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Abstract

A Mobile Ad Hoc Network (MANET) is a network architecture
that can be rapidly deployed without relying on pre-existing fixed net-
work infrastructure. Group communication is a common application
where a single source sends identical information concurrently to mul-
tiple destinations. Trees of special properties are required to provide
efficient network management of such applications. Usually, such trees
have to balance between the requirements to minimize the total tree
cost (derived from energy constraints) and the requirement to mini-
mize the maximal shortest path (derived from delay constraints). This
paper presents a novel solution for efficient multicast trees that ful-
fill both requirements called SPLAST. A detailed discussion covers the
development process, starting from centralized static solution, through
distributed implementation to a complete distributed algorithm that
cope with various scenarios that are relevant to wireless ad hoc net-
works by efficient management and maintenece of the underlying com-
ponents of the algorithm. Simulation inquiry shows that the average
performance of SPLAST is attractive as well.

1 Introduction

A Mobile Ad Hoc Network (MANET) is a network architecture that can be
rapidly deployed without relying on pre-existing fixed network infrastructure
[1]. Wireless communication is used to deliver information between nodes,
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which may be mobile and rapidly change the network topology. The wireless
connections between the nodes (which later will be referred as links or edges)
may suffer from frequent failures and recoveries due to the motion of the
nodes and due to additional problems related to the propagation channels
(e.g. obstructions, noise) or power limitations.

Group communication is the basis for numerous applications in which
a single source delivers concurrently identical information to multiple des-
tinations. This is usually obtained with efficient management of network
topology in the form of tree having specific properties. For example, mul-
ticast routing refers to the construction of a spanning tree rooted at the
source and spanning all destinations [2, 3, 4, 5]. Delivering the informa-
tion only through edges that belong to the tree generates an efficient form
of group communication which uses the smallest possible amount of net-
work resources. In contrast, with unicast routing from the source to each
destination, one needs to find a path from the source to each destination
and generates an inefficient form of group communication where the same
information is carried multiple times on the same network edges and the
communication load on the intermediate nodes may significantly increase.

Generally, there are two well-known basic approaches to construct mul-
ticast trees: the minimal Steiner tree (SMT ) and the shortest path tree
(SPT ). Steiner tree (or group-shared tree) tends to minimize the total cost
of a tree spanning all group nodes with possibly additional non group mem-
ber nodes. The construction of the SMT is known to be a NP-hard problem
[6, 7]. Some heuristics that offer efficient solutions to this problem are given
in [8, 9, 10]. To the best of our knowledge the best solution was derived by
[11].

SPT tends to minimize the cost of each path from the source to each
destination. This can be achieved in polynomial time by using one of the
two well-known algorithms by Bellman [12] or Dossey et al. [13]. The goal
of a SPT is to preserve the minimal distances from the root to the nodes
without any attempt to minimize the total cost of the tree.

The problem considered in this paper is a distributed construction and
maintenance of a good multicast tree with properties that are suited for
mobile ad-hoc networks. This tree is required to balance between the min-
imization properties of the SMT and the SPT by defining two constraints.
The first one states that the cost of each path from the source to any ter-
minal in the multicast tree does not exceed a given constant factor α from
the corresponding shortest path cost in the original graph. The second con-
straint states that the total cost of the multicast tree does not exceed a given
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constant factor β from the total cost of the Minimum Spanning Tree (MST )
with truncating all non group members of degree one in a recursive fashion.
The truncated tree is known to be the Minimum Spanning Tree Heuristic
(MSTH ) of the SMT problem.

The proposed algorithm is based on a combination of the Light Approx-
imate Shortest-Path Tree (LAST) algorithm given by Khuller et al. [14]
and on the concept of spider spanning graphs explained in [15]. Our novel
approach utilizes these two concepts with additional ideas in order to con-
struct and maintain a new multicast tree (which we call SPLAST ) under
nodes mobility.

This paper is organized as follows. Section 2 presents essential definitions
and key terms and cite related work. Section 3 presents the building blocks
of the SPLAST algorithm. Section 4 presents a centralized static solution
that is extended to a distributed solution in section 5. Section 6 presents
and analyzes a new comprehensive SPLAST solution for wireless mobile
scenarios. Average-case properties of SPLAST are explored by thorough
simulations in section 7. Finally, conclusions and recommendations are given
in section 8.

