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Abstract

In this paper, we present a new efficient strategy for constructing a wireless tree network con-
tainingn nodes of diameteA while satisfying the QoS requirements such as bandwidth and delay.
Given a tree networll’, a coredian path is a path ifi that minimizes the centdian function, a
k-coredian tree is a subtree ©fwith k leaves that minimizes the centdian function, angkd)-
coredian tree is a subtree @f with £ leaves and diametérat most that minimizes the centdian
function. The(k, [)-coredian tree can serve as a backbone for a network, where the internal nodes
belong to the backbone and the leaves serve as the heads of the clusters covering the rest of the
network. We show that a coredian path can be constructédA) time with O(n) messages and a
k-coredian tree can be constructedxkA) time with O(kn) messages. We provide éi{n?) time
construction algorithm for thék, [)-coredian tree that requir€¥(n?) messages. We also give upper
and lower bounds for a number of nodes covered bykthkister heads in random geometric graph
using critical transmission range of connected network. Finally, simulation is presented for various
values ofn andk.!

Keywords: Ad hoc networks, Sensor networks, Backbone, Centdian

. INTRODUCTION

A wireless ad hoc network is a network architecture containing a number of nodes distributed
across an area using wireless communication links to deliver information between nodes. The

network topology changes rapidly because nodes’ motion, frequent failures, frequent recoveries,

! This research has been partially supported by INTEL and REMON consortium
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power limitations and additional problems related to the propagation channels (e.g. obstructions,
noise) [19, 25, 27, 36]. This network provides to users with the ability of spontaneously forming a
dynamic communication system and allows them to access services of multi-hop communications.
However, in order to offer QoS for ad hoc network nodes the wireless networks have to satisfy user
requests with minimum serviaelayandbandwidth

A wireless ad hoc sensor network contains a number of sensor nodes limited in power and
memory, distributed across an area using the wireless communication links to deliver information
between nodes. Unlike the simple ad hoc network, the topology of the sensor network barely
changes. Currently, the analysis of wireless ad hoc sensor network gains a lot of attention [17, 18,
20, 21], because this kind of network can be used in a variety of application areas such as health,
military and emergence. One of the generic types of applications for these networks is monitoring
where all sensors produce relevant information by sensing the area and transmitting it to a central
node called sink node by broadcasting request.

Hierarchical structures have been used to provide scalable solutions in many large networking
systems [14-16, 37]. These networks are composed of large numbers of low-power nodes that
collect some information, which can be sent to the center of the network. Bejerano [16] studied
the problem of connecting static wireless networks by a wired backbone ensuring the QoS require-
ments are fulfilled. The infrastructure provided by [16] is important for low cost and fast deployed
access networks and for providing access to sensor networks. In these networks some nodes are
selected as the gateways (cluster heads) to access a wired/wireless backbone where each of the
cluster heads serves a cluster of nearby wireless users (cluster nodes). In such networks, the ag-
gregation of nodes into clusters controlled by a cluster head provides a convenient framework for
the development of important features such as code separation (among clusters), channel access,

routing, and bandwidth allocation [40, 42].
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In sensor networks, scalability is one of the important issues since they expected to operate
with up to millions of nodes. This has implications, particularly with energy, which ideally should
not be wasted on sending data to base stations that are potentially far away. Energy waste can
be prevented by separating the sensor networks into clusters and nominating nodes that carry out
aggregation and forward the data to the sink [41].

In this paper we present a new concept of constructing a wireless subtree network while sat-
isfying the QoS requirements such as bandwidth and delay. The proposed infrastructure can be
used to collect information from sensor networks or to provide services to satisfy QoS constrains
in mobile ad hoc or sensor networks. The motivation comes from gathering data application by
request where the sink node forms a broadcast tree and asks from the sensing nodes to transmit
data from the sensing areas for a certain period of time aiming to minimize the bandwidth and
delay criterions. Our concept uses a subtree network as the backbone, and partitions the rest of the
nodes into clusters in which each leaf of the backbone serves as the head of the cluster. The head
of the cluster plays a role of the gateway to access the wireless backbone for all its cluster nodes.
By selecting a given number of clusters with a limited number of nodes in each cluster and by
bounding the diameter of the backbone, we provide an efficient backbone construction that leads
to a balance between the convergecast and delay constraints.

