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Abstract

We show that it is possible to approximate 1D time-independent short-range potentials by a
sum of � function potentials. By the use of transfer matrix techniques it is possible to calcu-
late the total transfer matrix as well as the S matrix which connects the incoming waves to
the outgoing waves. The transmission coe3cient and the resonance states can be evaluated by
the � function approximation. Using the same approach in potential wells, the energy spectrum,
as well as the eigenfunctions of the well, can be constructed. We examine the approximation,
successfully, on two well-known potentials, the square-well and the harmonic oscillator. c© 2001
Published by Elsevier Science B.V.
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1. Introduction

The numerical calculation of the time-independent Schr<odinger equation has been of
interest since the early days of quantum mechanics [1]. There are few models which
have exact analytical solution and for this reason, methods such as time-independent
perturbation theory were developed [1]. However, nowadays computer capability is
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very high, and it is possible to use them for many complicated tasks as well as simple
assignments such as the integration of the Schr<odinger equation [2–8]. The major aim
of the present study is to give a simple, easy to use, tool which can be implemented
for arbitrary potentials (with or without analytic deFnition). We conFne ourselves to
one-dimensional, real, short-range potentials, although the method can be extended to
higher dimensions.

The one-dimensional time-independent Schr<odinger equation can be written as

H |n〉 = (H0 + V )|n〉 = E|n〉 ; (1)

where

H0 = p2=2m + V0 (2)

has well-known solutions. V0 usually chosen (if possible) such that the eHect of
V is small compared to V0. The basic numerical approach of solving Eq. (1), is
to calculate the matrix elements of the operator H using the known eigenstates of
H0 (denoted as |n0〉). A diagonalization of the matrix Hn0m0 leads to the spectrum
and the eigenstates of the Hamiltonian H . One has to diagonalize an n × n ma-
trix where n → ∞ [1]. However, usually just part of the spectrum is required and
it is possible to increase the matrix dimension until the desired convergence
of the needed levels is achieved. This method is applicable for spatially bounded
potentials.

Other numerical methods are the iterative methods which require repeated numer-
ical integrations of the Schr<odinger equation, accompanied by adjustments of energy
eigenvalues. Usually, an eigenvalue is estimated initially, and then the corresponding
eigenfunction is computed by numerical integration. This eigenfunction enables one to
improve the choice of the eigenvalue for the next iteration and so on.

Some new techniques use a general algorithm of the time-dependent Schr<odinger
equation in order to calculate the energy spectrum of the time-independent
Hamiltonian [2–8]. Starting from a localized wave packet which evolves with time,
the time correlation between the initial state and the later state, 〈 (0) |  (t)〉 can be
calculated. The Fourier transform of the correlation function shows sharp peaks at the
eigenvalue locations [2]. In other studies, it was shown that it is better to use the
Chebyshev series for this propose [3,4]. All the above techniques use the fast fourier
transform (FFT) algorithm, which assumes periodic boundary conditions. Later it was
shown that one can use diHerent grid spacings which are changed according to the
complexity of the motion, a procedure which can speed up the numerical calculation
[5].

For spatially unbounded or semi-bounded potentials, the energy spectrum may be
continuous, and the relations between the incoming and outgoing waves have to be
carefully investigated. A basic assumption in scattering theory is that the potential
is limited in space, and that far from the inJuence of the potential, the wave func-
tion behaves like a free wave [9]. In three dimensions the scheme is as follows:
a plane wave collides with the potential and is then scattered to all space; the
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scattered wave is a spherical wave, and the scattering amplitude for solid angle is
calculated. For potentials with spherical symmetry phase shifts can be deFned; they
depend only on ‘, the angular momentum, and the energy E [9]. Numerical inte-
gration of such a situation is usually done by expanding the outgoing wave into
a Born series. The more elements which are considered the more accurate the
result is.

