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Abstract. We address the problem of the collision-induced crosstalk between pulses in a dispersion-

compensated WDM system composed of a periodic array of cells that include two or three fiber segments.

Both the cross- and self-phase-modulation nonlinearities are taken into account. A semi-analytical

approximation and direct simulations are used to calculate the frequency shift (FS) of colliding pulses,

and to search for conditions which provide for minima of the FS and the temporal shift (TS), including

the most promising possibility of minimizing both shifts simultaneously. Semi-analytical results, obtained

by means of the perturbation theory, are in qualitative agreement with the numerical findings, especially

in regimes near the optimum. In searching for the FS and TS minima, we investigate the effect of changing

the initial width and chirp of the pulse, position of the amplifier within the dispersion–compensation

period, group-velocity difference between the channels, allocation of the group-velocity-dispersion (GVD)

inside the cell, and the average GVD. We conclude that a more sophisticated dispersion–compensation

map, with three different local values of GVD, may be significantly more efficient than the one based on

two different segments. A global FS minimum, with respect to the variation of all the parameters, is

found.

Key words: cross-phase modulation (XPM), dispersion–compensation (DC), frequency shift (FS), time

jitter

1. Introduction

It is well known that periodic dispersion compensation is a necessary
ingredient of fiber-optic communication networks (Iannone et al. 1998). In its
simplest realization, dispersion compensation (which, in the case of return-to-
zero (RZ) pulses, is frequently called dispersion management, or DM for
brevity Berntson et al. 1998) is realized as periodic alternation of fiber sec-
tions with anomalous and normal group-velocity dispersion (GVD). Dis-
persion compensation was originally introduced in order to minimize
dispersion-induced distortion of quasi-linear (nonsoliton) pulses inside data-
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transmission channels (Kurtzke 1993; Ablowitz et al. 2001). Later, it was
demonstrated that it also helps suppress nonlinear crosstalk between chan-
nels in wavelength-division multiplexed (WDM) systems (Sugahara et al.
1997; Kaup et al. 1998, 1999; Niculae et al. 1998; Haus and Chen 1999;
Ablowitz et al. 2001, 2002; Etrich et al. 2001; Sugahara 2001; Sugahara and
Maruta 2001; McKinstrie 2002). Crosstalk is induced by interaction of pulses
(solitons are often considered in this context) belonging to different channels
via the cross-phase modulation (XPM) and four-wave mixing. Collisions
between pulses, that have different velocities in different channels, give rise to
frequency and temporal-position shifts of the pulses. This is the source of
additional timing jitter that impedes achievement of higher bit rates in WDM
systems.

In the consideration of interactions between pulses belonging to different
channels, one should distinguish between complete and incomplete collisions.
In the former case, the pulses are initially widely separated, and the faster
pulse overtakes the slower one. In the latter case, the solitons are partially or
completely overlapped at the initial point, z ¼ 0, where they are launched
into the fiber link. Generally, incomplete collisions are more treacherous, as
they give rise to larger frequency shift (FS), which will then be translated, via
GVD, into a time shift (TS) linearly growing with the propagation distance z
(Hirooka and Hasegawa 1998; Kaup et al. 1998, 1999; Haus and Chen 1999).
The statistical contribution of complete collisions is larger in a long-haul
system, but, as the collision length for solitons is, typically, �500 km or
larger (see, e.g., Kaup et al. 1998, 1999), this may not overweigh the crucially
important role of the incomplete collisions in moderately long links. There-
fore, in this work we focus on the worst case of the incomplete collision,
when the centers of the two pulses coincide at the point z ¼ 0.

The FS and TS produced by pair-wise collisions between solitons in
WDM-DM systems were calculated both analytically (Hirooka and Haseg-
awa 1998; Kaup et al. 1999; Sugahara et al. 1999; Malomed 2002) and
numerically (Sugahara et al. 1997, 1999; Kaup et al. 1999; Sugahara 2001;
Sugahara and Maruta 2001). In particular, it was found that the variational
approximation, which is generally an efficacious technique for analysis of
various dynamical effects involving solitons in nonlinear optical fibers (see
Malomed 2002 for a review), provides good accuracy in predicting results of
both complete and incomplete inter-channel collisions in WDM-DM systems
(Kaup et al. 1999; Ablowitz et al. 2001; Mckinstrie 2002). Analytical and
numerical results demonstrate that strong DM (with relatively large local
GVD values and small average dispersion) is indeed efficient in suppression
of the crosstalk.