Let G(V, E) be the wireless network whefé is the set of wireless nodegf = n) andE
is the set of undirected edges representing wireless connection between the nodeg/, I8}
be the tree network wherE’ C FE and letU be the set of leaves in the tree netwa@rkU C V.

For any two nodes, v € V, d(u,v), is the minimal weighted distance path betweeandv i.e.
the sum of the weighted edges in the tree network betwesmdv. Let dist(v) be the maximum
weighted distance from nodeto other nodes in the network, ardm (v) be the sum of weighted

distances in the network from all nodes to nadelf P is a path inT, thend(P) denotes the
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total weight of weighted edges oR. The total weighted distance from all the nodes to path
Pis sum(P) = ) . d(u, P), whered(u, P) = min,ep d(u,v) anddist(P) is the weighted
distance from the farthest leaf il to the pathP. The centerof a tree networkl’ is a node
¢ € T, in which the maximal weighted distance franto any other node i’ is minimized, i.e.
dist(c) = min,er dist(v). Themedianof a tree networK" is a noden € T, in which the sum of
weighted distances from other node§ito nodem is minimized, i.e.sum(m) = min,er sum(v).
Thetransportof a treeT’ rooted atv is defined as the total weighted distance of packet trans-
missions required to deliver packets from all nodes to the core ndxyea convergecast process
on the tree. The maximum delay of the tfBeooted atv is the maximum weighted distance to be
traversed by any packet in traveling from core node other nodes. The corresponding solution
concepts for convergecast and delay constraints have been considered in the literature as median
and center [1-3]. By choosing the core to be the median node we minimize the convergecast of the
network, but we overlook the nodes at the network peripheral. By choosing the core to be the cen-
ter node we minimize the delay of the network. However, locating the core at the center may cause
a large increase in the total weighted distance from all the nodes to the core. The compromise of
using only center or median as a core, lead to a search for the conceptasaltdcan where the
centdian function presents a kind of trade-off between the center and the median functions [4,5, 7].

The centdian functiol, (v) for nodewv in the network is defined by the following expression:
Dy(v) = X sum(v) + (1 — A) - dist(v), 0 < A <1 (1)

The centdian concept is well known in the facility location field [4,5, 13, 26, 33-35, 38, 39]. Aver-
bakh and Berman [13] considered the problem for finding an optimal location for a path on a tree
network, using combinations of minisum and minimax criteria. They [13] minimized both criteria
separately but did not use the above centdian function. Becker et al. [26] considered the same

problem as [13] with a path length of at m@<in a tree network. Becker et al. [38] dealt with two
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related problems. The first was to find a pa&tlon a tree network that minimizesim (P), when
the length ofP and the weighted distance from the farthest leaf ito the path” are bounded by
a fixed constant. The second issue was to find a path a tree that minimizegst(P), when the
length of P and the total weighted distance from all the nodes to patire bounded by a fixed
constant. Dvir and Segal [7] were first to deal with the centdian function as expressed by Eq. (1)
in the context of ad hoc networks.

The center path of tre€ is a pathP which minimizesdist(P), while a core pathX of T'is

a path which minimizesum(X) = > _,, d(v, X). Jennings [6] presented distributed algorithms

veV
for finding center path and core path in asynchronous network$4x) time with O(n) messages,
where A is the diameter of the network. Additional results on center/core paths can be found
in [6,8-11, 22—24].

The(k,1)-core tree off" is a subtred” C T that minimizes the sum of the weighted distances
from the nodes of" to the subtred”, with preciselyk leaves, and a diameter of at méstThe
problem of constructing &, [)-core tree is a constrained version of theore tree problem [8,11]
with an unbounded diametet & oc). Peng et al. [8] were first to present ér{nlogn) and
O(kn) time algorithms that solve thie-core tree problem. Later, Shioura and Uno [9] improved
the results for the:-core tree problem t@)(n) time. Becker et al. [11] dealt with thg, [)-core
tree problem and presented @iin? log n) time algorithm for arbitrary edge lengths and@m?)
time algorithm for equal edge lengths. Recently, Wang et al. [10] presented two algorithms for
constructing &k, [)-core tree. The first algorithm ha¥n?) time complexity for the case in which
each edge has an arbitrary length. The second algorithr®fias) time complexity for the case
in which the lengths of all edges are 1. All the above mentioned algorithms are centralized and
therefore, are not applicable for use in networking environment.

