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Abstract

We present a random walk, fractal analysis of the stride-to-stride 'uctuations in the human gait
rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over
hundreds of strides. This fractal scaling changes characteristically with maturation in children
and older adults and becomes almost completely uncorrelated with certain neurologic diseases.
Stochastic modeling of the gait rhythm dynamics, based on transitions between di)erent “neural
centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model
parameter, the hopping (transition) range, the model can describe alterations in gait dynamics
from childhood to adulthood—including a decrease in the correlation and volatility exponents
with maturation. c© 2001 Published by Elsevier Science B.V.
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1. Fractal scaling of healthy gait

What does human walking have to do with fractals? During gait, the locomotor
system moves the body, one stride after the next, in an apparently regular fashion.
Statistical physics typically deals with phase transitions, 'uctuations, and interactions
that occur at the microscopic level. Here we brie'y describe our investigations of
the subtle stride-to-stride 'uctuations in gait and demonstrate the strong connection
between human walking and random walks. 1 These investigations provide insight into
the neural control of locomotion as well as its changes with aging and disease.

∗ Corresponding author.
1 The present description is based upon Refs. [3–6,15,25]. For more details, see those references.
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Fig. 1. Stride interval time series of a healthy subject during a walk with constant environmental conditions.
While the stride interval appears to be fairly constant, it 'uctuates about its mean (the solid line) in an
apparently unpredictable manner. The stride interval is a measure of the gait rhythm and is typically deKned
as the time from heel strike (initial contact) to heel strike of the same foot.

At Krst inspection, walking appears to be a periodic, regular process. As illustrated in
Fig. 1, however, closer examination reveals small 'uctuations in the gait pattern, even
under stationary conditions [1–6]. One possible explanation for these stride-to-stride
variations in the walking rhythm is that they simply represent uncorrelated (white)
noise superimposed on a basically regular process. This is what one might expect
a priori if one assumes that these subtle 'uctuations are merely “noise”. A second
possibility is that there are Knite-range correlations: the current value is in'uenced by
only the most recent stride intervals, but over the long term, 'uctuations are random.
A third, less intuitive possibility is that the 'uctuations in the stride interval exhibit
long-range correlations, as seen in a wide class of scale-free phenomena [7–12]. In this
case, the stride interval at any instant would depend (at least in a statistical sense) on
the interval at relatively remote times, and this dependence would decay in a scale-free
(fractal-like), power-law fashion.
To answer this question, we Krst measured the stride interval in 10 young, healthy

men [3–6]. Subjects walked continuously on level ground around an obstacle free,
130 m long, approximately circular path at their self-determined, usual rate for about
9 min. To measure the stride interval, the output of ultra-thin, force sensitive switches
was recorded on an ambulatory recorder and heelstrike timing was automatically deter-
mined. For a group of ten healthy, young adults, we Knd long-range correlations with
scaling exponent of �=0:76±0:11 (mean ± standard deviation) for the original stride
interval time series and, after random shuOing, uncorrelated behavior with scaling ex-
ponent �=0:50 ± 0:03; we use the detrended 'uctuation analysis (DFA method) for
the scaling analysis. Similar results were observed for �, the slope of the line Ktted to
the Fourier power spectrum. Thus, � and � (�=2�− 1) both indicate the presence of
long-range correlations and a fractal gait rhythm.
To study the stability and extent of these long-range correlations, we asked 10 young

(ages 18–29 years), healthy men to walk for 1 h at their usual, slow and fast paces
around an outdoor track. A representative example of the e)ect of walking rate on the
stride interval 'uctuations and long-range correlations is shown in Fig. 2. The locomotor
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Fig. 2. An example of the e)ects of walking rate on stride interval dynamics. (Top) One hour stride interval
time series for slow (1:0 m=s), normal (1:3 m=s) and fast (1:7 m=s) walking rates. Note the breakdown of
structure with random re-ordering or shuOing of the fast walking trial data points, even though this shuOed
time series has the same histogram of strides intervals (with the same mean and standard deviation) as
the original, fast time series. (Bottom) Fluctuation and power spectrum analyses conKrm the presence of
long-range correlations at all three walking speeds and its absence with random shuOing of the data. F(n)
is the 'uctuation size at a given window size, n [9].

control system maintains the stride interval at an almost constant level throughout the
one hour of walking (the coePcient of variation was less than 3%). Nevertheless,
the stride interval 'uctuates about its mean value in a highly complex, seemingly
random fashion. However, both DFA and power spectral analysis indicate that these
variations in walking rhythm are not random. Instead, the time series exhibit long-range
correlations at all three walking rates. The scaling indices � and � remained fairly
constant despite substantial changes in walking velocity and mean stride interval.
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Consistent results were obtained for all 10 subjects. For all thirty 1 h trials, � was
0:95 ± 0:06 (range: 0:84 to 1:10). Similar results were also observed for the power
spectrum scaling exponent � (e.g., for all thirty trials, � was 0:93±0:13). Thus, for all
subjects tested at all three rates, the stride interval time series displayed long-range
(fractal-like) correlations over thousands of strides.
To investigate further the possible mechanisms of this fractal gait rhythm, all