2 Definitions and Key Terms

In this section we briefly introduce all the definitions and theorems that
are used in the rest of the paper and are important for the understating of
the present problem and its solution. We use notations and terms of graph
theory and refer to other researches and results that are relevant to our
work.

A communication network is usually defined as an undirected, connected
weighted graph G(V, E) where V is the set of n nodes and E is the set of
undirected edges of cardinality m. Each edge e(u, v) ∈ E connects two
nodes u, v ∈ V . Every edge e(u, v) ∈ E is assigned a non negative real value
(cost) c(e). A sequence of edges (path) that connects two nodes u, v ∈ V is
represented by P (u, v) with total path cost |P (u, v)| = ∑

ei∈P (u, v) c(ei). The
cost of a spanning tree T of G is defined as |T | = ∑

ei∈T c(ei). A Minimum
Spanning Tree (MST (G)) of graph G is defined as a tree spanning all nodes
in the graph with a minimum total cost [16]. Let s ∈ V be the source
node of the graph (named as root ) and let M ⊆ V be a subset of nodes
that are called terminals (or multicast group). Multicast Tree refers to any
tree spanning the root, all multicast members and possibly additional non
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multicast members of degree larger then 1 that serve as intermediate nodes.
The Steiner Minimal Tree (SMT(G)) is the multicast tree with the mini-

mal total cost. One difference between the SMT and the multicast tree is the
special communications role of the source node in the multicast tree. Usu-
ally one would limit the distance between source and the multicast members
in the multicast tree, a property which is not considered in the construc-
tion process of the Steiner tree. Therefore, in addition to the computational
problems of constructing the SMT, the worst-case end-to-end path length
of a SMT is not bounded ([6, 7]) and it may be as long as the longest path
within the graph.

Let dG(v, u) be the minimal path cost from node v ∈ V to node u ∈ V
in a given graph G and let dG(v) be the minimal path cost from node v ∈ V
to the root s ∈ V in G. A Shortest Path Tree (SPT(G)) [12] Tsp of graph
G with source s ∈ V is defined as a tree spanning all nodes in the graph
with a minimum path cost to the root such that for each node v ∈ V in
Tsp : dTsp(v) = dG(v) and the total cost of Tsp is not constrained. A Short-
Path-Tree Ts of graph G with source S ∈ V is defined as a tree spanning all
nodes in G with dTsp(v)/dTs ≤ δ.

Several researches have been working on multicast tree problem. We
briefly discuss some previous work here.

Kortsarz and Peleg [17] considered a d-MST problem, which finds a
minimum weight spanning tree of a given subset of the vertex set, with
diameter no more than d. Khuller et al.[14] construct a Light Approximate
Shortest Paths Tree (LAST (G)) T which is a spanning tree of G rooted at
s. For α > 1 and β ≥ 1 T is called an (α, β)- LAST rooted at s if: a)
for each vertex v, the distance between s and v in T is at most α times the
shortest distance from s to v in G,that is dT (v)/dG(v) ≤ α; and, b) the total
weight of T is at most β times the weight of a minimum-spanning tree of G
(i.e., |T |/|MST (G)| ≤ β).

Wu et al. [18] construct a light approximate routing cost spanning tree
(LART (G)), which is at most a constant factor larger than the MST (G).
In addition the path cost to any vertex u from the source s is not larger
than a constant factor of the routing distance of G which is defined as
c(G) =

∑
αij ·dG(i, j), where αij is the requirement between nodes i and j.

Only the special case where all the requirements are set to 1 was discussed
in [18].

We formulate the problem of multicast routing as follows: given an undi-
rected, simple, weighted graph G(V, E), a group of terminals M ⊆ V and
a multicast root s ∈ M , find and maintain in a distributed fashion a mul-
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ticast tree T ′(V ′, E′), T ′ ⊆ G and V ′ ⊆ V, E′ ⊆ E such that T ′ spans all
the nodes in M and satisfies the following conditions: a) the path length
in the multicast tree between the source and each node from the multicast
group is as small as possible; and, b) the total weight of the multicast tree
is also as small as possible. This property should be preserved efficiently
under dynamical changes in edges weights. The length of unicast routing
paths between the root and any other node from the multicast group are
minimized in T ′ (under the other constraint given above). Therefore, our
multicast tree efficiently preserves energy for both unicast and multicast
transmissions.

In practice the weight of an edge e(u, v) is defined as a function of the
power transmission level of the nodes u and v that is required to establish a
connection between them. Proximity changes between nodes may lead to an
increase/decrease in transmission power which is then treated as a change
in the edge’s weight.

