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The physics of Feshbach resonance is analyzed using an analytic expression for the s-wave scattering
phase shift and the scattering length a which we derive within a two-channel tight-binding model.
Employing a unified treatment of bound states and resonances in terms of the Jost function, it is shown
that, for strong interchannel coupling, Feshbach resonance can occur even when the closed channel does
not have a bound state. This may extend the range of ultracold atomic systems that can be manipulated by
Feshbach resonance. The dependence of the sign of a on the coupling strength in the unitary limit is
elucidated. As a by-product, analytic expressions are derived for the background scattering length, the
external magnetic field at which resonance occurs, and the energy shift € — £, where € is the scattering
energy and ep is the bound-state energy in the closed channel (when there is one).
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Introduction.—Feshbach resonance (FR) enables ma-
nipulation of the interactions between ultracold atoms;
e.g., it allows a repulsive gas to be transformed into an
attractive one and vice versa [1-7], as in a BEC-BCS
crossover [8]. The paradigm of FR, as in the low energy
collision of two ultracold atoms, involves the coupling of
an open channel o and a bound state at energy ep in
(another) closed channel ¢, giving rise to resonant varia-
tions of the s-wave scattering length a [4]. This resonance
occurs when e = g, where ¢ is the scattering energy,
namely, when the energy of the closed channel bound state
is close to the threshold of the open channel. This condition
can be experimentally implemented by varying an external
parameter, such as a static magnetic field B, so that the
bound state energy is swept through resonance. As we
show below, this paradigm can be extended to the case
where the closed channel does not have a bound state.

FR is usually formulated as a two-channel scattering
problem, which establishes the relation between the bare
parameters of the scattering problem (electronic potentials,
coupling strength, scattering energy, and external fields)
and the physically relevant observables (e.g., the scattering
length versus external field, a(B), the bound states of the
coupled system, etc.). In this context, it is useful to con-
sider a two-channel model that allows the derivation of
analytical expressions of these observables in order to
elucidate their relation to the bare parameters. Such a
model is not intended to analyze a specific system in detail
in which the intrachannel potentials and the interchannel

0031-9007/13/111(15)/155301(5)

155301-1

PACS numbers: 67.85.—d, 03.75.—b, 34.50.Cx, 75.10.Lp

coupling have a definite form appropriate for the system
under study. Rather, it should be sufficiently general and
simple and, at the same time, encode the underlying phys-
ics. The basic ingredients of a two-channel s-wave scat-
tering problem designed to analyze a FR include (1) the
intrachannel potentials v, (r) of the open channel and v .(r)
of the closed channel (here r is the distance between the
two atoms), (2) the interchannel coupling potential w(r)
(for simplicity we take a constant coupling strength 7), and
(3) an external tunable parameter controlling the energy
difference v = v.(r) — v,(r) as r — oo. Experimentally,
v is often tuned by varying an external magnetic field,
v = aB, where the constant « depends on the specific
system. Thus, knowing the value v = v, for which the
system has a FR is equivalent to finding the magnetic field
By at which the scattering length is infinite.

Our main objective here is to show that FR can occur
even when the closed channel does not have a bound state,
or even when the atom-atom potential in this channel is
repulsive. The motivation for addressing this question is
evident: this will demonstrate that systems for which a
transition from an attractive gas of atoms to a repulsive
gas are feasible even for systems for which v (r) does not
support a bound state. Using a simple model, we show that
this is indeed the case; it is possible to obtain a FR and a
bound state of the coupled-channel system for large
enough coupling 7 of the closed and open channels, even
when there is no bound state in the closed channel. As a
by-product, analytic expressions are derived for the basic

© 2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.111.155301

PRL 111, 155301 (2013)

PHYSICAL REVIEW LETTERS

week ending
11 OCTOBER 2013

physical observables related to FR in terms of the parame-
ters of the scattering problem and a unified treatment
of bound states and resonances is carried out in terms of
the Jost function.

Two-channel scattering problem.—The s-wave two-
channel scattering problem between two atoms a distance
r can be mapped onto a single-particle scattering problem
in the center of mass coordinate system governed by the
Schrodinger equation (in abstract form)

()G =) =)o
w  H.J\u, U, u,
H,=—(d?/dr?) + v,(r) and H.= —(d*/dr*) + v.(r)
are the Hamiltonians (in r space) for the open and closed
channels composed of the kinetic energy operator and
intrachannel potentials v, and v, and & = &;, = k. The
open and closed channels are coupled by the potential
w(r). The boundary conditions satisfied by the closed and
open components of the exact wave function are u,(0) =
u (0) =0, u.(r);—0 = Ae " and u,(r),— = Bsinlkr +
8(k)]. Here, x(g;) >0, A and B are energy dependent
constants, and &(k) is the scattering phase shift. The
s-wave scattering length is given by

tand (k)