While a majority of the above-mentioned work has dealt with solitons, the
case of major practical interest for applications to fiber-optic telecommuni-
cations is crosstalk between quasi-linear pulses. Another essential feature of
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real systems is lumped (i.e., discrete, along z) amplification, while most the-
oretical work assumed local compensation between fiber loss and amplifi-
cation, so that the models were effectively lossless. In this work, our objective
is to select parameters of the system providing for minimization of crosstalk
effects generated by XPM interaction between nonsoliton pulses in adjacent
channels. Assuming the amplification spacing equal to the DM period, we
make use of an obvious parameter available for optimization, viz., the
location of amplifiers inside the DM map.

The paper is organized as follows. The model is described in Section 2.
Relations between normalized units, used in the model, and their physical
counterparts are also given in Section 2. Section 3 gives an account of our
semi-analytical approach used to treat the XPM-induced FS. Direct
numerical simulations and findings of a search for a regime that minimizes
the FS are presented in Section 4. Further results, including a generalization
dealing with the dispersion map consisting of three segments, and compari-
son of numerical and semi-analytical results, are presented in Section 5.
Section 6 contains the summary and conclusions.

2. The model

We adopt the standard model of the two-channel DM system, based on
coupled nonlinear Schrödinger (NLS) equations for slowly varying ampli-
tudes U and V of the electromagnetic waves in two wavelength-separated
channels. The equations are taken in the usual form (see, e.g., Kaup et al.
1999):

iðUz þ cðZÞUsÞ þ
1

2
DðZÞUss þ e

1

2
DuUss þ cðZÞðjU j2 þ 2jV j2ÞU

� �

þ i

2
½a� GðZÞ�U ¼ 0;

iVz þ
1

2
DðZÞVss þ e

1

2
DvVss þ cðZÞðjV j2 þ 2jU j2ÞV

� �
þ i

2
½a� GðZÞ�V ¼ 0:

Here Z and s are the propagation distance and reduced time, subscripts stand
for the partial derivatives, DðZÞ is the effective local GVD coefficient
(D ¼ �2pcb2=k

2, where b2ðZÞ is the local GVD coefficient proper, and k is
the carrier wavelength) corresponding to the periodic alternation of fiber
segments with anomalous (D > 0) and normal (D < 0) dispersion, while Du

and Dv are average values of the GVD coefficients in the two channels (which,
generally, differ due to third-order dispersion). The nonlinear coefficients
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cðZÞ are also different in the fibers with the anomalous and normal disper-
sion; for instance, c1 ¼ 1:267 (Wkm)�1 in the standard single-mode fiber with
the negative dispersion (which is known as the G.652 fiber), while the or-
dinary dispersion-compensating fiber providing for the positive dispersion
has c2 ¼ 5:067 (Wkm)�1. Finally, the coefficient c in the above equations
is the inverse group-velocity difference between the channels, and a is the
fiber-loss parameter; both c and a may also be different in the two fiber
species.

The above equations can be normalized to make the effective nonlinear-
ity coefficients in both of them constant (z-independent) and equal to
unity. Indeed, dividing the equation inside each segment by the respective
coefficient c1;2, we can locally redefine the propagation distance, so that
c1;2dZ � dz, and the dispersion coefficient, so that DðZÞ is replaced by
DðzÞ � DðZÞ=cðZÞ. Note that, taking into regard the above-mentioned typical
values of the fiber nonlinearity coefficient, the rescaling of the coordinate Z
implies an effective relative stretch of the normal-dispersion segment, roughly
speaking, by the factor of 4; this is, however, compensated by the propor-
tional weakening of the rescaled normal dispersion against its anomalous
counterpart.

Further, the original loss parameter a is replaced by the rescaled one,
aðzÞ � a=cðZÞ, and c is replaced by cðzÞ � c=cðZÞ. Actually, in the resultant
equations it is sufficient to replace the latter two coefficients by their constant
values averaged over the dispersion–compensation cell (this will be clear from
the subsequent analysis). We note that, as in the case of the GVD coefficient,
the strong stretching of the normal-dispersion segment due to the rescaling of
the coordinate is essentially compensated by the inverse rescaling of the loss
and inverse-group-velocity parameters in that segment, although, in the
general case, their average values in the rescaled model are not the same as in
the unrescaled one.