The k-center tree is a subtré€ C T minimizing the weighted distance from the farthest
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leaf to the subtre&”, with preciselyk leaves. Thek, [)-center tree off" is subtre€l” C T that
minimizesdist(T"), with preciselyk leaves and a diameter of at mdst Efficient O(A) time
solution for construction of-center tree has been shown by Wang [12].

The rest of the paper is organized as follows: In Section Il we show how to construct a coredian
path. Afterwards in Section Ill, we prove that a coredian path is containél if-coredian tree
and present a construction of, [)-coredian tree. At Section IV we provide an upper and lower
bounds for a number of nodes covered bylusters. Finally, we show simulation results and

conclude with future directions for research.

[I. FINDING A COREDIAN PATH

In this section we will show how to construct a coredian patb{d\) time with O(n) mes-
sages in asynchronous distributed fashion. First we give a number of definitions and afterwards we
show some useful properties that allow us to build the coredian path efficiently.

Let P, , be a path in the tree network between nedend node:. PathP, , is the coredian
path for given\, 0 < X\ < 1ifits centdian function achieves a minimum over all other paths in the
tree network, where the centdian function of a pBth is defined as
Dy(P,u) = X - sum(P,,) + (1 — ) - dist(P,,), 0 < A < 1. Let nodev be a leafy an arbitrary
node and: the center node in the tree network. Lt, be a path in the tree network such that
P,, =< uy,ug,...u >, Wwhereu; = r andu, = v. Definesaved, (P, ,) = sum(v) — sum(P,,)
and saveds(P,,) = dist(v) — dist(P.,). Notice thatsaved; andsaved, are positive or equal
to zero values. Wang [12] showed thatved; (P, ,) = Zlgigt—l d(u;, uiy) - size(uiy1) Where
size(u;41) IS the number of vertices contained in the subtree rooted.atwith 7" rooted atr.
Define savedy(P,,) = Dx(v) — Di(F,,), whereD,(v) is the centdian function of leaf and
D, (P, ) is the centdian function of the path ,, wherer is an arbitrary node ifi’".

Lemma I1.1: Two endpoints of coredian path are leaves of a tree netiliork
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Proof: By definition, the coredian patl? attempts to minimize the centdian function. Jen-
nings [6] proved that the endpoints of the core path are leaves whereas the endpoints of the center
path may not necessarily be leaves. From the centdian function we can observe that(thg

value can remain the same for subp&hC P during the process of growing’ to P’ = P, but

the sum(P’) has to decrease. Thus, the minimum of the centdian function will be achieved when

the path touches two leaves from both ends. |

Lemma II.2: In a tree networH’, wherec is the center df' andv is any leaf ofl’, savedy(P.,) =
d(P.,).
Proof: The diameter of any tree network is the longest path in the tree network, where the center
node lies on the diameter. Lé}, and P, , be the paths that composing the diameter gath
in our tree network. Assume thdtr.,) > d(F~.,). If v € P.,, wherev is the end node of
the path ¢ = x, as shown in Figure 1(a)) then the path that defiie$(v) value contains the
center node.. Otherwise, we can increase our diameter. Therefos&v) = d(P,.) + d(P.,),
dist(P.,) = d(P.,) andsavedy(P,,) = d(P,.) + d(P.,) — d(P.,) = d(P,.) = d(P.,). If
v ¢ P., asshown in Figure 1(b), then the path that definedthiv) value has to be the path from
v containing the center nodewhich then combines t&. ... Thereforelist(v) = d(P.,)+d(P..),
dist(P.,) = d(P..) and savedy(P,,) = d(Pey) + d(Pe.,) — d(P..) = d(P.,) (this case is

equivalent to the case wherves P, ). |

The following lemma shows thatived), value is a balanced combination @fved; andsaved,

values. Thus, it shows a relationship between convergecast and delay constraints.
Lemma Il.3: Let r be an arbitrary node anda leaf inT. Thensavedy(P,,) = Dx(v) —

Dy\(P,,) = Asaveds(P, ) + (1 — X)saved; (P, ).