In one-dimensional systems there are just two directions, left and right. The rela-
tion between incident (incoming waves) and reJected waves (outgoing waves) gives
the S matrix [1]. The essential quantities are the transmission coe3cient and the
reJection coe3cient. There are several numerical approaches for Fnding those
coe3cients. First, one can embed a localized potential in an inFnite well (with or
without periodic boundary conditions). If the well is wide enough the level spacing
is small and, from a practical point of view, the spectrum can be considered as a
continuum. The transmission coe3cient of the localized wave packet which collides
with the potential is similar to that of an inFnite system. However, there are a few
di3culties using such a method. Since one starts from a wave packet, a range of
energy levels are involved, and one cannot know exactly the transmission and reJec-
tion coe3cients of speciFc energy. In order to improve the calculation it is neces-
sary to start from a wider wave packet which is more localized in the momentum
space, a fact which requires additional computer operations. Additionally, since the
space is conFned, after a certain time interference between reJected and transmit-
ted waves may occur. For this reason, an absorption potential should be added in
the boundaries and the Jux through it should be calculated [3,6]. In order to speed
up the numerical calculation one can use the FFT which assumes periodic boundary
conditions.

In contrast to the above-mentioned methods we will not use the dynamical
evolution of the wave packet in order to Fnd the energy spectrum or the transmis-
sion probability. Our approach is based on the fact that the situation is stationary;
a steady incident current collides with the potential and a stationary Jux emerges
to the left and to the right. The energy of the incident particle is well deFned.
Far from the potential range the particle behaves as a free particle. We approxi-
mate the potential as a sum of � function potentials. A transfer matrix from one
side of each � potential to other side of the potential can be calculated; the product
of all those transfer matrices yields the total transfer matrix. Then, the S matrix can
be obtained (the S matrix is the essential property of the solution of the problem).
This idea can be extended to time periodic potentials, as will discussed elsewhere
[10].

Although we focus in this paper on one-dimensional spatially bounded potentials, this
approach can be used in three-dimensional potentials which have spherical symmetry. In
this case the one-dimensional Schr<odinger equation can be written for the r coordinate,
and can be dealt with by the present approach.
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2. Method

The basic idea of this study is the approximation of a potential as a sum of �
function potentials

V (x) =
N∑

n=0

V (xn)�(x − xn)Lx ; (3)

where Lx=(b−a)=N and the range x=[a; b] is the eHective range of the potential (see
Fig. 1 for an illustration). It is clear that when N → ∞ the area under the potential
V (x) is equal to the area under the approximated potential (3). The Fourier transform
of Eq. (3)∫

V (x)eikx dx =
∑

V (xn)
[∫

eikx�(x − xn) dx
]

Lx =
∑

V (xn)eikxn Lx (4)

is another justiFcation for the use of Eq. (3).

2.1. One-dimensional scattering

In the approximation (3), one can assume that the wave function between two con-
secutive � potentials in (3) is a free-particle wave function,

 n(x) = Aneikx + Bne−ikx ; (5)

where  n(x) corresponds to the wave function in the space between the (n − 1)th �
and the nth �. The wave momentum is ˝k =

√
2mE. At the � function locations, the

wave function has to satisFed two conditions:
(a) continuity of the wave function, and
(b) the jump of the derivative of the wave function has to fulFll the Schr<odinger

equation.

Fig. 1. An illustration of the approximation of a well-localized potential by � potentials. The wider lines
represent the inFnite � potentials and the Fnite height of those lines represent the coe3cients which multiply
the � potentials.
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These conditions lead to a transfer matrix from the left-hand side of the V (xn)�(x−
xn) potential to the right-hand side of it

Tn =

(
1 − i

2k
2m
˝2 V (xn)Lx − i

2k
2m
˝2 V (xn)Lx e−2ikxn

i
2k

2m
˝2 V (xn)Lx e2ikxn 1 + i

2k
2m
˝2 V (xn)Lx

)
: (6)

The total transfer matrix is the multiplication of all transfer matrices, Tn,

T = TNTN−1 · · ·T1T0 : (7)

The determinate of the total T matrix is 1 since the determinate of each local Tn matrix
(6) is 1.

