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Abstract

We study the daily river �ow �uctuations of 30 international rivers. Using the detrended �uctu-
ation analysis, we study the correlations in the magnitudes of river �ow increments (volatilities),
and 1nd power-law correlations in volatilities for time scales less than 1 year; these correlations
almost disappear for time scales larger than 1 year. Using surrogate data test for nonlinearity, we
show that correlations in the magnitudes of river �ow �uctuations are a measure for nonlinear-
ity. We propose a simple nonlinear stochastic model for river �ow �uctuations that reproduces
the main scaling properties of the river �ow series as well as the correlations and periodicities
in the magnitudes of river �ow increments. According to our model, the source of nonlinear-
ity observed in the data is an interaction between a long-term correlated process and the river
discharge itself.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The climate system often exhibits irregular and complex behavior. Although the
climate system is driven by the well-de1ned seasonal periodicity, it is also a subject to
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Fig. 1. (a) Flux series of a typical river (Columbia, 1986–1988); (b) DFA3 curve for Columbia river;
(c) model data for three annual cycles; (d) DFA3 curve for a sample of model data.

unpredictable perturbations which can lead to extreme climate events. Here, we study
one component of the climate system, the river discharge.
River �ow can be characterized by several general features. As a result of the pe-

riodicity in precipitation, river �ow has also strong seasonal periodicity. The seasonal
cycle of river �ow is asymmetric; i.e., river �ow increases rapidly (usually during late
winter and spring) and decreases gradually (toward the end of the autumn). The �uctu-
ations in river �ow are large for large river �ow and small for small river �ow. These
features can be easily seen in the river �ow data; see Fig. 1a. It is important to note
that unlike other climate components, river �ow may have a direct impact of human
activity, like damming, use of river water for agriculture, etc., a fact which makes the
river �ow data more diEcult to study.
The �uctuations in river �ow are of special interest since they are directly linked to

�oods and droughts. There are several interesting characteristics of river �ow �uctua-
tions: (i) the river �ow �uctuations have power law tails in the probability distribution
[1,2], (ii) the river �ow �uctuations are long-term correlated [3–5], and (iii) river
�ow �uctuations are multifractal [6–8]. These scaling laws may improve the statistical
prediction of extreme changes in river �ow [9].
Recently, we identi1ed a new nonlinear aspect of river �ow data [10]. The absolute

values of river �ow increments, the volatility, show a pronounced seasonal peak with
several harmonics. However, after eliminating the nonlinearities of the river �ow by
randomizing the Fourier phases of the river �ow increment series, the seasonal periodic-
ity in the volatility series signi1cantly weakened. Moreover, the volatility series exhibits
long-term correlations which are destroyed after randomizing the Fourier phases of the
river �ow increment series. These volatility correlations are an additional indication for
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nonlinearity. These results suggest that absolute values of river �ow increments tend
to appear in clusters, in periodic and long-term correlated fashion.
Here, we study the correlation properties of river �ow �uctuations, using the de-

trended �uctuations analysis (DFA) [11]. The DFA is capable of removing (polyno-
mial) trends from the data—trends are known to have impact on the measuring of
the scaling exponents that quanti1es the long-term correlations in the data [12–14].
We present a simple stochastic model that reproduces several features of river �ow
�uctuations. This simple model may shed more light on the factors that attribute to the
statistical properties of the river �ow data.

2. Methodology

Some enumeration techniques like DFA, encounter diEculties when applied to pe-
riodic time series, like river �ow records. We thus 1ltered out the periodicities of the
river �ow data before applying the DFA method. To exclude the seasonal trend and
study the properties of the �ux �uctuations only, we 1rst diKerentiate the river �ow
time series X̃j=Xj+1−Xj; j=1; : : : ; N−1 (N is the record length), then remove the sea-
sonal cycle: N X̃j=X̃j−〈X̃j〉, where 〈X̃j〉 is the mean daily discharge (over the years of
observation), and then divide by the seasonal standard deviation: Zj =N X̃j=std(N X̃j).
We then integrate the series xk =

∑k
j=1 Zj, to compensate the 1rst diKerentiation. Such

a deseasoning of the increment series excludes seasonal periodicity of river �ow data,
as well as seasonal periodicity in the �uctuations around the seasonal average (i.e., it
normalizes the large �uctuations around large river �ow and small �uctuations around
small river �ow).
In recent years the DFA method has become a widely used tool for studying scaling

properties of nonstationary time series [11]. It was applied successfully, e.g., to DNA
sequences [15], heart-rate dynamics [16–18] and to econometric time series [19,20].
The n-order DFA consists of the following steps: (i) integrating the series under con-
sideration, xi, after subtracting the series average, y(k) =