Proof: By definition saved,(P,,) = Dx(v) — Dx(P.,). ThereforeD,(v) — D\(P,,) =
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[Adist(v) + (1 — A)sum(v)] — [Mdist(P,,) + (1 — X)sum(P,,)] = Adist(v) — dist(P.,)) +
(1 = X)(sum(v) — sum(P,,)]) = Asaveds(P,,) + (1 — X)saved; (P, ). |

Lemma Il.4: Let P.; andP,,, be two rooted paths ifi. from the centee of the tree networll’
to leaves andl;, respectively, whe,(F.;) < D\(P.,,). LetP.; be a path in whictP.; N P, #
0, P.; NP, # 0. ThenDy(P,;) < D\(Py,).

Proof: Let P., andP,, be the paths that composing the diameter @thin our tree network

T, assuming thad(P. ) > d(P.,). From the definition of the centdian function we have
Dy(P.;) = X - sum(P.;) + (1 — \) - dist(P.)
Dy(P.;,) = A~ sum(Pe.;,) + (1 = X) - dist(Pey,).

Figure 2 shows an example of two patRs, and P.,;, that are rooted at the center of the tree

network and have a common path;. Sincec € P, ,,

|dist(Pey) — dist(Pey,)| < d(Fea) — d(Pry) (2)
and fromD,(P.;) < D,(P.;,) it follows that

[sum(Pey) — sum(Pey,)| < d(Pez) — d(Pey) 3)
Removing the common path.; from both paths’,; andF,,;, gives

\dist(P;,;) — dist(Piy,)| < d(P.,) — d(P.,) 4)

However,sum(P;;) = sum(P.;) + X, sum(P,;,) = sum(F,,;,) + X and therefore, according to

Ea. (2),
|sum(Py1) — sum (P, )| < d(FPe) — d(Pey) +2X (5)

Thus, according to Eq. (4) and EQ. (B)s(P;;) < DA(P,y,)- |
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Lemma Il.5: Letv be a leaf of the tree netwoilk andc be the center node of the tree network.

If savedy(P.,) > savedy(P.,),Yu € U, then the leaf is one of the end points of the coredian
path.

Proof. Define rooted coredian path as a path starting from the root nddene of the leaves
minimizing the centdian function over all the paths from the root node to the leaves. Let us define
the coredian path of the tree netwatk® = F;, ;,, andRCP = P,; as the rooted coredian path
of T,, rooted atc. Let us assume that both paths do not intersect as shown in Figure 3(a). Let
be the closest node iIRC'P to C'P and let; represent the closest nodedhP to RC'P. Let us
define patil’'P = P;, = P, U P, ; U P;;,. First, we show thalzC'P andC' P have to intersect.
Notice thatD,(C'P) < D\(RCP), D\(RCP) < Dy(P,,,), P.; C RCP and thatP.; C P.,,.
According to Lemma I1.4D,(P;;) < D,(P;,,), and following the definition of the coredian path
Dy(P;1,) < Da(Pjy,), thusDy(P;;) < Da(Piy,) < Da(Pjy,). We getthatD,(P,;) < Dx(Pjy,)

or in other wordsD, (P;;) < D,(P;;, ). By adding to both path®;; and P;,;, the common path
P;,, the inequality is still satisfied and becomBg(F,;,) < Di(F),1,), 1-€. DA(T'P) < Dy(CP),
which contradicts to the definition &f P. ThereforeCP N RCP # ().

Next, we assume th&tPNRCP # () andl ¢ C P as shown in 3(b), and we want to show that
nodel has to be one of the end nodes of the coredian path. By definlbigif..;) < D\ (F.,;,), and
therefore by Lemma 1., (P,;) < D,(P;;,). Adding a common parf; ,, to P,; and P, ;, gives
Dy(Py1,) < Dx(Py,1,)- Thus,Dy(T'P) < D,(CP), which is in contradiction to the definition of

CP. ThereforeC P has to contain leafas one of its end points. |

Lemma ll.6:Let P, ;, andP,, be a coredian paths ifi, i.e. D\(F,,1,) = Dx(P.;). Then
P, NP, #0.

