov—de Gennes
equation, Eq. (61).

This approach reproduces the equations of the Hartree-
Fock-Bogoliubov method, which have been systematically
derived and studied for a long time [15,44-48]. In that
context, the method is intended to calculate not only the
thermodynamic properties of the system, but also its excitation
spectrum. It has been criticized for producing a spectrum
with a gap at small wavenumbers in homogeneous systems,
while it is known that the correct long-wavelength result
involves a gapless linear phonon spectrum [44]. A related
difficulty arises at short distances, where it is seen that
A(r) = limp_ (Y (r)y(r')) depends on the large wavenumber
cutoff k. (for T = 0 and weak interactions, one may use the

limit of fu, discussed in the Appendix to find n,./n ~ v nag
and A,./n ~ k.ap, in agreement with the literature). As A
involves a product of operators at essentially the same point
in space, such a cutoff dependence should be accepted, and
indeed, the nature of the point interaction should be expected to
generate a relationship between this ultraviolet divergence and
long-wavelength behavior. Approximations that are designed
to produce a spectrum without a gap have been studied
[46,47], and more recently, a pseudopotential that allows for
a rigorous treatment overcoming these difficulties (at least at
zero temperature) has been suggested [50].

In the context of DFT, it may be argued that the spectrum is
irrelevant as it represents a property of the reference system,
which need not be shared with the interacting system. Thus, in
principle, it may be claimed that A-DFT is rigorously exact,
despite the presence of the gap. However, it is clear that the
spectrum affects the thermodynamic properties, and that, if
the reference system has properties that differ significantly
from those of the interacting system, it will be difficult
to find workable approximations for Fj,. Thus, it may be
desirable to adopt the advanced pseudopotential approach
for DFT [50]. This would require using a reference system
with nonlocal effective potentials [i.e., introducing terms of
the form £(r,r)y (r)y () and v(r,r)y @)y @’) into the
Hamiltonian] with &y = Uexy = 0 but &g, up 7 0 in close
analogy with the foregoing derivation, and is beyond the scope
of this paper.
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V. THE UNIFORM-SYSTEM WEAK-
INTERACTIONS LIMIT

Having introduced both ®-DFT and A-DFT, a discussion of
applications is in order. Essentially all applications are beyond
the scope of this paper, but one exercise which is particularly
revealing will be presented here: the weak-interactions limit
of homogeneous systems. Strictly speaking, this is not an
application of DFT, and should be viewed as an application in
thermodynamic perturbation theory. It will have relevance to
the LDA, which (as noted before) relies on knowledge of the
properties of uniform systems.

The Thomas-Fermi approach is accurate (not an approx-
imation) for homogeneous systems. Hence, the results of
the Thomas-Fermi sections, Secs. IIIB1 and IVB 1, are
directly applicable. Similarly, the lowest-order linear term
in the interaction strength g has been given previously for
both ®-DFT and A-DFT. The discussion here pertains to a
finite temperature not too near either the BEC transition or
T = 0, and, thus, the interactions are treated as perturbing a
noninteracting Bose-Einstein-condensed system.

A. Two-fluid method

Applying the ®-DFT of Sec. III to a uniform system, one
drops the gradient terms in the G-P equation (52) and solves it
in conjunction with Eq. (46) in the g — O limit. The external
potential is set to 0, and the x — 0 limit of the thermodynamic
function f defined in Eq. (45) is pertinent (cf. Fig. 2),

Ay 32
3

f(x)=—=t(5/2)+¢(3/2)x — + 0%, (84

giving
u=f'(x)=¢G/2)=2Jax'? + 0, (89
wherex = (2gn — )/ kT fromEq. (51)andu = )v}nth.This

relation between the effective potential and the density may be
inverted as

§ 2
x =22 4 o@u), (86)
4

where the notation du = ¢(3/2) — u has been used and the
Legendre transformed Helmholtz free energy is, in dimen-
sionless form

3
Fu) = -5/ + 2 4 o). 87)
127

Thus, the Hohenberg-Kohn free energy per unit volume of
the uniform system, including the interaction terms to leading
order in g from Eq. (49), is

Fux([n,®,®*].T)  kgT
v S

n %[2:12 — (D). (88)

FA3(n — &* @)