3 Fundamental SPLAST Techniques

We use several techniques and algorithms in order to accomplish our task
of building the multicast tree. First we build a tree that is at most larger
by a constant factor than the MST (G), with the length of the path to any
vertex u from the source s not larger by a constant from d(u). Next, we
decompose the obtained tree into smaller parts (which we call spiders) and
connect them in an efficient way. In what follows we describe each step of
our algorithm in more details.

3.1 Light Approximate Shortest Paths Tree (LAST)

One of the key components of our proposed algorithm is the Light Approx-
imate Shortest Paths Tree (LAST ) algorithm [14, 19]. The results given
in [14, 19] show that a single tree or graph can balance between the min-
imizations of both MST and SPT trees. The LAST algorithm consists of
several steps: a) Build the MST(G) and the SPT(G). b) Perform a Depth
First Search (DFS(G, s)) walk on graph G starting with the root s. During
this walk construct another graph H that holds the required solution and
is set initially to MST (G). The DFS walk ensures that distance from each
node v to the root s is compared against α ·d(v, s). If this distance is higher
than α · d(v, s), edges from SPT (G) are added to H. c) At the last step
the minimal spanning tree of H is calculated and gives the (α, β) - LAST
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approximation T.
Theorem1 [14]:

Let G be a graph with n nodes and m edges of non-negative edge weights.
Let s be a vertex of G and α, β ≥ 1 and β = 1+2/(α−1). Then G contains
an (α, β) - LAST tree rooted at s. LAST can be computed in linear time
given a MST (G) and a SPT (G), and in O(m + n log n) time otherwise.

3.2 Spider Decomposition

Definition 1[15]: A spider is a tree with at most one node of degree
greater than two. A center of a spider is a node from which there are edge
disjoint paths to the leaves of the spider. A foot of a spider is a leaf, or, if
the spider has at least three leaves, the spider’s center.

Note that if a spider has at least three leaves, its center is unique and
every spider contains disjoint paths from its center to all its leaves. A
nontrivial spider is a spider with at least two leaves.

Let G be a graph, and M be a subset of its nodes. A spider decomposition
of M in G is a set of node disjoints nontrivial spiders in G such that the
union of the feet of the spiders in the decomposition contains M .

A spider decomposition of M in G may be found as follows [15]. Let T
be any rooted spanning tree of G. The depth of a node in T is defined as
the distance of the node from the root. Choose a node v of maximum depth
in the tree such that the sub tree rooted at v contains at least two nodes in
M . Ties are broken arbitrarily. By choice of v, all the paths from the nodes
in M to the node v to in the subtree of v are node-disjoint, and together
with v form a nontrivial spider centered at v. We now delete the sub tree
rooted at v from the tree (or the graph). If no node in M remains in the
tree, we are done. If the tree contains two or more nodes in M , then we can
find a spider decomposition of these nodes recursively. Otherwise, there is
exactly one node in M remaining in the tree. In this case, we add the path
in the tree from this node in M to the spider centered at v. This leaves a
spider centered at v and we are done.

4 The Static Algorithm

In this section our Spider based LAST (SPLAST ) multicast tree is pre-
sented.

The construction of static SPLAST algorithm is given in algorithm 1.
Notice that we use a slightly modified LAST algorithm in step 1; we don’t
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iterate through all nodes of G, but rather from one described in [14, 19] only
through the nodes of M .

Algorithm 1: SPLAST Construction

Input : Graph G(V, E), set of terminals M ⊆ V , source node s ∈ V and
two real numbers α and β such that α > 1 and β ≥ 1 + 2/(α− 1).

Output : SPLAST Graph H ′(α, β), SPLAST Tree T ′(α, β).
Step 1: Run an (α, β) - LAST algorithm on G (with our minor change).
Produce graph H(α, β) and tree T (α, β).
Step 2: Find a spider decomposition D of M in T (α, β)
Step 3: Connect the spiders from D with the source s based on the paths
of T. Produce tree T ′.
Step 4: Delete from graph H all the nodes that do not belong to R, where
R is the set of nodes of T ′. Produce Graph H ′

Theorem 2
For a given graph G, a multicast group M, root s, α ≥ 1 and β ≥

1 + 2/(α − 1) the algorithm correctly produces sub graph H ′(α, β) and tree
T ′(α, β) such that: for node v, the distance between s and v in T ′(α, β) and
in H ′(α, β) is at most α times the shortest distance from s to v in G; the
total weight of T ′(α, β) and the total weight of H ′(α, β) is at most β times
the weight of a minimum-spanning tree of G′ where G′ is the sub graph of
G only with the nodes that belongs to R .