Thus, we obtain rescaled equations in the form

iðUZ þ cUsÞ þ
1

2
DðzÞUss þ e

1

2
DuUss þ cðzÞ jU j2 þ 2jV j2

� �
U

� �

þ i

2
½a� GðzÞ�U ¼ 0; ð1aÞ

iVZ þ
1

2
DðzÞVss þ e

1

2
DvVss þ cðzÞ jV j2 þ 2jU j2

� �
V

� �
þ i

2
½a� GðzÞ�V ¼ 0:

ð1bÞ

Relations between normalized units implied in Equations (1a) and (1b) and
their physical counterparts will be given below.
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In the above formulation, the average value of DðzÞ is zero by definition,
the average dispersion being represented solely by Du and Dv. Furthermore,
we define

NðzÞ �
D1; 0 < z < L1
D2; L1 < z < L1 þ L2 þ d

( )
; ð1cÞ

DðzÞ ¼
X
k

Nðz� kLtÞ½Hðz� kLtÞ � Hðz� ðk þ 1ÞLtÞ�; ð1dÞ

where Lt � L1 þ L2 þ d is the total DM period (see Fig. 1), and H is the
Heaviside step function. The small parameter e is introduced in Equations
(1a) and (1b) to label terms that are to be treated as perturbations in the
strong-DM regime (see Kaup et al. 1999).

To compensate the loss accounted for by the coefficient a, Equations (1a)
and (1b) include the lumped amplification (gain), which is given by

GðzÞ ¼ G0

X
k

dðz� Ltk � dÞ; ð2Þ

where G0 is the gain of an individual amplifier, d is the position of the
amplifier relative to the DC map (see Equations (1c), (1d) and Fig. 1). Pur-
suant to what was said above, the amplification spacing is set equal to the
DM period Lt.

As mentioned above, the amplifier’s position parameter d may be em-
ployed to minimize the collision-induced FS. Fig. 1 and Equations (1c) and
(1d) imply that the length of the anomalous-dispersion segment (the one with
DðzÞ > 0) is L1, while the normal-dispersion segment (the one with DðzÞ < 0),

Fig. 1. The simplest scheme of the dispersion compensation (one channel is shown). Solid and dashed lines

represent, respectively, the distribution of the local dispersion and gain. The average dispersion is excluded

from the profile of DðzÞ shown in this figure, see Equation (1).
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whose total length is L2 þ d, is split into two parts, to distinguish the
parameter d.

Following Liu et al. 2003, we adopt the following normalizations for the
lengths of the anomalous- and normal-dispersion segments in the DM map
shown in Fig. 1 and the corresponding values of the local dispersions (which
can always be achieved by means of obvious rescalings):

L1D1 ¼ ðL2 þ dÞjD2j � 1; L1 þ L2 þ d � 1: ð3Þ

In particular, the first condition in this set guarantees that the proper average
dispersion of the map (1c), (1d) is indeed zero, so that only the coefficients Du

and Dv are responsible for the average GVD in Equations (1a) and (1b).
In addition to the simplest scheme displayed in Fig. 1, in Section 5 we also

consider a more sophisticated one, shown in Fig. 2, in which the segment of
the length d, between the amplifier and the junction of the anomalous-dis-
persion and normal-dispersion fibers, is given its own local GVD coefficient,
D3, that can be different from D2 (in this case, the first normalization con-
dition in Equation (3) is replaced by Equation (7), see below). It will be
demonstrated that using this extra parameter in the minimization of the
collision-induced FS turns out to be quite beneficial.