At this stage the connection between the left-hand side wave function and the
right-hand side wave function is made by the use of the T matrix,(

AN+1

BN+1

)
= T

(
A0

B0

)
: (8)

One can use the relation between the incoming wave and outgoing wave in order to
deFne the S matrix(

AN+1

B0

)
=

1
T22

(
T11T22 − T12T21 T12

−T21 1

)(
A0

BN+1

)
: (9)

It is clear from Eq. (6) that for each transfer matrix the diagonal elements are complex
conjugate pair, as well as, the oH diagonal elements. These properties hold also for the
total transfer matrix, T ,

T12 = T ∗
21 ; (10)

T11 = T ∗
22 : (11)

Together with the fact that

det T = 1 ; (12)

the S matrix becomes

S =
1
T22

(
1 T12

−T ∗
12 1

)
: (13)

Using Eqs. (10)–(12) it can be easily veriFed that the S matrix is a unitary matrix

SS† = S†S = I : (14)

The resonance state occurs whenever the left incoming wave remains unchanged and
equal to the right outgoing wave. It follows that in the resonance case the S matrix is
a unit matrix. By the use of Eqs. (10)–(12), the conclusion is that the condition for
a resonance state is

T22 = 1 : (15)

In a non-resonance state T22 is a complex number and its absolute value is greater
than one.
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Usually, in one-dimensional scattering problems, one considers a current of free-
particle waves coming from the left, exp(ikx), which collide with the potential, and
split to a left-hand side reJected wave, r exp(−ikx), and to a right-hand side transmitted
wave, t exp(ikx). Using the above terminology, if we take, AN+1 = t, B0 = r, A0 = 1,
and BN+1 = 0, the transmission and reJection coe3cients are

t =
1
T22

; (16)

r = −T ∗
12

T22
(17)

and they satisfy the current normalization |t|2 + |r|2 = 1.
The state itself can be evaluated in the following way. Knowing the incoming and

outgoing coe3cients, one can compute the local coe3cients An and Bn, by multiplying
the T matrix with the left-hand side coe3cients A0 and B0. In the case of a resonance
state, it is possible to identify a quasi-state in the potential range, and usually a nor-
malization is required (which can be done by a division by

∫ b
a | (x)|2 dx, where a and

b are the potential boundaries).

2.2. Potential with periodic boundary conditions

The above method can be implemented in order to Fnd the spectrum and the
eigenstates of a potential embedded on a ring (i.e., periodic boundary conditions).
The periodic boundary conditions imply (where xL and xR denote the left and right
boundaries)

A0eikxL = AN+1eikxR ; (18)

B0e−ikxL = BN+1e−ikxR : (19)

Using Eqs. (9), (13), (18), and (19) one obtains(
AN+1

B0

)
=

eik(xR−xL)

T22

(
1 T12

−T ∗
12 1

)(
AN+1

B0

)
= eik(xR−xL)S

(
AN+1

B0

)
: (20)

The eigenvalues may be found by the use of the function

f(E) = det(eik(xR−xL)S − I) : (21)

A nontrivial solution for Eq. (20) occurs when f(E)=0 yielding the energy spectrum.
The solution leads to a certain ratio between AN+1 and B0. Using Eqs. (18) and (19),
it is possible to Fnd the ratio between A0 and B0. To Fnd the eigenstate itself it is
necessary to choose initial values for either A0 or B0, and then, by the use of the
transfer matrix, any local coe3cients (i.e., An and Bn) can be found. A normalization
of the eigenstate can be performed by dividing by

∫ xR
xL

| (x)|2 dx.
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2.3. Bound states of potential wells

Another class of potentials that can be treated by the � approximation is the potential
well class. In order to Fnd the spectrum of the potential well, it is more convenient to
use a negative potential that can be expanded as a sum of negative � functions. 1 The
wave function between two neighboring � functions, can be chosen to be a combination
of decaying functions

 n(x) = Ane�x + Bne−�x ; (22)

where �=
√−2mE=˝ (E¡ 0), and  n(x) correspond to the space between the (n−1)th

� and the nth �. The transfer matrix which connects  n−1 to  n space is

Tn =

(
1 + 1

2�
2m
˝2 V (xn)Lx 1

2�
2m
˝2 V (xn)Lx e−2�xn

− 1
2�

2m
˝2 V (xn)Lx e2�xn 1 − 1

2�
2m
˝2 V (xn)Lx

)
: (23)