Proof
The LAST algorithm [14,19] and step 3 in algorithm 1 ensures that the

desired α factor is achieved. Let T be any spanning tree of G with a root s
and let z1, z2, z3 . . . , zk be any k nodes of T . From [19] it is known that

∑

i=1...k

dT (zi−1, zi) ≤ 2 · c(T ) (1)

Let T ′ be the MST of H ′. Every node that belongs to T ′m also belongs
to minimum spanning tree Tm of G, so the path p(zi−1, zi) between zi−1 to
zi in T ′m (zi−1, zi ∈ T ′m) is the same in Tm as well. Theorem 2 [19] proves
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that
∑

i=1...k(α− 1) · d(zi) ≤ dTm(zi−1, zi) = dT ′m(zi−1, zi). Therefore, from
equation1 it follows that

∑
1...k d(zi) ≤ 2 · c(T ′m)/(α − 1) and the total cost

of H ′ is |H ′| = |T ′m| +
∑

1...k d(zi) ≤ |T ′m| · (1 + 2/(α − 1) From [14] we can
see that if H ′ is (α, β) LAST so T ′ is (α, β) LAST too.

5 The Distributed Algorithm

Notice that SPLAST algorithm can be viewed as a combination of several
algorithms for example MST, SPT and DFS. First, we shortly explain the
distributed version of above algorithms. Then we show how to combine
them into a unified distributed SPLAST algorithm.

5.1 Distributed LAST Algorithm

We begin our discussion with the distributed LAST algorithm. At the first
stage we use the algorithm proposed in [20, 21] that builds an MST (named
Tm) in a distributed fashion (we assume that all nodes have unique ID’s).
Next we proceed to computing SPT by running an improved distributed
Bellman-Ford algorithm that is presented in [22]. All these operations can
be done in O(n2) time and messages in the worst case. In what follows, we
use the distributed DFS algorithm given in [23, 24] in order to produce the
DFS walk. We note that the output of each of the algorithms (MST, SPT
and DFS ) is produced in a distributed fashion, that is, each node knows its
neighbors in the corresponding tree. In addition, after MST construction
each node v knows its distance from the root s, dTm(v, s), and after the SPT
computation each node v knows its d(v). This can be accomplished by a
simple broadcast process from root s towards the leaves in the correspond-
ing tree. In Algorithm 2 we present a pseudo code for distributed LAST
followed by additional explanations.

Algorithm 2 - Distributed (α, β) Light Approximate Shortest
Paths Tree

At the beginning of algorithm 2 each node is aware of its distance from
the root s in the MST Tm and the distance from s in the SPT Tsp We
construct the required graph H when initially H = Tm. We perform a
distributed DFS walk on H [23, 24]. When node v has been activated
during this walk, v checks whether it belongs to the multicast group. If
not, v sends its distance dH(v, s) to the next node on the walk. If node
v is a member of the multicast group, v checks if dH(v, s) > α · d(v). If

9



Input : Weighted graph G(V, E), root s and α >1, β ≥ 1 + 2/(α− 1).
Output : Graph H (α, β), T (α, β)-LAST.
Step 1: Find a MST (G) Tm by employing distributed algorithm [20,21];
Find a SPT (G) Tsp by employing distributed algorithm [22] with start node
s;
Step 2: Find a preorder numbering of Tm using s as the start node by
employing thedistributed DFS algorithm [23,24];
Step 3: H = Tm;
For each node v ∈ M in the preorder sequence of Tm do
Find a shortest s - v path P in H;
If c(P )> α·d(v)
Then add all the edges in a shortest s - v path in G to H;
Update dH(v, s) and send to next node in the walk;
End; (if )
End; (for)
Step 4: find a SPT of H with start node s by the employing distributed
algorithm in [22]. Produce T.

so, v sends a “connect” message to its parent u1 in Tsp(shortest path tree)
and adds the edge (v, u1) to H. Node u1 sends the same message to its
parent u2 in Tsp and adds the edge (u1, u2) in H. This process propagates
upwards towards the root s and stops after the “connect” message reaches
s. In parallel, v sends its new distance from the root in H to the next node
in the DFS walk. Each node w upon receiving a message with the updated
distance dH(v, s) from its neighbor, updates dH(w, s) if necessary. Note
that every node may participate in the DFS walk several times.