Although it is straightforward to apply the self-consistent
Kohn-Sham equations to this system, [which, here, amounts
to using, e.g., Eq. (85)] a more physically transparent dis-
cussion will result from following a minimum-energy path
closer in spirit to the Hohenberg-Kohn approach. Thus, the
physical requirement that the external auxiliary field vanish,
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Next = 0 Fux/0®* = 0, will be imposed by minimizing the
free energy of Eq. (88) with respect to ®* at a given overall
density n. From Eq. (87), this amounts to minimization of

su’ g

2
o T [A3n—¢3/2)+6u]”, (89)

with respect to u = )»3T(|<I>|2 —n)+ ¢(3/2), with du > 0, but
small. At g = 0, one finds u = 0 or |®g|> =n — §(3/2)A_3,
whereas, for small g, one finds du =~ 2,/ ,;—f"T|CI>0|2. This gives

_ T
1D ~ || + 245 /%IQJOP, (90)
B

a result whose accuracy should be questioned, as discussed
later. Note that the particularly soft §u> behavior of f(u),
corresponding to the nonanalytic cusp in f(x) at x = 0, has
resulted in a sensitivity to interactions, which is displayed by
the sharp /g dependence of the condensate amplitude (in other
words, the position of a shallow minimum is easily changed
by a perturbation that is sloped in that region). It is straight-
forward but not particularly illuminating to obtain additional
thermodynamic results at this level of approximation (e.g., to
find the relationship between the chemical potential ;« and the
overall density n).

B. Bogoliubov method

Application of the A-DFT of Sec. IV to the present problem
requires expanding the thermodynamic functions defined in
Eq. (70) at small values of their arguments [see the Appendix,
Egs. (A4) and (AS)],

2
fin(x,y) = —¢(5/2) +¢(3/2)x — %ﬁ[(x +2y)*?

+(x =2y + 0(x?), 1)

where the requirement 0 < y < x/2 is used to drop O(y?)
contributions. A comparison with Eq. (84) already is inter-
esting at this stage: Clearly, setting the anomalous potential
to zero, y = 0, reproduces the ®-DFT result, but taking the
Bogoliubov spectrum with a vanishing gap corresponds here
to setting y = x/2 and results in an extra factor of V2 in the
x3/? term. The expansion of f,, begins with O(x?) terms,
Eq. (A9), and, therefore, the athermal component does not
affect the results to leading order in g.
The scaled density and anomalous density are

3fn

wn = % = £(3/2) - VE/x +2y +yx =2y), (92
and
dfn
wa = =5 ~ 2m(Vx +2y —/x —2y),  (93)
and inverting these relationships gives
1 , 1, 1
X~ P Suy, + Zwth ) yx - Suh Wih, 94
where, again, Suy = {(3/2) — uy. The result for the

Hohenberg-Kohn free energy is
= L /1 5 1,
Ju(um, wn) = —(5/2) + = \3 Suy, + 7% Su,

+ O (8ug,). (95)
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The overall free energy, including the interaction terms to
leading order, Eq. (81), excluding the athermal contribution,
is

Fux(n,®,9*,A,A*T)
14
~ kgTAy fn (M3 (n — | @), A5 A — @?))

+§<2n2 AP = 210%). (96)

In the present case, both fictitious potentials n and & must
vanish (i.e., the free energy is to be minimized with respect
to both ® and A). In dimensionless terms, this corresponds to
minimization of

11, 1 5
E §8uth+28umwm

2
8 3 _ Wh
+kBTA3T <|:ATn £(3/2) + dup > ]
—2[an —¢(3/2)+ Su[h]z), 97)

with respect to both duy and wy, (in principle, an arbitrary
phase factor could be associated with the =" term, reflecting
the relative phase between A, and @2, but the sign used here

is clearly optimal). The minimization requires

1 4mg Wi
4rg 8)

(Suth Wih =

Wih
—2 (AMBn-r3/2 Sup — — .
kBT)t3T< T ¢(3/2) + Sum ) )

To leading order in g, we may use Sug, =~ 0 and wy, =~ 0 in the

RHS, resulting in duy, ~wy, /2 =~ x/kz’;‘; [)\?}n —¢(@(3/2)], or
BLAT

3 [2mg
|®J* = | Dol +AT3,/k—T|<I>o|2, (99)
B

together with a similar contribution to A, (at this order,
we have x = 2y). Here, the interaction-dependent correction
to the condensate fraction is a factor of +/2 smaller than
the result of Sec. V A, Eq. (90). This discrepancy will be
discussed in Sec. V C. The present result, which includes the
effects of the anomalous density through w, is in accordance
with the literature [47] (recall that g ~ 4nh2a0 /m and Ar =

V2rh? /mkgT).

C. Comparison of the two-fluid and Bogoliubov
reference systems

It is at first surprising that the two methods being discussed
lead to two different results for the leading-order correction
to the condensate fraction of a uniform BEC. After all, both
methods are based on a straightforward expansion in the small
parameter g, within a thermodynamic framework, which is, in
principle, exact. The only source of error can be the neglect
of terms in the interaction energy fi,, which are of higher
order in g. The following paragraphs display these terms
explicitly.