For the interpretation of results displayed below, it is necessary to establish
relations between normalized variables and parameters used in Equations
(1)–(3) and the corresponding quantities in physical units. To this end, we
notice that if s ¼ 1 corresponds to t0 picoseconds in physical units (a typical
value of the temporal width of pulses used in fiber-optic networks, that may
be taken as 20 ps, to safely provide for the per-channel bit-rate of 10Gb/s),
and the physical value of the dispersion coefficient is D0 ps

2/km (most typi-
cally, it is 20 ps2/km for the standard telecommunications fiber, and 2 ps2/km

Fig. 2. The DMmap with three different local values of the GVD coefficient. Investigating this scheme, we

fixed the values L1 ¼ 2=5, D1 ¼ 5=2, L2 ¼ 3=5, D2 ¼ �5=3, while D3 and d were varied.
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for the dispersion-shifted one), then z ¼ 1 corresponds to the propagation
distance D0t20 in kilometers. In fact, we will typically be dealing with nor-
malized pulse widths in a ballpark of s0 � 1, that indeed suggests to set
t0 ¼ 20 ps, which is assumed below. The amplification spacing (equal to the
total GVD-compensation period), which is normalized to unity in the present
model, is, typically �80 km in physical units, suggesting the choice of
D0 ¼ 0:2 ps2/km. Then, the remaining normalization conditions in Equation
(3) imply (for the case of the dispersion-shifted fiber) a typical local value of
the GVD coefficient D � 5, in the normalized units.

The physical value of the inverse-group-velocity difference between chan-
nels is cphys ¼ ðt0=z0Þc, where c is the normalized average inverse-group-
velocity difference in Equation (1a). On the other hand, the same parameter
can be expressed in terms of the wavelength difference Dk between the
channels according to the definition of the average GVD coefficient D:

cphys ¼
2ps0D

nk2
Dk:

Here s0 is the light velocity in vacuum, n is the refractive index, and k is the
carrier wavelength. In the results displayed below, the normalized inverse-
group-velocity difference ranges around c � 1, which corresponds to
cphys � 0:25 ps/km, with regard to the above-mentioned characteristic units,
t0 ¼ 20 ps and z0 ¼ 80 km (for the estimate, we adopt n ¼ 1:5, and
k ¼ 1:5 lm). On the other hand, taking the average GVD coefficient
D � 1 ps2/km, the above expression for cphys in terms of Dk shows that
cphys � 0:25 ps/km corresponds to the wavelength difference between the
channels Dk � 0:5 nm, which is a typical value of interest for the modern-day
WDM systems.

The physical loss and gain parameters, measured respectively in dB/km
and dB, are expressed in terms of their normalized counterparts in Equation
(1) as follows: aphys ¼ ð10= ln 10Þa=z0, and Gphys ¼ ð10= ln 10ÞG (recall that a
is actually the normalized loss parameter averaged over the dispersion–
compensation cell).

The values given above can be used to translate results displayed below in
the dimensionless form into physical units. However, as concerns the
parameters d and D3, which, together with the average GVD coefficients Du

and Dv are the essential ones employed for the minimization of the collision-
induced effects, most relevant results for their optimum values are expressed
in the dimensionless form, as this makes it easy to compare, respectively, the
optimum value of d with the amplification spacing (alias dispersion–com-
pensation period), and the values of Du, Dv and D3 with the local GVD
coefficients. Lastly, the initial chirp C of pulses in Equations (4a) and (4b), see
below, is defined in such a way that it is always dimensionless.
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3. The semi-analytical method

Semi-analytical studies of crosstalk effects were performed previously (Kaup
et al. 1999) without taking into account the loss and periodic amplification.
In this section, we develop an approach that explicitly incorporates those
factors. This is an important issue, as crosstalk effects are nonlinear in their
character, hence they may be essentially affected by the periodic variation of
the pulse’s amplitude under to the combined action of the loss and gain.

It is assumed that Gaussian pulses, which represent nonsoliton (quasi-
linear) signals, are launched in the two channels at the point z ¼ 0, with equal
peak powers A2

0, temporal width s0 and relative (dimensionless) chirp C:

U0 ¼ A0 exp �ð1þ iCÞ ðs� T0Þ2

s20

 !
; ð4aÞ

V0 ¼ A0 exp �ð1þ iCÞ s
2

s20

� �
: ð4bÞ

Here T0 is the initial temporal separation (delay) between the two pulses. As
indicated above, we consider only the case T0 ¼ 0, i.e., the pulses completely
overlapping at z ¼ 0, since this case is known to be the most problematic one,
giving rise to the largest FS.