5.2 Distributed Spider Algorithm

Here we explain the distributed spider decomposition algorithm. The algo-
rithm works as follows: every leaf in the LAST -T initiates the process by
sending to its parent in T a message spider(k, prune), where k plays a role of
an accumulator: initially k = 1 if node v ∈ M or k = 0 otherwise, and prune
is a boolean variable: initially prune = 0 if v ∈ M or prune = 1 otherwise.
When a node w receives messages from all its children in T it sums the total
value of k values derived from the received messages plus its own k value,
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obtaining kw. If the sum kw is equal or greater than 2, w declares itself as
a center of a spider and sends a message spider(0, 0) to its parent u in T .
Otherwise, it sends a message spider(kw, kw ⊕ 1). Each node w removes
the children that sent the message spider(0, 1) from its neighborhood list.
If a node z receives a message spider(1/0 , 0 ) from one of its children it
must propagate this message to its parent with ‘0’ in the prune field. The
algorithm terminates when the root receives messages from all its children
and removes nodes if needed. After the algorithm terminates each center is
connected to the root and only the relevant paths connecting terminals to
the root s remain in the tree.

5.3 Distributed SPLAST Algorithm

The steps of the distributed SPLAST algorithm are based on the corre-
sponding steps static SPLAST algorithm. Each step follows a distributed
approach analogous to the corresponding centralized approach as presented
in algorithm 1.

6 Mobile SPLAST Algorithm

Our main challenge is to maintain the resulting SPLAST under dynamic
changes of the network. We assume that each node has a limited battery
power, and therefore required increase in transmission power which cannot
be supported by the battery correspond to edges failures. Similarly edges
recoveries may be related to a decrease in the required transmission power
which now can be supported by the remaining energy of the battery. Re-
coveries and failures of network edges may also happen due to obstructions
and other phenomena related to physical properties of the radio channels.
Weight modifications are functions of changes in the required transmission
power that can be supported by the battery. In the following we describe
how to deal with each one of these updates and how to adjust the underlying
algorithms (i.e., MST, DFS and SPT ) to fit mobile scenarios.

6.1 Maintaining the Minimum Spanning Tree

A primary requirement from a distributed MST algorithm for mobile net-
works is a quick respond to topological changes that are caused by failures,
recoveries and weight modification of the edges. Without loss of generality,
we assume that at any given time only one topological change may occur.
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The solution presented in [25] is suitable for cases of edge failures and recov-
eries but not for modifications of edges’ weights. We modify that algorithm
in order to provide a comprehensive solution for this case as well. The idea
is that each node periodically checks the weight of its adjacent edges. If
the weight of any edge in the MST Tm is increasing or the weight of some
non-tree edge is decreasing, both end point nodes of this edge will update
their neighborhood list by deleting this edge with its old weight and follow
the failure delete algorithm presented in [25]. Afterwards these nodes insert
the delete edge with modified weight by updating their neighborhood list
and follow the recovery algorithm of [25]. This technique provides a way to
maintain a distributed mobile MST.

The algorithm uses O(n + m) messages. In contrast, if one uses an
algorithm (such as GHS [20]) to reconstruct the tree after every failure or
recovery, the message complexity changes to O(m + n log n).

6.2 Maintaining the Shortest Path Tree

Changes in the network topology trigger the execution of the algorithm that
produces an updated Short-Path-Tree where δ equals 3. In the proposed
algorithm we utilize the observation, given in [26].

Observation 1:
When an edge e(v, u) fails, a new SPT may be found by replacing the

failed edge with a new edge of graph G, thus producing a new tree with the
paths length up to 3 times bigger than the optimal.

6.2.1 Edge Failure

When an edge e(v, u) ∈ Tsp fails, Tsp is split to two disjoint subtrees Su and
Sv such that, without loss of generality Su contains root s, node u, and Sv

contains node v where d(u) ≤ d(v). First, each node in the graph should be
informed about the failed node and mark itself to the appropriate subtree.
In order to deal with this case, node u sends to root s a failed(e(u, v), up)
message regarding the failed edge. When root s receives failed(:, :) message
it broadcasts to all nodes in Su a failed(e(u, v), down) message.