Proof: Let P, ;, andP,; be a coredian paths ifi that do not intersect as shown in Figure 3(a).
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By definition Dy(F;, 1,) < D\(P, ), using Lemma 1.4 and the common patl ;, it can be
concluded that

Dx(Pj1,) < DA(P;) (6)

By definition D, (P,.) < D\(F,,,), using Lemma Il.4 and the common path;, we obtain
Dy(P,2) < DA(Pj,) (7)

Eq. (6) and (7) stand in contradiction of each other, and therdforen P, # () |

Now we will explain how to find the first end point of the coredian path following the results of
Lemma II.5. First, we need to find the center nedgerving as the root of the tree network, as
shown in Figure 4(a). By starting from the leaves and propagating messages to the root we can
calculate the maximumaved, value among the leaves of the rooted tree network and find the end
point of the coredian path. Each leaE U sends to his parentlégindSave(size(z), saved, (z), savedy(z))
message, whergze(z) is the number of nodes in the subtree rootec:I{in the case of a leaf,
size = 1), saved,(z) = d(z,p.), wherep, is the parent of the nodein the rooted tree network
andsaveds(z) = d(z, p.). Any intermediate node, that obtaingindSave messages from all its
sons in the rooted tree network calculates the following values:
« Using saved; andsaved, of the sons, node calculates theaved), values of its sons and
marks the maximum value gfived, son.
. size(u) =1+ ) size;, Wheresize; is the number of nodes in the subtree rooted at the son
i of u.
e savedy(u) = size % d(u, p,) + saved;, wheresaved; is the value of the marked son that
gives the maximum value clived,.
e saveds(u) = d(u, p,) + savedy, Wheresaved, is the value of the marked son that gives the

maximum value okaved, andp(u) is the parent node.
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After calculating all these values, intermediate nadends to its parent in the rooted tree network
aFindSave(size(u), saved; (u), saveds(u)) message. When the root nodesceivestindSave
message from all its sons, it marks the son yielding the maximumi, and propagates it through
the marked path all the way to leafLeaf! marks itself as the end point of the coredian path, as
shown in Figure 4(b), and begins also to serve as the root of the tree nemarkges to be the
root).

After finding the first end point of the coredian path we compute its second end point. Starting
the same process of messaging, as explained above with our newly rooted tree network, we can
find the leaf which is the second end point of the coredian path, as shown in Figure 4(c). Thus, we
conclude with

Lemma ll.7: Given a tree network and a center node serving as the root, a coredian path can

be found inO(A) time withO(n) messages.

[1l. CONSTRUCTING THE(k, |) COREDIAN TREE

We present a new structure that can serve as a backbone of ad hoc networks. We call this
structure gk, [)-coredian tree of", which is a subtre@” (1, E’) of T' that minimizes the centdian
function, having precisely leaves and diameter of at mdst

A subtre€l” C T'is calledi-maximal tree if the diameter Gf” isé < [ and any larger subtree
containing?” has a diameter larger thanLet S be the set of all-maximal subtrees df'. Clearly,
there is a subtree ifi that contains &k, [)-coredian tree of . In order to construct we proceed
as follows (see [10] for additional explanations):

« Arbitrarily select a node € V' and orientl” into 7.

« Initially, set M = (). Then, proceed to iterate as follows:

— Find a leafq that is farthest from:.
— DeterminelU = {v|v € V(T}),d(q,v) <}, and put(U) into M.
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— If the diameter of the current. is larger than then remove; from 7, and continue
the next iteration. Otherwise, stop the algorithm.

The (k, [)-coredian tree problem can be solved as follows:

1. ConstructS.

2. Within each subtreel € S we find a coredian path from which we construdt-aoredian

tree, using a direct derivation from the algorithm presented in Section II, wheoeegedian
tree is a subtree d@f with & leaves that minimizes the centdian function.