Clearly, the level of accuracy used in the A-DFT description
can be imported into ®-DFT by choosing the appropriate form

PHYSICAL REVIEW A 83, 023612 (2011)

for fin(n,®,d*). In fact, it is obvious that simply dropping the
anomalous term in Eq. (97), setting wy, = 0, reduces it to
Eq. (89). However, the proper procedure is to minimize over
wy, which corresponds to imposing the condition £ = 0 (i.e.,
to requiring the vanishing of the anomalous potential rather
than the wy, contribution to the anomalous density). From the
second line in Eq. (98), this leads (to leading order in g) to

dng Apn —¢(3/2)

W 100
" ksT03 Sum (100)
Introducing this into Eq. (97) gives
1 3 8 3 2
61 Ot = kpT 23 (an T Suth)
2 (43 2
Arn—¢(3/2
—2n< g3> (i = ¢G/2) (101)
kBT)"T 8uth

where terms up to second order in g have been retained (one
can check a posteriori that the neglected terms are indeed
small). Minimization of this, to leading order, amounts to the
requirement that

2 2
<3ufh - ﬁ [W3n — ;(3/2)]) =0,  (102)
which displays how dropping terms of second order in g leads
to a doubling of the result for (Sufh. Thus, it is clarified that
a weakly interacting BEC system is situated near a singular
point, associated physically with a completely full thermal
cloud, i.e., uy, = ¢(3/2). At this special point, terms that are
of second order in the weak interaction parameter g are not
relatively small, because they are divergent, with the small
quantity dug, appearing in the denominator.

VI. SUMMARY AND OUTLOOK

The thermodynamic approach (summarized in Sec. II)
provides a general method for generating DFTs for bosonic
systems in thermal equilibrium at finite temperature, and has
been used to derive the equations of ®-DFT (Sec. III) and
of A-DFT (Sec. IV). The different DFTs use, as references,
different types of Kohn-Sham systems, which are subject
to different fictitious potentials. The reference systems have
quadratic soluble Hamiltonians, and the interaction effects
are to be included via an LDA. The latter must be based
on knowledge of the free energy of interacting homogeneous
systems, which are subject to the fictitious potentials. For
®-DFT, knowledge of the free energy of a homogeneous
interacting system as a function of u, T, and n is required
in order to supply fin(n,®,®*,T), and, for A-DFT, a & field
must also be allowed for. This type of information is generally
available only for the leading order in the interaction parameter
g. In this limit, our results for ®-DFT generalize the two-fluid
approach [41] for inhomogeneous systems, and the results
for A-DFT reproduce the Hartree-Fock-Bogoliubov model.
As has occurred for electronic systems, we anticipate that the
necessary results beyond the leading order will be generated
using quantum Monte Carlo techniques. Such techniques have
been developed for Bose-Einstein-condensed systems [55],
but, as the fictitious potentials n and & break particle-number
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conservation, different variants of the techniques may need to
be developed to meet this goal.

Itis of interest to compare ®-DFT and A-DFT to the attempt
made in Ref. [36] to apply DFT to BEC systems, using the
standard approach to DFT rather than the thermodynamic
one. In this reference, only two functional variables were
used—rn and @, as in $-DFT—but the reference or Kohn-Sham
system chosen employed a Bogoliubov-type treatment, similar
to that used in A-DFT. Correspondingly, the Hamiltonian of
the reference system depends not only on the potentials used,
but also on the (anomalous) density, which is to be calculated
self-consistently. This represents a difficulty that the present
thermodynamic derivation avoids.

In comparing the two DFT methods, it was found that,
in the limit of homogeneous weakly interacting systems at
finite temperatures, ®-DFT (or the two-fluid method) does
not correctly reproduce the leading-order correction to the
condensate density, and that this flaw can be corrected by
including higher-order terms in fiy. This is due to the
extreme sensitivity of the corresponding energy-minimization
problem: (a) Terms of order g in the energy cause a shift
in the minimizing value of ®, which is of order /g, and
(b) the second-order term in fi, is divergent, having an
O(/g) denominator, thus, contributing to O(g*?) in the
energy and to a significant change in the O(,/g) correction
to @. The higher-order terms in fj for ®-DFT were, in this
case, obtained from a first-order A-DFT calculation, which
amounts to reexpressing the Hartree-Fock-Bogoliubov model
as a minimization problem (Sec. V).