= -1 . 2
“ kl—l»](l) k @)

In the standard picture of FR, the closed channel, when
uncoupled from the open channel, is assumed to have
a bound state |B) at energy £z < v.(c0) and continuum
states {| p)} at energies {€, > v.(0)}. The scattering states
of H, are defined as H,|k) = e|k) = k*|k) [assuming
v,(00) = 0 for simplicity]. Eliminating |u,.) from the set
of coupled equations (1) results in a single equation for
lu,), [H, + veg(€)]lu,) = elu,), with an effective poten-
tial vo(e) = wG,(e)wT, where G.(¢) = (¢ — H,)~'. The
T matrix associated with v.y(e) is formally given by
T(e) =[1 — G,(e)veg(e)]™!, and, by definition, a=
—Climy_,(k|T(&)| k), where C > 0 is a kinematic constant.

For example, a particularly simple model takes v,(r)
and v,(r) to be spherical square wells of range R, while
w(r) couples the two channels only at R. Explicitly,

v.(r)=vO(Fr —R)+ (v —A)OR — 1),

(3)
v,(r) = —AOR —r), w(r) = 76(r — R),

where 7 is the coupling strength. Despite being a simple
model, an exact solution of the scattering problem requires
solving a set of coupled transcendental equations. Its
numerical solution (see the Supplemental Material [9])
confirms the analytical results obtained within the tight-
binding (TB) model to which we now turn.

Tight-binding model.—Starting from the continuous
model, we discretize the radial coordinate, r — n, where
n >0 is an integer, and replace —(d?/dr?) by a second-
order difference operator [10]. In second quantization it

translates as a hopping term, —(¥,-,ala,,; + H.c.),
where a,, and a are the annihilation and creation operators
of the scattered particle on the positive integer grid sites

n > 0. The potentials are
ve(n) = (v = M), + vOn — 1),

4
vo(”) = _Aan,lr ( )

w(n) =76, .

After treating the closed and open channels separately, we
will solve the coupled-channel scattering problem.
The Hamiltonian of the closed channel is

HC=(v—A)a}La1 + Z[va:[an—(a:[an_l +Hc)]l 5

n>1

If the well depth A > 0, the potential is attractive at site
n = 1. The potential height v for n > 1 is experimentally
tunable (e.g., via magnetic field). Let f, be the amplitude
of the wave function at site n. For a bound state with
binding energy ez, f, = A.e "2 (n > 1), with k >0
and A, is a constant. Therefore, for n > 1 (i.e., outside the
range of the attractive potential), f, = A, f3 = Ae™ %, and
ep = v — 2 coshk). Simple manipulations yield

k=1logA>0=>A=1, A

83=U—[A+l]. (6)
Thus, there is a threshold potential depth A > 1 for having
an s-wave bound state. A similar scenario occurs also in a
3D continuous geometry, in contradistinction to symmetric
1D or 2D potentials, where any attractive potential of
whatever strength supports a bound state. In the model
treated here, at most one bound state can occur [11]. An
artifact of the TB model is that, for a repulsive potential
with A < —1, the closed channel does have a bound state
above the upper band edge [12]. To avoid this, we will
restrict the potential depth to A > —1. To summarize, for
A >1 the closed channel has a bound state, while for
1>A>0, v, is attractive but there is no bound state.
Moreover, for 0 > A > —1, v, is repulsive and there is
no bound state.

For the open channel we use b} and b, as creation and
annihilation operators. The Hamiltonian is

H,=—Ablb, — > (bl b, + He.). (7)

n=1

For A > 1, the open channel has a bound state, for
1> A>0, v, is attractive, but there is no bound state,
whereas for 0 > A > —1, v, is repulsive and there is no
bound state. The wave function on site n =1 is g, =
A, sin[k(n — 1) + 8(k)], where A, is a constant. The con-
tinuous spectrum is a band of energies,

g, = —2cosk= —2=¢g, =2, 8)

so that the lowest threshold for propagation is g, = —2.
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Now, consider the coupled-channel system. The
Hamiltonian is
H=H.+H,+ (b, +Hc). )

In a scattering scenario, the effective particle approaches
the “origin,” n = 0, in the open channel from right to left
at a given energy, g, = —2cosk, and is reflected back
(rightward) into the open channel. The reflection ampli-
tude, equivalently the S matrix, is S = ¢2°®)_ where 8(k) is
the s-wave phase shift from which a is computed as in
Eq. (2). f,, and g, are the amplitudes of the wave function
on site n for the closed and open channels, respectively
[analogous of u.(r) and u,(r) in the continuous model].
The ‘““asymptotic” forms of f,, and g, are

fn = Ace_Kn) 8n = sin[k(n - 1) + 6(/()] (l’l > 1);
(10)

where « is related to g, as 2coshk = v — g, = 2. Thus,
the “nonleakage” condition, v — g; > 2, guarantees that
propagation in the closed channel is evanescent. Unlike
Eq. (6), here « is independent of the depth A of v..