In the linear limit (dropping the XPM and SPM (self-phase modulation)
terms), Equations (1a) and (1b) are decoupled, and have well-known exact
solutions in the form of Gaussians. In the U -channel, the solution is

Uðz; sÞ ¼
ffiffiffiffiffi
P0

p
a0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a20 þ 2iDðzÞ
q exp � 1

2
azþ 1

2

Z z

0

GðzÞdz
� �

exp � s2

a20 þ 2iDðzÞ

� �
;

ð4cÞ

where the accumulated dispersion is defined as

DðzÞ � D0 þ
Z z

0

DðzÞ dz; ð5aÞ

and a0 is the smallest pulse width, attained at the point where DðzÞ ¼ 0. The
constants a0;D0 and P0 may be used as a natural set of parameters charac-
terizing the Gaussian pulse – in lieu of s0, C and A2

0 – as proposed in Kaup
et al. (1999). Relations between the two sets can be readily obtained from the
comparison of Equations (4a) and (4c):
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s0 ¼ a�1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a40 þ 4D2

0

q
; C ¼ 2D0a�2

0 ; ð5bÞ

A2
0 ¼

P0a20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a40 þ 4D2

0

q : ð5cÞ

In terms of physical quantities, the parameter D0, used below for the opti-
mization (although it will be found that it produces little effect, unlike other
parameters), can be expressed, pursuant to Equations (4) and (5b), as fol-
lows: D0 ¼ ðC=2Þ½ða0Þphys=t0�

2, where ða0Þphys is the smallest temporal width
of the pulse, measured in ps, and C is the relative (dimensionless) chirp
defined as in Equation (4).

The central-frequency shift of the wave V is defined as follows:

dx �
R1
�1x � jV ðz;xÞj2 dxR1

�1 jV ðz;xÞj2 dx

�����
�����: ð5dÞ

This definition is used below to calculate FS in numerical simulations as well.
Semi-analytical results for the FS can be obtained by direct application of

a general formula derived in Kaup et al. (1999) by means of the perturbation
theory, treating each pulse as a quasi-particle, with a force of interaction
between them induced by XPM. Taking into account the additional evolu-
tion of the pulses under the action of the loss, and skipping details of the
algebra (which are similar to those elaborated in Kaup et al. 1999), we arrive
at the following integral expression for the collision-induced FS, derived
from the above-mentioned formula borrowed from Kaup et al. (1999):

dx ¼
Z Zmax

0

23=2ePðzÞT 4
0 c � z

½T 4
0 þ 4D2ðzÞ�

� exp � ðcT0 � zÞ2

½T 4
0 þ 4D2ðzÞ�

 !
dz; ð5eÞ

where we have defined

PðzÞ �
X
k

G0 exp � a
2
½z� ðk � 1ÞLt�

� �
Hðz� ðk � 1ÞLtÞ � Hðz� kLtÞ½ �:

ð5fÞ

The integrals in these expressions will be computed numerically, and the
ensuing results will be compared below with those obtained from direct
simulations of the underlying Equation (1).
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4. Direct simulations

4.1. PARAMETER REGIMES

Simulations of the evolution of two identical Gaussian pulses whose centers
coincide at the initial point, z ¼ 0, were run for four sets of normalized
parameters given in Table 1. The pulses were propagated over 10 DM
periods. The gain G0 in Equation (2) was adjusted to other parameters so that
to maintain a constant value of the pulse’s peak power in the simulations
(which remains equal to the initial value).

Numerically determined values of the FS ðdxÞ and TS ðdT Þ were collected
after passing each DM period, for all the cases indicated in Table 1. For
example, Fig. 3 displays values of FS, for Du;v ¼ �1, found after the pulse has
passed three DM periods (longer propagation does not alter the results in this
case; values of other parameters pertaining to Fig. 3 are given in Table 2).
The first conclusion following from this figure is that a range where FS takes
very small values can be easily identified.

Results of systematic numerical simulations are collected in Figs. 4 and 5,
which show the FS and TS versus different pairs of control parameters. In
many cases, regions where the shifts are small are evident (see discussion
below).