3. Compute &k, l)-coredian tree of ' from a set of the:-coredian subtrees obtained at the

last step.
The authors in [10] proved that the upper bound$ifis n, wheren is the number of nodes in
the tree network. They also have shown that a%ean be constructed i®(n?) time. Using
their iterative algorithm to construét, we get/-maximal tree in each iteration. By constructing
a k-coredian tree from thémaximal tree and keeping the bédét [)-coredian tree over the all
obtained results gives us the optinjal /)-coredian tree.

The direct derivation includefs — 2 iterative operations, starting each iteration from the first
end point of the coredian path adds a new path to the subtree, to obtaittnedian tree. Leaves
propagate to the first end point messages as explained above with a small difference. The subtree
nodes (in the first iteration the coredian path is the subtree) only propagate the messages but do not
calculate and update the values. In the following lemmas we prove that the coredian path has to be
contained in thé-coredian tree. Starting from the coredian path we construct-teredian tree
in O(k) time with O(kn) messages.

Lemma lll.1: Everyk-coredian tree network intersects every coredian path,3.

Proof: Let C'P be the coredian path with leavgsand/, and KC'T' a k-coredian tree network.
Suppose”’ P and KCT do not intersect, therefore there is a p&th, j) betweenC'P and KCT

wherei is the closest node i6’P to KCT and nodej is the closest node i&kC'P to C'P, as
May 1, 2008—12:08 pm DRAFT
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shown in Figure 5 (clearly # j). Letl; € U be any leaf ofKCT. By definition of C'P,
Dy(P,1,) < Dx(F,.,) and by deleting the common path, ; and using Lemma 1.4 we have

Dy(P;1,) < Dy(P,;,). Adding pathP, ; to pathP, ;, decrease®, (F;,;,) and thereford, (P;,,) <

2 J

Dy(P,;,). ReplacingP;,;, by P;;, in KCT results in a bettek-coredian tree, contradicting the
assumption thatf{C'T" is the k-coredian tree. Thug;-coredian tree network has to intersect the

coredian path. |

Lemma lll.2: Everyk-coredian tree network contains a coredian piath, 3.
Proof: Let C'P be the coredian path with leavgsandi, and K C'T' be ak-coredian tree network.
Suppose&’' P is not contained ifC'T'. According to Lemma 111.1, there are two cases:
« CP and KCT intersect at a single vertex For exampleP,;, € KCT andP,,;, € CP,
wheresavedy (P, ,) < savedy(P,;,) andly,l3 € U. By definition of C P we can replace
P, ., with P, ;, to create a subtree withleaves that has a smallest cost (in term&)gj. It
follows that P, ;, has to be a part ak'C'I" and in the same way we can show tiay, has
to be a part oK CT.
« CP andKCT share acommon segmef,. In this case at least one of the nodes is an
intermediate node. We can use the above proof to show that replacingpathith P, ;,
create a subtree withleaves that has a smallest cost (in term®gf, whereP, ;, € KCT.

Lemma I11.3: Given a tree network, &,1)-coredian tree can be found (n?) time with
O(n?) messages.
Proof: From Lemma Ill.2, we know thaf{CT containsCP. A KCT can be considered as

an extension of a coredian path by additionkof 2 paths. Let assume thafC'T is the optimal
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k-coredian tree. In order to prove that our algorithm works, we need the following facts:

. If C'P is a coredian path contained W C'T’, using the iterative algorithm starting from
CP we obtain KCT. At any iteration of the algorithm, we look for patR, where
Dy(currentTree U P) < Dy(currentTree U P'), wherep = currentTree N P and
P’ is any path in the tree network thglt= currentTree N P, p,p’ € V. This fact arises
easily from the way in which the algorithm works. As a resultki€I" containsC'P and
the algorithm starts from' P, in the end we will generate EC'T.