10 subjects were studied under three additional conditions. Subjects were asked
to walk in time to a metronome that was set to each subject’s mean stride
interval (computed from each of the three unconstrained walks). The results
during metronomic walking were completely di)erent from those obtained when
the walking rhythm was unconstrained. During metronomically-paced walking,
'uctuations in the stride interval were, surprisingly, anti-correlated in most of the
30 walking trials (the average scaling exponent ± standard deviation are: total: 0:26±
0:24 normal walking: 0:3 ± 0:24 slow walking: 0:2 ± 0:26 fast walking:
0:28± 0:22). 2

These Kndings indicate that the fractal dynamics of walking rhythm are normally
quite robust and intrinsic to the locomotor system. The breakdown of long-range corre-
lations during metronomically-paced walking demonstrates that supra-spinal in'uences
(a metronome) can override the normally present long-range correlations. Since metro-
nomic and free walking utilize the same lower motor neurons, actuators, and feedback,
one might speculate further that supra-spinal control (e.g., the brain) is critical in gen-
erating these long-range correlations.

2. Changes in fractal dynamics with aging and Huntington’s disease

To gain further insight into the basis for this long-term, fractal dependence in walking
rhythm, we investigate the e)ects of advanced age and Huntington’s disease, a neu-
rodegenerative disorder of the central nervous system, on stride interval correlations.
Using DFA, we compared the stride interval time series (i) of healthy elderly subjects
(n=10) and healthy young adults (n=22), and (ii) of subjects with Huntington’s
disease, (n=17) and healthy controls (n=10).
Fig. 3 compares the stride interval time series for a young and an elderly adult.

Visual inspection suggests a possible subtle di)erence in the dynamics of the two time
series. Fluctuation analysis reveals a marked distinction in how the 'uctuations change
with time scale for these subjects. The slope of the line relating logF(n) to log n is
less steep and closer to 0.5 (uncorrelated, white noise) for the elderly subject. This
indicates that the stride interval 'uctuations are more random and less correlated for
the elderly subject than for the young subject. Similar results were obtained for other

2 We Knd this anti-correlated behavior after integrating the stride interval series and subtracting one from
the scaling exponent. This integration procedure is consistent with Ref. [24]. Analysis of the stride interval
series without integration yielded uncorrelated random behavior [3–6].



142 J.M. Hausdor' et al. / Physica A 302 (2001) 138–147

0 100 200 300

-2
0
2

St
ri

de
 I

nt
er

va
l 

(u
ni

tle
ss

) Young Subject

0 100 200 300
Stride #

-2
0
2

St
ri

de
 I

nt
er

va
l 

(u
ni

tle
ss

) Elderly Subject

0.5 1.0 1.5 2.0

log n

-0.5

0.0

0.5

1.0

lo
g 

F(
n)

+
+

++
+++++

++++
+++

++
++++

++
++

+

o
o ooooo

oo
oooooooo

ooooo
oo

oo
o

Young+

Elderlyo
α =  1.0

α =  0.5

Fluctuation Analysis

Fig. 3. Example of the e)ects of aging on the 'uctuation analysis of stride interval dynamics. Stride interval
time series are shown above and 'uctuation analysis below for a 71 year old elderly subject and a 23 year
old, young subject. For illustrative purposes, each time series is normalized by subtracting its mean and
dividing by its standard deviation. For the elderly subject, 'uctuation analysis indicates a more random and
less correlated time series. Indeed, � is 0.56 (≈ white noise) for the elderly subject and 1.04 (≈ 1=f noise)
for this young subject.

subjects in these groups as well. � was 0:68 ± 0:14 for the elderly subjects versus
0:87± 0:15 in the young subjects (p¡ 0:003).
Interestingly, although the correlation properties of stride interval were di)erent in