Using the accumulated data, we carried out an optimization procedure
with respect to the variation of the parameters d, D3, D0, Du;v, c, and s0. Other

Table 1. Pairs of normalized parameters varied for the optimization (a relation between the normalized

and physical units is described in the text)

Case 1
s0 0.5:0.02:2

d 0:0.02:1

Case 2

D0 �3:0.1:3

s0 0.5:0.02:2

Case 3

D0 �3:0.1:3

d 0:0.02:1

Case 4

D3 �8:0.1:5

D 0:0.02:1

Parameter Meaning

s0 Initial width of the pulse

d Location of the amplifier in the DM cell

D0 Initial chirp of the pulse

D3 Altered dispersion value in the section of length d

The notation Pmin : DP : Pmax implies that the parameter P was varied between the limits Pmin and Pmax

with the step of DP. The physical meaning of the parameters is explained in the table too.
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parameters (in particular, the peak power of the pulse and the amplification
spacing) were held constant at values indicated in Table 2 (either no signif-
icant change of the FS was obtained upon varying those parameters within
reasonable limits in both the two- and three-step setups, or their variation is
not relevant as they are fixed by material characteristics of the fibers).

In most cases, we chose nonsymmetric DM. For example, we took
L1 ¼ 2=5, L2 þ d ¼ 3=5, then, according to Equation (3), we had to set
D1 ¼ 5=2, D2 ¼ �5=3. As concerns the loss parameter, we took into account

Fig. 3. The collision-induced FS versus the pulse width s0 and length d, for Du;v ¼ �1, after the propa-

gation through three DM periods.

Table 2. Values of other parameters used in simulations

Parameter Meaning Value

c Inverse-group-velocity difference between

the channels (see Kaup et al. 1999)

0.4

D(z) Local dispersion coefficient, defined as

D ¼ �2pcb2=k
2, where b2 is the GVD

See Equation (1d)

a Loss coefficient ln(10)

G0 Gain compensating the loss adjusted in the course

of simulations.

Du, Dv Average values of the dispersion in the two channels )1
L1 Length of the anomalous-dispersion

segment (with D > 0)

0.4

L2 Length of the normal-dispersion segment

(with D < 0)

0.6

L Period of DM without adding the section d L1 + L2

Lt Full DM period L + d

zk Amplification spacing =Lt

e Formal perturbation parameter in the quasi-linear

strong-dispersion-management regime

0.1

D1,2,3 Dispersion coefficients in the two-step DM map

(for values of D3 in the three-step DM map, see Figs.

5 and 6)

5/2, )5/3, )5/3

A2
0 Peak power of the pulse 1 mW
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that the peak power of the pulse passing an amplifier spacing is typically
attenuated by a factor of 10, hence, in the present notation (with L ¼ 1,
which coincides with the amplification spacing), we set a ¼ lnð10Þ. These
parameter values can be easily translated into physical ones as described
above.

4.2. DEPENDENCE ON THE AVERAGE DISPERSION ðDu;vÞ

It is well known that the average GVD is an important parameter that
strongly affects the pulse transmission in DM systems. To check the influence
of the average dispersion on the TS, which expresses the eventual effect of the
collision, we ran the simulations taking common values of the average GVD
in the two channels as Du;v ¼ �3:0.1:3 (i.e., varying them between �3 and +3
with a stepsize of 0.1), while other parameters were held constant, d ¼ 0:4,
s0 ¼ 1, D0 ¼ �0:8, D1 ¼ 5=2, D3 ¼ D2 ¼ �5=3, and c ¼ 0:4. However, the
propagation length was varied too, as one may naturally expect that, once the
collision gives rise to a FS, the resultant TS will grow with distance. The

Fig. 4. (a) The collision-induced TS dT versus the normalized propagation distance z=Lt and average

dispersion Du;v, for d ¼ 0:4, s0 ¼ 1, D0 ¼ �0:8, D3 ¼ D2 ¼ �5=3, and c ¼ 0:4. (b) The FS versus c and d
after the passage of seven dispersion–compensation periods.
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results are shown in Fig. 4(a). The pulse is stable in the whole region of small
values of Du;v, but, at the edges of the interval considered, the temporal width
of the pulse starts to grow abruptly.

As is seen from Fig. 4(a), the TS indeed strongly depends on the average
dispersion. The minimum of the TS in Fig. 4(a) is found around Du;v ¼ 0.
Variation of the parameters d, s0, D0, and D3 leads to moderate changes
of the size of the minimum and its location (in terms of the value of Du;v).
It should be noted that, for some parameter values, while the collision-in-
duced shifts remain small, the pulses may suffer considerable distortion
at large values of the propagation distance (eight DM periods or more).
These parameters are considered as unacceptable for the operation of the
system.