« Every coredian path is contained irkecoredian tree. Let's assume ti@pf = P, is the
coredian path contained IRC'T" of T as shown in Figure 6. Assume that our algorithm
starts fromC” and obtains:-coredian treek C'T" C T. From Lemma 1.6 we know that
C N C" # (. Our goal is to show that the paths chosen by the algorithm to add to
are also included iiKC'T'. Let us consider the steps at our algorithm after choo§ihg
By starting fromC” we can add one of the following pathB, ¢, P, ¢, P. , P, ., P, . as the
path that minimizesaved,. If the best path that minimizes the centdian function of the

subtree isP,

w.er then we have a contradiction with the fact tidais a coredian path since

Dy(P,.4) > Dx(F.p). In the same way we can also prove that addifig to C’ leads

to a contradiction. Therefore, we have only three candidates gaths?, ;, P, . to add.
Notice thatF, . and P, ; belong toC'P and we can add them G’ because they appear
in KCT. RegardingP;;, its addition toC’ means that it also appears as an addition to
C' (when constructinddCT'). Therefore constructing thie-coredian tree front” obtains

KCT.
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IV. THE COVERAGE OF(K, |) - TREE IN RANDOM GEOMETRIC GRAPH

In ad hoc networks, either wireless or sensor, our goal is to build a backbone that will propagate
the messages between the nodes and partition them into clusters, where each cluster has a cluster
head connected to the backbone network. In this section we show upper and lower bounds for the
number of nodes in the cluster areas after constructiig/a tree in a random geometric graph on
the unit square, whereis the number of clusters and cluster hedds the diameter bound of the
backbone network. When we utilize tfve, /) backbone tree network we deal with a backbone that
connects: clusters, where the leaf of the backbone serves as the cluster head apdithmeter
controls the propagating time and energy between the clusters. Clearly, the transmission range of
the cluster head has a great impact on the number of node inside of the cluster.

It is well known that ad hoc sensor networks have a strong connection to a random geometric
graphG(n,r), which is obtained by placing randompoints uniformly on the unit square and
connecting two points if their Euclidean distance is at mof28, 29]. Gupta and Kumar [30]

conclude that, with high probability, the critical transmission range of nodes placed randomly on a

logn \wheren is the number of nodes in

n

disk of unit area to obtain a connectivity should/3e=
the network. Suppose we have buildtal)-coredian tree from a random geometric graph, where
n points are placed uniformly on the unit square of the size- % r? = 1"% We claim the
following:

Lemma IV.1:If the transmission range of the cluster heads jsvherew? > % = 21;%
the upper bound for the number of nodeskimlusters is9(knw? + kl) and the lower bound is
O(nw? + k +1).
Proof: Avin and Ercal [31] showed that in a random geometric graph with uniform node density

across the unit square, a square bin of the dize % p > 11in connected network hagnA) =

e(nﬁ) = f(logn) nodes. Each bin has size dfwhereas in our network each cluster head has a
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transmission range af. Whenw? = % the transmission range of each cluster head can cover

4 bin squares and can reach at most 8 bin more squares, as shown in Figure 7(a). Therefore in
each cluster we hav&(nw?) nodes [31]. Each cluster can stand by itself, therefore we will get

k clusters without overlapping(knw? + kl) (upper bound) or fully overlappin@(nw? + k + 1)

(lower bound), which leaves only 4 bins covered, as shown in Figure 7(b). Therefore, the upper
bound isf(knw? + kl) = Q(k% + k1) and the lower bound &(nw?+k+1) = 6(% +k+1).

V. SIMULATION

This section describes in detail the medium-scale experiment. The objectives of the experi-
ment were to test whether the algorithm actually works and to compare the results with the perfor-
mance of othe(k, () trees. To test our algorithm we have simulate a numbék df) trees (core,
center and coredian), where in each simulation we build a backbone, using our algorithm and other

well-known algorithms for the center and core trees, and check the performance of each backbone.

A. Environment

We have used OMNET [32] environment with Pentium 4, 1G RAM, 1.8Ghz processor and
Windows as OS. The following assumptions were made:

« For each node, transmission and reception ranges are different.

« All the nodes are equal in their functionalities and abilities.

« There is no dependence between the nodes.

« We simulate a network with = 30/50,/100 nodes with a variety ok and! values.
We define the network behavior in a specific scenario based on predefined parameters:

« Number of nodes in the network.
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« Number of cluster head$ fparameter).
« Maximum diameter of the subtreegarameter).

« A value.