Solution.—Solving the TB equations we obtain a rela-
tively simple expression for tand(k), independent of sgn(7).
Writingtand(k) = N/Dand q(v, k) = /(v — g;,)* — 4, we
find

N(k, 7, v, A, A)
={272 + Alv — &, + q(v, k) — 2A]} sink,
Dk, 7, v, A, A)
=gq(v, k) + v —2A + (7 — 1)g; + A[(2A — v) cosk
— q(v, k) cosk — cos2k — 1]. (1D

Because N(k,...)=—N(—k,..)and D(k,...) = D(—k, ...),
8(—k) = —8(k) + nm (n = integer). Extracting (k) from
tand(k) requires a reference; in the continuum version,
8(00) = 0, but in TB, “o0” refers to k = .

Next we find at what potential v = vy(7, A, A) we arrive
at a FR as k — 0. This is equivalent to finding the value
of the magnetic field B, for which there is a FR and
|a| — oo (an experimentally relevant challenge). Because
N(0,...) = 0, a necessary condition on v, for achieving
la|l = —lim;_[| tanS(k)|/k] = o0 is D(0, 7, vy, A, A) =
0. From Eq. (11) we easily obtain

[A=1+7+A0-A)P
[AQ—=A)+72](1—=A) °

Equation (11) is also a sufficient condition for |a| = oo
because D(k, 7, vy, A, A) vanishes as k> when k— 0.
Therefore, when v = v, the denominator D in Eq. (11)
vanishes faster than the numerator N o< sink (see Sec. 3 of
the Supplemental Material [9]), and thus, |a| — 0. Hence,
for a given 7, A, A, one can tune v—vy(7,A, A), Eq. (12),
in order to achieve a FR [equivalently, | tan§(0)| = oo].

vo(r, A, A) = (12)

The discussion following Eq. (9) dictates that v must be
positive in order to guarantee the nonleakage condition of
the closed channel as discussed after Eq. (10). Inspecting
the expression (12) for v, we see that it is reasonable to
constrain A < 1. Under this condition, the open-channel
potential is attractive (equivalently, A > 0), but it does not
support a bound state (A < 1).

In order to substantiate our main result, we need to
understand the relationship between the occurrence of
bound states in a coupled-channel system and FRs. A
uniform treatment of resonances and bound states of the
coupled-channel system is achievable in terms of the
Jost function. For v # vy(7, A, A) [Eq. (12)], resonances
and/or bound states of the coupled system exist for
&g # —2. To explore this regime we use the Jost function,
defined (for fixed 7, A, A) as

f(k,v) = D(k, 7, v, A, A) — iN(k, , v, A, A). (13)

The S matrix is given in terms of the Jost function as § =
e?? = (1 + itand)/(1 — itand) = f(—k, v)/f(k, v). The
Jost function in ordinary potential scattering is discussed
in textbooks on scattering theory, e.g. Ref. [13], but here it
is formulated and exactly calculated for a ‘““nonordinary”
scattering problem with an effective energy-dependent
potential. Considered as a function of the complex variable
1=k+ig Osk=m, —0<g<o), f(z,v) is well
defined on the imaginary z axis, z = ig, where it is real.
Solving f(ig, v) = 0 gives the position g(v) that is a pole
of the S matrix on the imaginary axis in the z plane. An
s-wave bound state appears as an isolated zero of f(ig, v <
vy), with g > 0, whereas an s-wave resonance appears as
an isolated zero of f(ig, v > v;), with ¢ < 0. In both cases,
the energy equals —2coshg < &g = —2 (namely, below
the continuum threshold), but, strictly speaking, the reso-
nance energy is located on the second Riemann sheet in the
complex energy plane. Finally, a FR is a zero of f(ig, v)
occurring as ¢ — 0. Thus, a small upward shift of v turns
a zero-energy bound state at ¢ = 0% into a zero-energy
(Feshbach) resonance at ¢ = 0.