4.3. DEPENDENCE ON CHANNEL SEPARATION AND AMPLIFIER LOCATION

Next, we examined how the collision-induced FS are affected by the inverse-
group-velocity difference c, which determines the channel density in the

Fig. 5. The FS (a) and TS (b) after the passage of 10 periods, for the case of L1 ¼ 0:2, L2 ¼ 0:8, c ¼ 0:4,

D1 ¼ 3, D2 ¼ �0:75, in the three-step model with D3 6¼ D2:
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WDM system, and, simultaneously, by the amplifier’s position d. In this case,
we fixed the initial pulse width s0 and chirp D0: The results, obtained after
having passed seven DM periods (to make it sure that the pulses have
completely separated), are displayed in Fig. 4(b).

Increasing c, we expect a decrease of the FS, since, for small c, the two
pulses remain overlapped longer, which should result in a bigger FS. How-
ever, Fig. 4(b) (which does not include very small values of c, as the inter-
action between the pulses is indeed very strong in this case and makes the
results unusable) shows that this is not always true. Detailed consideration of
the numerical results demonstrates that the dependence of the FS on c is
strongly affected by asymmetric deformations of the pulses caused by the
collision. The deformations make the resulting FS larger.

5. Further analysis: The three-segment model, and comparison with the

semi-analytical predictions

Further inspection of numerical data suggests that a relevant range of the
pulse-width parameter s0, in which an optimum regime (providing for min-
imum of the FS) should be sought for, is 0:5 < s0 < 2. Outside this interval,
the pulse quickly spreads out and loses its shape, if s0 < 0:5, or the FS simply
does not vary much, if s0 > 2 (therefore, it makes sense to focus on shorter
pulses that provide for a higher bit rate). Another conclusion suggested by
the numerical data is that, in order to minimize the FS, d should be taken
from the interval (0.1,0.3). Unlike s0 and d, the initial chirp D0 does not seem
to have an appreciable effect on the FS.

5.1. MINIMIZING FS BY MEANS OF THE THREE-SEGMENT DM MAP

So far, we only considered the dispersion–compensation scheme with two
segments L1 and L2 þ d, whose GVD coefficients are D1 and D2 (Fig. 1).
Further simulations demonstrate that independently adjusting the value of
the GVD coefficient, D3, in the segment of length d makes it possible to
suppress the asymmetric distortion of the interacting pulses, which, as it was
mentioned above, is an essential source contributing to the collision-induced
FS. Thus, the three-segment scheme (Fig. 2) has a potential to further
strengthen the optimization.

Results summarizing the dependence on the parameters d and D3 (which
corresponds to case 4 in Table 1) are collected in Fig. 5. Varying D3 affects
the average dispersion, therefore, in order not to alter its definition, the GVD
parameters were subject to the constraint (cf. Equation (3))
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L1D1 þ L2D2 þ D3d ¼ 0; ð7Þ

so that the coefficients Du;v correctly represent the average GVD.
To comply with the condition (7), it was necessary to choose parameters

from the set of L1;L2;D1;D2, that are to be adjusted. To this end, two dif-
ferent natural options can be considered. The first is adjusting L1 or L2 so that
L1 ¼ �ðL2D2 þ D3dÞ=D1 or L2 ¼ �ðL1D1 þ D3dÞ=D2. The second option is
adjusting D1 or D2 so that D1 ¼ �ðL2D2 þ D3dÞ=L1 or D2 ¼ �ðL1D1 þ D3dÞ
=L2. In fact, we started with values similar to those used in the simulations of
the two-step model (see above): L1 ¼ 2=5, D1 ¼ 5=2, L2 ¼ 3=5, D2 ¼ �5=3
and, after choosing D3 and d, the lengths were adjusted, rather than the GVD
coefficients, as it was concluded that, following this option, much larger
regions could be found in which the FS and TS are small. In addition,
changing the lengths, rather than the GVD coefficients, is, obviously, a more
realistic approach to tuning parameters of a real fiber-optic link. In Fig. 5(a)
and (b), one sees that, indeed, both the FS (Fig. 5(a)) and TS (Fig. 5(b)) may
be made smaller by means of choosing D3 different from D2.