Each node in Su that receives this message marks itself as part of Su.
Node v broadcasts to all nodes in Sv a failed(e(v, u), up) message. Each
node in Sv that receives this message marks itself as part of Sv tree and
sends a search message on its outgoing non-SPT edges. Each node in Sv
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that receives a search message replies with an ignore message on the same
edge.

Each node w in Su that receives a search message via edge e(x, w), x ∈
Sv sends back on the same edge a message distance(value), where value
is equal to d(w) + c(x, w) such that e(x, w) connects between Su and Sv.
If a leaf z in Sv tree receives distance(value) messages from all its non-
SPT edges, it chooses the minimum value(min val) and sends a mini-
mum length(min val, z) to its parent in the Sv tree. Every node k in Sv

that receives a minimum length(min val, z) messages from all its children in
Sv and also receives a message distance(value) from all its non-SPT edges
sends to its parent a message minimum length(min val, d) where min val
is the minimum between all min val and value that node k receives and d
is the node that sent this value. This process ends when node v receives
minimum length(min val, d) messages from all its children in Sv and dis-
tance(value) messages from its non-SPT edges between Su and Sv. After-
wards, node v chooses the minimum between all min val and value that it
receives and sends a connect(d) message to node d that corresponds to this
minimum distance. When node d receives the connect(d) message from v it
sends a connect trees message to the node in Su thus reconnecting the two
trees Su and Sv .Node d broadcasts the new distance from root to all nodes
in Sv in order to provide a consistent update of distance from nodes of Sv

to root s.

6.2.2 Edge Recovery

When an edge e(u, v) recovers, a cycle appears in the SPT Tsp. The proposed
LCA mechanism from [25] enables to find the heaviest edge e(x, y) in the
cycle in a distributed fashion. After we isolate the heaviest edge e(x, y), we
delete it from the tree and start the process of a failed edge as explained
above. Notice that we are using the recovered edge e(u, v) in the failed
process as a non-SPT edge.

6.2.3 Edge Modification

In the case edge e(u, v) changes its weight, notice that we determine the type
of e(u, v) before we perform any update. The changes we deal with are a
non-SPT edge that decreased its weight or an edge in the SPT that changes
its weight (notice that in all cases d(u) ≤ d(v)). In all cases we follow the
same procedure below. First we check whether the new edge improves the

13



path length from v to the root s. If not, this process is terminated otherwise,
three cases may occur:

Case 1: A non-SPT e(u, v) edge weight decreased. Node v sends a
search message to node u to check whether the new weight improves its
path length. Node u receives via e(u, v) the search message and replies to v
a distance(value) where value = d(u)+c(u, v). If value improved d(v), node
v switches between the improved edge e(u, v) and the edge that connected
node vto its parent in the SPT.

Case 2: An edge weight increase in e(u, v) ∈ SPT . Node v deletes the
edge e(u, v) with the old weight and starts the failed edge process for this
edge.

Case 3: An edge weight decrease in e(u, v) ∈ SPT . Node v broadcasts
a message new dist(d(v)) to all its children in the SPT regarding the new
distance from the root.

6.3 Maintaining the Depth-First-Search Tree

The main idea of this algorithm relies on the distributed approach of con-
structing the DFS tree [23].

6.3.1 Edge Failure

When edge e(u, v) fails the original DFS tree is split to two disjoint subtrees
Su and Sv such that, without loss of generality Su contains root s, node u,
and Sv contains node v where in the DFS walk starting from s, u is reached
before v. Each node in the graph should be informed about the failed node
and mark itself to the appropriate subtree. This task can be accomplished
by simple broadcast from each one of the roots of Su and Sv where v is the
root of Sv and knows about the failure and s is the root of Su and is not
aware of the failure. Therefore node u should inform s. Before s issues an
instruction to u to start reconnecting Su and Sv we perform two convergecast
processes (one in Su and one in Sv) in order to guarantee that each node in
the converged subtrees has marked itself as belonging to the correct subtree.
Afterward, root s starts the connection processes by choosing node w in Su

with the smallest id and then send it a connect message. When node w
receives this message it tries to connect Su with Sv with its outgoing non-
DFS tree edges. In case of success this process terminates, otherwise, node
w sends to the root an unsuccessful message. When root s receives this
message it picks the next smallest node in Su and send it a connect message.
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This node in turn tries to connect in the same way as w did. This process
continues until one of the nodes success to connect the two subtrees.