We are now in a position to derive our main result.
Equation (12) shows that, for fixed 0 < A < 1, it is pos-
sible to modify A — A’ and 7 — 7’ in such a way that
™ =72+ (A — A’)(1 — A), without affecting v,. We
employ this property for the case A > 1 (the closed chan-
nel has a bound state) and A’ < 1 (no bound state in the
closed channel), or even —1<<A’<0. The equality
vo(1, A, A) = vy(7/, A/, A) guarantees that in both cases
FR exists as is evident from Fig. 1 and as is explained in the
caption. However, only the case A > 1 is commensurate
with the paradigm of the FR spelled at the introduction,
according to which a bound state in the closed channel is
responsible for FR.

This somewhat unexpected result is not an artifact of the
TB model. In the Supplemental Material [9] we present a
formal proof for a continuous model and substantiate it
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FIG. 1 (color online). Phase shift §(k) versus k, Eq. (11). Solid
curve: =2, A = 1.1 >1, A = 0.2 (the closed channel has a
bound state). Dashed curve: 7 = 2.227, A = —0.1 <0, A = 0.2
(the atom-atom potential in the closed channel is repulsive). In
both cases vy(7, A, A) defined in Eq. (12) is equal to 4.264 and
8(0) = 7/2, implying a FR. The curves are virtually identical for
small k because v is determined by the phase shift near k = 0.

numerically. To get a simpler (albeit intuitive) physical
picture, consider the equation for the open channel [H,, +
Verr(e)]¢h, = €4, where vep(x) = wlx — Hc)ilwf- If
H_. has only a continuous spectrum starting at €, >0
(i.e., H. does not have a bound state), then for every
x<0 we have v.(x) = —w[H, — xJ/H, — x| 'wt
that is a negative definite Hermitian operator. Thus,
vsr(x) is a nonlocal attractive potential. By properly tuning
the coupling strength 77 it is possible to get a zero-energy
bound state for x = ¢ = 0. As indicated in the discussion
of the Jost function above, a small upward shift of
the closed channel potential v, moves a zero-energy
bound state into a zero-energy resonance, i.e., a FR.
Summarizing, the physical picture of this new type of FR
is as follows: A strong coupling leads to a zero-energy
bound state in the equation of the open channel alone (that
includes an attractive potential v.). Then, a slight upward
shift of the closed channel potential turns this zero-energy
bound state into a FR.

Right at FR, |a| = oo. Properties of a unitary gas, where
la| = oo, are of great interest in cold atom physics [14].
Direct analysis of Eq. (11) (see Sec. 3 of the Supplemental
Material [9]) shows that the unitary gas is attractive
or repulsive depending upon the coupling strength 7.
Specifically, there exists a threshold 7 such that at the
FR a = —oo(+00) for 7> 7 (7 < 7).

Finally, we use our analytic results within the TB model
to derive explicit expressions for several important quan-
tities related to FR. The simple expressions for these
quantities teach us directly how these physical observables
depend on the parameters v, A, A and 7.

(1) The functional dependence of a on v (that is pro-
portional to the applied magnetic field B) is of utmost
importance. Using expression (11) and the definition (2),
we immediately obtain

272+ A[2(1 —A)+ v+ g(v,0)]
1-A(Q—A)— (7 +A)]+[v+q@,0)]1—-A)
(14)

a(v) =2[

For v = vy, a(v) diverges as a(v) « 1/(v — v,), where
the proportionality constant is easily calculated.

(2) Another important quantity is the magnetic field B,
at which the scattering length vanishes, and a changes sign
without being singular (recall that v = «aB). For an atomic
gas, whose interaction is given to lowest order by a pseudo-
potential, this means a change from a repulsive gas to an
attractive one (or vice versa). v, the solution of a(v,) = 0,
is given by, v; = —([A(1 — A) + ) /A(7> — AA)).
Because of the nonleakage condition, we must have
v, > 0. Hence, a(v) vanishes only when AA > 72,

(3) It is sometimes useful to partition the s-wave scat-
tering length into two terms, a = ay, + ay, Where ay, is
the contribution from the open channel alone and a,, is the
contribution due to coupling between the closed and open
channels. By definition, a,, = —limy_[tany(k)/k], where
v(k) is the phase shift for scattering from the open-channel
potential v,(n) = —A8,, ;. The result is

A sink N _ A
1— Acosk  be 1-A°

(4) Of special interest is the energy shift Ae = g5 — g
between the bound-state energy of the closed channel
(when uncouple) and the scattering energy. g = —2 at
threshold. A FR occurs when v — v, as defined in
Eq. (12). For v = v, the closed channel, when uncoupled,
has a bound state at energy ez = vy — (A + 1/A) [for
A > 1, see Eq. (6)]. Using this result implies [15]

[(1 — A)(A? — 1) + A7T?]
(1—=MNAdQ—=-A)+ 7]

For A >1and A <1, we have Aeg > 0.
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