To achieve the optimal operation regime, it is best to select parameters that
make FS and TS small simultaneously. Indeed, the minimization of the FS is
most appropriate for a long link containing many DM periods, while for
relatively short links, consisting of several cells, most relevant is direct min-
imization of the TS. Thus, simultaneous minimization of both shifts will
guarantee homogeneous optimization of a heterogeneous fiber-optic network,
which is the objective of major practical interest.

Taking, for instance, the data corresponding to Fig. 5(a) and (b), we were
indeed able to identify parameter regions where the simultaneous minimi-
zation of FS and TS is possible; the resulting double-optimum areas are
shown in Fig. 6 (the shaded area). As an example produced by this double-
optimization procedure, one can take parameter values close to d ¼ 0:15 and
D3 ¼ �5. The optimum regions resulting from this procedure slightly change
with the variation of the total propagation length.

5.2. COMPARING THE NUMERICAL AND SEMI-ANALYTIC RESULTS

The semi-analytical prediction for the FS given by Equation (5e) was com-
pared with the results of direct simulations. A typical example of the com-
parison is displayed in Fig. 7, which shows the semi-analytical results for the
same case that was used to obtain the numerical results shown in Fig. 5(a).
This and other examples demonstrate a qualitative, although not extremely
accurate, agreement. The difference between the semi-analytical and
numerical results is relatively sensitive to the value of the initial chirp D0.
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Such differences may be expected, since SPM (nonlinear intra-channel) effects
are not included in the semi-analytical results.

5.3. SEARCH FOR A GLOBAL OPTIMUM

The above analysis focused on the optimization procedure based on the
variation of parameters in pairs, while the other parameters were held fixed.
We also searched for a global optimum by varying all the parameters that
may be reasonably subject to variation, in order to find a global minimum of
the FS in the five-dimensional parametric space ðd;D3;D0;Du;v; s0Þ. In doing
so, the variation of the parameters was confined to intervals 0:6 < s0 < 1,
1:5 < Du;v < 1:5, �8 < D3 < 5, 0 < d < 0:3, and �5 < D0 < 5. These inter-
vals were suggested by the previous results obtained by varying the param-
eters in pairs. A global FS minimum was thus found at s0 ¼ 0:8, Du;v ¼ �1:5,

Fig. 6. Juxtaposition of contour plots of the FS (thin curves) and TS (thick curves), which correspond,

respectively, to Fig. 5(a) and (b), produces the shaded region where both shifts take small values simul-

taneously.

Fig. 7. The FS for the same case as in Fig. 5(a), but as found using the semi-analytical result (5e).
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D3 ¼ �4, d ¼ 0:15; the minimum is hardly sensitive to the value of D0 if it is
taken from the interval 5 < D0 < 5. This finding is in agreement with the
other results reported above. It is quite remarkable that the global optimum
is achieved at a finite value of d and D3 6¼ D2, i.e., the three-step model helps
to improve the results indeed.

6. Summary and conclusions

We have systematically considered XPM-induced FS and TS of Gaussian
pulses due to collisions in the two-channel prototype of a WDM system. The
shifts were calculated semi-analytically, using a perturbative formula that
generalizes the treatment of Kaup et al. 1999, and numerically by dint of
direct simulations of the coupled nonlinear Schrödinger equations. The
consideration was focused on the most dangerous case, when the two pulses
completely overlap in the initial configuration. In addition to the straight-
forward two-segment model, a more sophisticated three-segment one was
proposed and analyzed.

The numerical and semi-analytical results were found to be in reasonable
agreement, both showing that efficient minimization of the collision-induced
shifts may be achieved by proper selection of the system parameters. We
found that it is especially beneficial to add a third segment and tune its length
and dispersion coefficient; in particular, the global minimum of the FS was
found for this configuration. In addition to the separate minimization of the
FS and TS, we have also investigated simultaneous minimization of both
shifts in finite regions of the parameter space. The latter result suggests a
possibility for uniform optimization of the operating regimes in heteroge-
neous networks, which incorporate shorter and longer links. An interesting
finding is that the FS does not necessarily decrease monotonically with in-
crease of the inverse-group-velocity difference between the channels.
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