The comparison just mentioned demonstrates the advan-
tages of A-DFT—it uses a reference system that is much closer
in its behavior to the fully interacting system, and, therefore,
the approximation introduced is much less significant. It is
reasonable to expect that this advantage will be significant
for inhomogeneous systems as well. Thus, obtaining the
requisite data for homogeneous interacting systems as a
function of both n and & is called for. As an interim
step, applications of ®-DFT, for which strong-interaction
corrections to fi,; could more easily be acquired, should also be
considered.
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APPENDIX: INTEGRALS FOR THE THOMAS-FERMI
APPROXIMATION OF A-DFT

In Sec. 1V, Eq. (70), integrals corresponding to the
thermodynamic functions fi and f,n were introduced, and
in Sec. V, the need to evaluate these integrals in the limit
corresponding to weak interactions arose. The details of the
evaluations are presented here.
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For the thermal contribution, integration of Eq. (71) by parts
gives

-8 /oo (g% + x)2 — 4y?2
3V Jo exp((gT +x)F —4yD) — 1

q*(q* +x)dq

flh(xvy) =

(¢% +x)* —4y? (AD
The second factor is separated as
¢ +x) 1/ (x—2y)?
sy Rl B R ar—
(g* +x)* —4y 2\ g% +x -2y
2 2
(x—i-—y)) (A2)
g% +x+2y

where the term ¢? — x diverges with ¢, and the remaining
terms converge rapidly. This may be used to write f, = I} +
I, with the integrals I; and I, involving the divergent and
convergent terms, respectively.

At small x and y, the square-root term can be expanded as

V(@ +x2 =4y =¢> +x + 0(x?),

where, as before, terms of order y? are included in O(x?)
because of the limitation x > 2y > 0. One finds

(A3)

-8 [™ g% +x ) 5
L = —x)d 0
W e v LA
=—0(5/2)+¢(3/2)x + O(x*) (A4)
(note cancellation of terms at order x3/?) and
—4 [/ (x—2y) (x 4+ 2y)? ) )
L =—— dg+0(x
P 3ym o (q2+x—2y Prxt2y) )
-2
= Tﬁ[(x =202+ (x +20)" 1+ 0(P),  (A)

where, in the last equation, (g2 + x)/ (e — 1) was approx-
imated by unity because the remaining factors are already of
relatively high order in x and are small when ¢? > x. These
results are used in Sec. V, Eq. (91).

For the athermal contribution, one may rewrite Eq. (72) as

s = -2 2@ A g — D)
e NIV

x q* +2y°1dq, (A6)

where the integral can be continued to infinity without
divergence, as can be seen by expanding the square root as

2—2
P-4 =g’ i q—y2 +0G). (A7)

Rescaling ¢ by /X, and defining

° o
o) = [ (@ —a - g~ g+ 5] da. (a8)
0
where o = 472 /%7 is a variable in the range 0 < « < 1, gives

7572

4
fan(®,5) = —ﬁf + 7 h(@) + O(%).

(A9)
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The integral h(c«) vanishes at « = 0 and increases with « to a
value of 84/2/15 at = 1. This value may be derived as

/O [( q*+2¢2 —q* — g* + }dq

0’ /Q2+2 du
— lim -2 _ 2 ’
QI—I}})O 5 + + 27 2

(A10)

where u = g* + 2, and the result is obtained from the lower
limit of the last integral. The derivative of  is given by

: O q’
h(a) == l— ——— ) dq, (A11)
2 Jo V@ +1)?—a
and decreases from h'(0) = /4 to k(1) = 1/+/2. As these
values are within 10% of each other, a plot of & is
very nearly a straight line and is not included. It is
easily seen that h'(a) = /4 — (1/64)a + O(a?) for small
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a, whereas, h'(a) = 1/v/2 — (1/16v/2)(1 — ) In(1 — &) +
O(1 — o) near « = 1, where the logarithm arises from the
1/q behavior of the integrand for (1 — ) < ¢*> <« 1. This
motivates the approximation,

—a)? In(1 — ),
(Al12)
M+ &2 o 80750

h(a) >~ cio + 0 + 30’ + cpat + ¢!

where the coefficients ¢ =
¢ = —7hs(m 4+ 33/2) > —5.7689 x 1072, c3=5V2 -
Ur~2775% 1073, =G — g — (5 — 2)vV2 =
1.6663 x 1073, and ¢ = 4+/2 >~ 2.2097 x 10 2 are chosen
SO as to reproduce the calculated properties. Numerical
integration of Eq. (A8) (evaluation of the integrand at large
q requires some care) shows that the maximum error in this
approximation is less than 5 x 107>, As the cutoff scale is
large, X and y typically are small, and such attention to the
small-x-and-y limit is appropriate.
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