6.3.2 Edge Recovery

When edge e(u, v) recovers from a failure, node u sends to its parent in the
DFS tree a message failed(u). Node v sends to its parent in the DFS tree a
failed(v) message. Each node w that receives one of these messages appends
itself to the message and passes to its parent failed(v, w) or failed(u,w)
accordingly. When the root s receives both messages it compares them. If
they are not equal it means that u and v are not from the same branch of
the DFS tree, therefore the root deletes the edge that connects the root to
the first node in the v branch (the last node in v message). If some nodes in
the two sequences are equal, it means that u and v are from the same branch
of the DFS tree, therefore the root sends a delete(z) message where z is the
first node that is not equal in the sequence (the first node in the sequence
of u that is not contained in v sequence when searching from right to left).
When z receives the delete message it deletes the edge that connects it to
v. If node u receive a message from v, it means that u and v are from the
same branch of the DFS tree and the path from v to root pass in u so the
new edge does not change the DFS tree.

6.4 Maintaining SPLAST

Distributed SPLAST algorithm has 4 steps. The first two steps of the al-
gorithm were explained in paragraphs 6.1 and 6.2. The rest of algorithm
is essential for the maintenance of SPLAST, when the network experiences
topology changes. Whenever the tree is updated, we deteriorate the α factor
of the corresponding tree. Therefore, after a number of changes in the SPT
we may need to reconstruct a new SPT from scratch.

7 Simulation Results

The theoretical bounds given before provide information on the worst case
properties of the SPLAST tree and motivate its usefulness for multicast ap-
plications in wireless ad hoc networks. However, average properties are also
important from practical networking point of view. The average properties
of SPLAST trees were investigated with thorough simulation experiments.
For many given graphs with various number of nodes and different topologies
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we compared the efficiency of the SPLAST tree against the minimum span-
ning tree, the shortest path tree, the minimal Steiner tree and one heuristic
of the Steiner tree constructed with the shortest path heuristic (SPH ) [6]
which is known to have good average results.

The α parameter measures the effectiveness of each tree with relation to
the shortest path of each multicast destination to the source, while the β
parameter measures the effectiveness with relation to the total tree cost. As
was mentioned previously, the SPLAST algorithm tries to balance between
these two requirements.

Simulation details are as follows: each point on each graph represents
the average parameter of several experiments on random graphs with fixed
number of nodes. The total number of nodes varied from 4 to 20 and the
size of multicast group is one half of the total number of nodes.

Shortest path measures
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Figure 1: Comparison between the shortest distance properties of the
SPLAST, SMT and SPH trees.

Figure 1 show the properties of the α parameter. In order to compare
the results for different number of nodes, the distance from the source to
each multicast destination was normalized by the shortest distance obtained
from the SPT. The SPLAST tree shows good performance compared with
the SMT and the SPH trees.

Figure 2 shows the properties of the β parameter. In order to compare
the results for different number of nodes, the distance from the source to
each multicast destination was normalized by the total weight of the MST.
Again the SPLAST tree shows good performance on the average compared
against the SMT and the SPH trees.
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Total tree cost measure
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Figure 2: Comparison between the total tree cost property of the SPLAST,
SMT and SPH trees.

8 Conclusion

In this paper we presented a novel approach for the construction of multicast
tree in wireless ad hoc network – the SPLAST algorithm which combines
the LAST algorithm and spider decomposition. SPLAST trees are proved
to keep all the properties of the LAST trees expressed by the α and β
parameters while offering complete solution for multicast applications in
wireless ad hoc networks.

The analysis of SPLAST algorithm started from a discussion of its un-
derlying components: the LAST algorithms, shortest path and minimal
spanning trees, and spider decomposition.
A centralized static solution was presented and later extended to a distrib-
uted implementation, which is crucial for communication networks. SPLAST
applicability to wireless ad hoc networks must be tested with various con-
ditions which are unique for this type of networks: rapid topology changes
caused by edges failures, edges recovery, and changes to edges weights. We
developed a detailed solution to wireless ad hoc scenarios, and analyzed the
overhead of maintaining it various components.

Supported by good worst case theoretical bounds and good average re-
sults explored by thorough simulations, the SPLAST algorithm suggests a
good balance between the minimum spanning tree and shortest path tree
with low complexity in computation time and messages. This suggests that
SPLAST trees may be used as an uniform algorithm for both unicast and
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multicast routing in wireless ad hoc networks.
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