∑k
i=1 [xi − 〈x〉 ], (ii) splitting

the series yk into segments of length s, (iii) calculating the root mean-square �uctuation
function

F(s) ≡
√√√√ 1
N

N∑
k=1

[y(k)− ys(k)]2 ;

where ys(k) is the local trend and N is the series length. The local trend is evaluated
by 1tting a polynomial trend of order n in the corresponding segment. The nth order
DFA detrends polynomial of order n from the pro1le y(k). When the series follows a
scaling law, we observe a power-law behavior for the �uctuation function

F(s)∼ s� ;
where � is called the scaling exponent. For uncorrelated records �=0:5, for correlated
(persistent) records �¿ 0:5, while for anti-correlated (anti-persistent) records �¡ 0:5.
Integration/diKerentiation of the series, will increase/reduce the exponent � by one.
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In order to check the nonlinearity of river �ow data, we use a surrogate data test
for nonlinearity [21]. We de1ne nonlinearity with respect to the Fourier phases—
if the statistical properties of a time series solely depend on the power spectrum
and the probability distribution regardless of the Fourier phases, the series is con-
sidered to be linear. Otherwise, the series is de1ned as nonlinear. For more details see
Refs. [21,22]. In a surrogate data test the NULL hypothesis is that the series under
consideration is linear. The surrogate data has the same probability distribution and al-
most the same power spectrum as the original series, but with random Fourier phases.
If a statistical measure obtained for the original series is signi1cantly diKerent from
that of the surrogate data, the NULL hypothesis is rejected and the series is considered
to be nonlinear. We used the measures of periodic volatility and volatility correlations
as measures for nonlinearity.

3. The model

To imitate the behavior of real hydrological time series, we consider arti1cial data
with correlated noise on the background of (asymmetric) seasonal periodicity

yi+1 = (1− �)yi + Ayi�i + pi ;

where y represents the river �ow, � is a damping coeEcient, which bounds the �uc-
tuations in river �ow due to limited water sources, A is the �uctuation level, � is a
long-term correlated noise, and p is an asymmetric periodic function

pi = pj+nT =

{
1 + cos(2�fj) for 06 j¡ 2

3 T ;

1− cos(4�fj) for 2
3 T6 j¡T ;

where T is the period (T=365 days), j; n are integers, 06 j¡T; f=3=4T . When the
noise level A increases, the nonlinear term Ayi�i also increases. Such a model mimics
the observed properties of river �ow, i.e., the asymmetric periodic �ow represented by
pi (see also [6] for observations of asymmetry), and the larger �uctuations for larger
river �ow represented by the product of the �uctuations � by the river �ow level y.
We used long-term correlated noise to mimic the persistence behavior found for time
scales up to ∼ 100 days. We tune the values of �, the scaling exponent of correlated
noise �, and the noise level A to 1t the statistical properties of the river �ow data;
in our simulations we use � = 0:1; A = 0:04, and correlated noise � with exponent
� = 0:9 and standard deviation 1. In Fig. 1c we present a typical example of the
model’s simulation. This series shows similar characteristics as seen in the data. We
will show in the following that this simple scheme reproduces the linear and nonlinear
properties of the data. We have generated 30 samples of model data and applied DFA
and volatility analysis and compare the properties of the simulated series with those of
real data.
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4. Results

4.1. Scaling properties

We apply the DFA to hydrological time series of 30 rivers over the globe (daily
records); the mean �ux ranges from ∼ 0:6 to ∼ 2 × 105 m3=s and the series length
ranges from 26 to 171 years with an average length of 81 years. We observed high
correlations with an exponent (slope of power regression) �∼ 1:5 for the period less
than 100 days and a relatively smooth but clear change (crossover) to a smaller expo-
nent �∼ 0:8 for periods longer than s ∼= 100 days (see Table 1). These results are in
agreement with recent 1ndings by Koscielny-Bunde et al. [5]. In Fig. 1b we show the
DFA3 results of the representative Columbia river. The DFA curve exhibits crossover
behavior: for small window size �uctuations are highly correlated with large scaling
exponent while for larger window scales the correlations are weaker and characterized
by a smaller scaling exponent. Model data exhibits similar behavior with similar scal-
ing exponents. The DFA3 curve for the model data is presented in Fig. 1d. In Table 1
we compare the scaling exponents of the data with the scaling exponents of the model
and 1nd a good agreement between model’s results and the data. We thus conclude
that the model reproduces the scaling properties of the river �ux data.