the elderly and young adults, the Krst moment, the average stride interval, was sim-
ilar in both groups (elderly: 1:05 ± 0:10 s; young: 1:05 ± 0:07 s). The magnitude of
stride-to-stride variability (i.e., stride interval coePcient of variation) was also very
similar in the two groups (elderly: 2:0± 0:7%; young: 1:9± 0:4%). These results show
that while � was di)erent in the two age groups, the usual measures of gait and mobility
function of these elderly subjects were not signiKcantly a)ected by age.
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Fig. 4. The scaling exponents of the stride interval series of 50 children between 3 and 13 years old
[22,23] and a neural hopping model (see below). To study the e)ects of maturation, we divide the children
into 5 age groups: (i) 3–4 year olds (11 subjects), (ii) 5–6 year olds (10 subjects), (iii) 7–8 year olds
(14 subjects), (iv) 10–11 year olds (10 subjects), and (v) 12–13 year olds (5 subjects). We also show data
[3–6] from an adult group (10 subjects 1 h long each; ages 20–30 years). For the model simulation, we
generate 40 realizations for each value of C; the average value is presented. The age axis for the model
follows the relation: age (years)=C + 2. (a) The short-range scaling exponents of the original time se-
ries both for the data (open circles) and the model (black squares). The exponents calculated for window
sizes 6¡n¡ 13 strides, decrease with age [3–6]. The scaling exponent obtained by the model decreases
monotonically as C increases and is within the error bars of the data. (b) The scaling exponent of the stride
interval magnitude series, |�(strideinterval)i|. The magnitude scaling exponent decreases with age, indicating
a loss of magnitude correlations with maturation. The model exhibits a similar decrease and the simulation
is within the error bars of the actual data. The subject-to-subject variability is consistent with the scatter
observed in physiologic indices of neural development [13,14].

The scaling exponent � was also reduced in the subjects with Huntington’s dis-
ease compared to disease-free controls (Huntington’s disease: 0:60 ± 0:24; controls:
0:88 ± 0:17; p¡ 0:005). Moreover, among the subjects with Huntington’s disease,
� was related to degree of functional impairment (r=0:78, p¡ 0:0005), such that
the stride-to-stride 'uctuations become completely uncorrelated in patients with more
advanced disease.
In older adults, we observed a decrease in the fractal scaling exponents. On the

other end of the age spectrum, the scaling properties also change as children mature.
In contrast to what was observed among older adults, the short-range scaling expo-
nents of young children are larger than that seen in healthy young adults and decrease,
becoming more adult-like, as children mature [3–6]. We compare the short range scal-
ing exponents for a group of 50 children [22,23] with those of 10 adults [3–6]; this
exponent decreases from ∼ 1:0 to ∼ 0:7 (Fig. 4a).
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The magnitude series exponent, a measure of volatility [20], 3 of the stride inter-
val series also decreases with maturation (Fig. 4b). These results suggest that gait
pattern of children is more volatile than the usual walking pattern of healthy, young
adults.

3. Modeling the fractal gait rhythm

To investigate the fractal gait rhythm and the mechanisms that might account for it,
we attempted to simulate the experimental results. Deterministic and stochastic models
have been proposed to understand the underlying regulatory mechanisms of walking.
For example, classic “central pattern generator” (CPG) models are based on oscillatory
neural activity, where the interaction between neural centers helps regulate gait dynam-
ics [16–19]. These models, however, do not reproduce the observed fractal scaling. A
stochastic version of a central pattern generator model generates a fractal stride inter-
val time series, like that seen in healthy young adults [3–6]. However, existing models
do not explain observed changes in scaling exponents [3–6], and volatility (magni-
tude) correlations [20] (see above) that occur during gait maturation from childhood
to adulthood.
We propose a stochastic model consisting of a random walk (RW) on a chain, the

elements of which represent excitable neural centers [13]. A step of the RW between
element i and element j represents the “hopping” of the excitation from center i to
center j. The increase of neural interconnectedness with maturation is modeled by
increasing the range of “jump” sizes of the RW, since larger jump sizes will allow
exploration of more neural centers. This property mimics one aspect of the increasing
complexity of the adult nervous system.
Previous studies [21] have identiKed neural centers with pacemaker-like qualities

that Kre with frequency fi, so we represent the network of neural centers by di)er-
ent frequency modes. One mode is activated at a given time (strideinterval ˙ 1=fi),
and the fi are Gaussian distributed. The model is based on the following assumptions
(Fig. 5): Assumption (i) is that the fi have Knite-size correlations, 〈fifi+�〉=〈f2

i 〉=e−�=�0 .
We assume Knite-range correlations among fi because neighboring neurons are likely
to be in'uenced by similar factors [15]. This assumption e)ectively creates “neuronal
zones” composed of neural centers (modes) along the chain with a typical size �0.
Assumption (ii) concerns the rule followed by the RW process. The active neural cen-
ter is determined by the location of the RW. The “jump” sizes of the RW follow a
Gaussian distribution of width C. Assumption (iii) is that a small fraction of noise is
added to the output of each mode to mimic biological noise not otherwise modeled.
The output y becomes y(1 + A�) where A is the noise level and � is Gaussian white
noise with zero mean and unit variance.