B. Results

The main goal of our simulation is to examine the influence of the fieW)-coredian tree
as the backbone network. From the obtained results we can learn thatwhéh5, the(k, [)-
coredian tree is similar to thig:, [)-core tree. Figure 8 shows a number of values for the different
simulation parameters for various values:ofThe convergecast value (the total weighted distance
of the nodes outside of the subtree to the subtree) is inspected for core, center and coredian subtree
(A = 0.25) and observed to be leveled for the core and the corediargasws up. Opposite, the
weighted distance to the farthest leaf is the same for center and coredian subtrees. This can be
explained by\ = 0.25 and Eq. (1), thus emphasizing the weight of the center function. It also can
be seen from the simulation values € 50) that fork = 2 the coredian path and the center path
have the same performance in terms of convergecast and farthest leaf &and fbthe coredian
subtree and the core subtree get the same performance in terms of convergecast and farthest leaf.
However, fork = 6 we learn that th¢k, [)-coredian subtree performance is comparable with the
(k,1)-core subtree performance but better than(the)-center subtree performance.

Figures 9-11 show the influence of the network size on the constraints values of the network.
Figure 9, in particular, shows the connection between the network size and the total weight of the
subtrees. From the results we can conclude that as we increase the network size or the number
of the clusters, the total weight of evef¥, [) subtree also increases. We show at Figures 10 and
11 the convergecast (transport) and delay (farthest leaf) values ¢k thesubtrees. Figure 10
expresses that thg, [)-coredian tree has obtained lower performance in terms of convergecast

than the(k,l)-core tree but has better performance than (the)-center tree for convergecast
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criterion. Figure 11 shows that tti&, /)-coredian tree has obtained lower performance in terms of
delay than thék, [)-center tree but has better performance for delay criterion thafkttigcore

tree. In summary, we can see that tkel)-coredian tree gets a balanced combination between the
delay and convergecast (transport) parameters and give us the ability to chose the balance factor

(either towards the center or the median functions) by setting an appropnatee.

VI. CONCLUSIONS ANDFUTURE WORK

We developed a new distributed algorithm for constructing a (kew-coredian tree in ad hoc
network, based on processing local information of the network. This new subtree can serve as a
backbone for a network, where intermediate nodes serve as the backbone subtree and the leaves
serve as the heads of the clusters covering the rest of the network. We also give an upper and lower
bounds to a number of nodes covered by theluster heads in random geometric graph using
critical transmission range of connected network. We test our new algorithm using the simulation
and have shown that for various network size this algorithm can be used as the backbone tree. An
interesting future research direction is to seek for a self-stabilizing solution t@:thecoredian
tree problem in ad hoc network, when it get partitioned or connected. Analysis of a model where
one assumes some distribution for the velocities of the nodes also seems an attractive research
direction. As for the future work, we consider extending our ideas to capture and combine node
placement, network lifetime criteria, and data traffic management.
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Fig. 1. Cases of Lemma ll.2

Fig. 2. Rooted paths from the center of the tree
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Fig. 3. The coredian and rooted coredian pathg in
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(a) - The Network

(1,2,2) (1,4,4)

Message(size, saved_1,saved_2)

(6,11+6*1,5)

(1,2,2) 1,1,1) 1,7,7) (1,6,6)
(b) - The First End Point
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Fig. 4. Constructing the coredian path
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Fig. 5. Shaded nodes presdtiCT subtree, white nodes presenP path

Fig. 6. Two coredian paths intersect
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Fig. 7. Random geometric graph with uniform node density across the unit square; apdtuster head
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(b)

core tree
k 2 4 6 8
Total weight of 76 149 196 239
the subtree
Convergecast 506 289 178 117
Farthest Leaf 40 25 23 17
center tree
k 2 4 6 8
Total weight of 81 150 198 239
the subtree
Convergecast 512 304 201 117
Farthest Leaf 36 25 22 17
cordian tree, A=0.25
k 2 4 6 8
Total weight of 81 1429 197 239
the subtree
Convergecast 512 289 186 117
Farthest Leaf 36 25 22 17

Fig. 8. Summary results of the simulation;50, A=0.25
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Fig. 9. Total weight of thek, [) trees;n= 30, 50, 100
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N=30 Total convergecast of the (k,/)-tree
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Fig. 10. Total convergecast of tlig, /) trees,n= 30, 50, 100
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Fig. 11. Farthest leaf from thg, ) trees,n= 30, 50, 100
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