4.2. Volatility correlations

To apply the long-term volatility analysis [18,22], we consider the absolute values of
river �ux increments (seasonally 1ltered) time series, the volatility series, Ỹ k= |Yk+1−
Yk |, k = 1; : : : ; N − 1. We use the DFA3 to study the correlations in the volatility
series. In the window range 1 week–1 year we obtain a correlation exponent �∼ 0:65,
and �∼ 0:5 for window scales larger than 1 year (see results for the representative
Columbia river in Fig. 2a). After applying the surrogate data test for nonlinearity,
the exponent decreases to �∼ 0:5 for window scales larger than one week (Fig. 2b).

Table 1
Results of DFA and volatility analysis for real data and model

Parameter Range Real data Model data

DFA short 1:53± 0:24 1:58± 0:27
exponent long 0:87± 0:11 0:84± 0:13

Volatility short 0:67± 0:11 0:65± 0:13
exponent long 0:55± 0:12 0:51± 0:10

To obtain the mean ±1 standard deviation we average the exponents of 30 world rivers and 30 realizations
of the model (32K data points each). The exponents for the model are within the error bars of the data. The
rivers with corresponding periods of observation are: Barron (79 y), Columbia (114 y), Danube (151 y),
Divoka Orlice (83 y), Fraser (84 y), Gaula (90 y), Isar (39 y), Johnstone (74 y), Kinzig (82 y), Koher
(111 y), Labe (102 y), Maas (80 y), Mary (76 y), Mitta (68 y), Murg (77 y), Naab (26 y), Niger (79 y),
Orinoco (65 y), Regniz (30 y), Rhein (143 y), Severn (71 y), Severnaya Dvina (26 y), Susquehanna (96 y),
Tana (51 y), Tauber (73 y), Thames (113 y), Vils (26 y), Wertach (77 y), Weser (171 y), Zaire (81 y).
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Fig. 2. Volatility: (a) DFA3 results for volatility series (Columbia river); (b) DFA results for
phase-randomized volatility river series (compare to (a)); (c) DFA results for volatility series for a sample
of model data; (d) DFA results for phase-randomized volatility model series (compare to (b)).

The results of surrogate data test, i.e., the decrease in the volatility exponent from large
value to ∼ 0:5, indicate the nonlinearity of the initial river �ow time series. The same
eKect is observed in the simulated data (the results of the model and the surrogate data
for the model are presented in Figs. 2c and 2d, respectively). The obtained value of the
correlation exponent for surrogate model data, �∼ 0:49, is close to the correspondent
value for surrogate real data. A summary of the results for 30 world rivers and for 30
realizations of the model are given in Table 1.

4.3. Periodic volatility

We have shown [10] that power spectrum of volatility series have a pronounced
seasonal peak, the periodic volatility, which disappears after the phase randomization
procedure. This is again a sign of the presence of nonlinearity in the initial series.
In Fig. 3 we show the power spectra of the absolute values of river �ow increments
(without applying the 1ltering procedure 1rst), both for data and model, before and
after applying the surrogate data test that randomizes the Fourier phases. The model
shows similar spectra as for the data. Thus, the model data reproduces also the periodic
volatility of the hydrological records.

5. Summary

We apply an advanced scaling technique, the DFA, to measure the correlation prop-
erties of river �ow �uctuations. We 1nd that the river �ow �uctuations are highly
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correlated for short time scales, up to 100 days (�∼ 1:5), and less correlated for larger
time scales (�∼ 0:8). We also use the DFA to study correlation properties of the abso-
lute values of river �ow increments, the volatility. We 1nd that the volatility series is
correlated for time scales smaller than 1 year (with �∼ 0:65) and that these correlations
almost disappear for time scales larger than 1 year (�∼ 0:5). By the use of surrogate
data test, which randomizes the Fourier phases of the increment river �ow series, we
show that volatility correlations are an indication for nonlinearity [18,22], and that the
nonlinearity decreases for time scales larger than 1 year.
We suggest a simple stochastic model for river �ow that reproduces some statistical

(linear and nonlinear) properties of the river �ow data. The model exhibits asymmetric
periodic behavior with large �uctuations around large river �ow and small �uctuations
around small river �ow. The model reproduces the following properties of the river
�ow data: (i) the scaling exponents of the river �ow series, including the crossover in
the DFA curve, (ii) the scaling exponents of the volatility series for small and large
time scales, and (iii) the periodic volatility of the volatility series. The results of our
model suggest that the nonlinearity of the river �ow reported in this study are due to
interaction of river �ow with correlated process.
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