3 Other studies deKne volatility as the local variance of the signal. Here by volatility correlations we mean
correlation in the magnitudes of the series increments.
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f i f i+1 f i+2 f i+3 f i+4 f i+5 f i+6 f i+7

Fig. 5. Illustration of the “neural” hopping model. The values of fi are not uncorrelated but rather have
Knite size correlations. Shown is a sequence of four transitions, from mode fi+4 to fi+7 to fi+3 to fi to
fi+2 : : : : Larger values of the hopping-range parameter C are associated with larger “jump sizes” along the
chain. The neuronal zone of size �0 = 4 is indicated by the dashed boxes.
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Fig. 6. (a) Examples of stride-interval series of healthy subjects, ages 5 and 25 years. (b) Examples of
stride-interval generated by the model. Iterating the model with a small value of the hopping-range parameter
(C =3) mimics the stride-interval of young children, while a large value (C =25) mimics that of adults.

The model has three parameters �0, C, and A. We Knd that the best agreement with
the data is achieved when A=0:02 and �0 = 25. In order to simulate changes with
maturation, we vary only the third parameter, C, as a function of age, C =(age − 2)
for ages 3–25 years (see Fig. 6 for visual comparison between the data and the model’s
output). Increasing the hopping range with age is consistent with the fact that neural
transmission is not fully developed until the late teens [6].
Brie'y, we Knd that this simple stochastic model captures multiple aspects of gait

dynamics and their changes with maturation (see Fig. 4), including: (i) the shape of
the probability distribution of the stride interval increments; (ii) correlation properties
of the stride interval; and (iii) correlations properties in the magnitudes of the stride
interval increments. Further, by varying only a single “hopping-range” parameter, C, a
wide array of multifractal dynamics can be generated. The model can also be altered
by “knocking out” certain frequency modes (akin to what may occur during very
advanced age or in response to neurodegenerative disease). Simulation with drop-out
of frequency modes predicts increased gait variability, with (i) increased magnitude
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exponents, and (ii) decrease of long-range correlations. Our preliminary analysis of the
stride interval series of older adults prone to falls is consistent with this prediction.
Generalization of the model to two and three dimensional networks to describe other
types of neurological activities is underway.

4. Discussion

Our Kndings demonstrate that the stride interval time series exhibits long-range,
self-similar correlations. This fractal scaling is apparently an intrinsic feature of nor-
mal walking rhythm. Scaling exponents obtained using two complementary methods,
'uctuation analysis and Fourier analysis, both indicate the presence of long-range,
power-law correlations in the gait rhythm during slow, normal and fast walking. With
random shuOing of the stride interval, the scaling exponents change to that of an un-
correlated random process. Thus, stride interval 'uctuations are not random like white
noise, nor are they the outcome of a process with short-term correlations. Instead, the
present stride interval is related to the interval thousand of strides earlier and this
scaling occurs in a scale-invariant, fractal-like manner.
The presence of a fractal gait rhythm is notable for several reasons: (i) It suggests the

presence of a non-trivial long-term dependence (“memory” e)ect). (ii) Such 'uctuations
are often associated with a non-equilibrium dynamical system with multiple-degrees-of-
freedom, rather than being the output of a classical “homeostatic” process. (iii) Models
of the neural basis of rhythmic motor acts (e.g. CPG’s) need to be re-examined to
account for this previously unanticipated fractal scaling property. (iv) The Knding of
reduced stride interval correlations with aging and with Huntington’s disease parallels
the e)ects of age and disease on the fractal scaling of other processes under neural
control [10–12].
Precise elucidation of the factors a)ecting the fractal dynamics of gait remains to

be determined. Nevertheless, we can begin to form an idea of what contributes to this
behavior. The drastic change of long-range correlations to long-range anti-correlations
during metronomically-paced walking in the same neuro-mechanical system that pro-
duces this fractal behavior during normal walking (i.e., in healthy young subjects) sug-
gests: (i) that supra-spinal in'uences can override the normally present fractal rhythm,
and (ii) that this behavior is not simply a result of the neuro-mechanical interaction of
a highly complex system.
The alterations in the fractal dynamics of the stride interval with advanced age and

Huntington’s disease provide additional evidence. Changes in the fractal rhythm in these
populations are not simply attributable to reduced gait speed or increased stride-to-stride
variability with aging or disease. When healthy young adults walk slowly, the fractal
rhythm is not reduced. Moreover, the magnitude of the stride interval correlations was
independent of gait speed and stride-to-stride variability. Apparently, stride interval
correlations depend on some aspect of the neuro-muscular control system that is not
directly related to walking velocity or gait unsteadiness. The stochastic, neural hopping
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model suggests that perhaps changes in connectivity and the ability of neurons to
communicate with one another contribute to the observed scaling changes in aging and
disease. Further investigations will help to elucidate under what conditions and why
scale-free human walking becomes a non-correlated random walk.
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