Also here det Tn = 1, and the total T matrix is T = TNTN−1 · · ·T1T0, thus det T = 1.
From the relation(

AN+1

BN+1

)
= T

(
A0

B0

)
(24)

one can Fnd the matrix which connects the decaying coe3cients (A0 and BN+1) to the
diverging coe3cients (AN+1 and B0),(

AN+1

B0

)
=

1
T22

(
1 T12

−T21 1

)(
A0

BN+1

)
= S

(
A0

BN+1

)
: (25)

Because of physical reasons AN+1 and B0 must vanish, and thus, in order to obtain
nontrivial solution the following condition has to be fulFlled:

det S =
T11

T22
= 0 : (26)

Since T11 
= T22 the requirement (26) is simply

T11 = 0 : (27)

Thus, when Eq. (27) has achieved, an eigenvalue has been located.
The eigenstate itself can be found by starting from an arbitrary A0 (B0 = 0);

consecutive multiplication by the local Tn matrix will lead to the unnormalized state.
A normalization can be performed then.

The above description is suitable also for unbounded potentials (i.e., V (x) → ∞
when x → ∞ or x → −∞). For that, the left and right boundaries have to be su3ciently
large compared to the present energy level, such that the decaying functions drop very
sharply to 0, and additional extension of the � function approximation, either to the
left or to the right, will lead to a slightly diHerent answer.

1 In fact, it is possible to expand also a positive potential as a sum of negative � functions; it is necessary
to shift the potential such that it will be negative.
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3. Results

In this section the � potential approximation will be worked out on two well-known
potentials, the square well and the harmonic oscillator. Both examples show almost per-
fect correspondence between the � function approximation and the analytical solution.

The square well potential is formulated by

V1(x) =

{
0 when − a6x6a ;

V0 otherwise :
(28)

Deep in the well, the energy levels are approximately the same as in the inFnite well
case. Then, the approximated spectrum of V1(x) is

En =
n2�2

4a2

˝2

2m
; n = 1; 2; 3; : : : : (29)

In our calculations we used ˝ = 1 and 2m = 1. The number of � functions that were
used in the approximation is 10 000. In Fig. 2(a) the parameter values are V0 =100 and
a= �=2. In that case, the energy spectrum Eq. (28) becomes En = n2. The positions of
En are indicated by a dashed line, and they coincide with the vanishing of the diverging
parameter, |T11| (see Eq. (27)).

In Fig. 2(b) we present the transmission coe3cient T = |t|2 above the well height.
Also here, the results that were calculated by the � approximation coincide with the
exact transmission coe3cient. The diHerence between the two curves is not visible
by eye. An enlargement of the third minima of the Fgure is shown in the inset; the
diHerence between the exact transmission coe3cient and the approximated one is visible
now. Increasing the number of � function potentials in the � approximation will yield
better correspondence.

The second example we shall consider here is the harmonic oscillator

V2(x) =

{
V0x2=a2 when − a6x6a ;

V0 otherwise :
(30)

Deep in the well the spectrum of the Fnite harmonic oscillator can be approximated
by the exact spectrum of the harmonic oscillator

En = ˝
√

2V0

a2m

(
n +

1
2

)
; n = 0; 1; 2; : : : : (31)

The parameter values were chosen to be V0 = 16 and a= 8. The spectrum then becomes,
En = n + 1

2 . In Fig. 3(a), the analytical results (which are indicated by the dashed
lines) coincide (with high accuracy) with the � potential approximated spectrum. In
Fig. 3(b) we have calculated the eigenfunctions of the Frst 4 states. In the upper panel
the analytical eigenfunctions and the approximated ones are presented; the diHerence
between the two is not visible by eye. In the lower panel we have plot the actual
diHerence between the analytical eigenfunction (of the harmonic oscillator), �n(x), and
the one that was obtained by the � approximation, ��;n(x). These diHerences have
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Fig. 2. (a) |T11| coe3cient as a function of E for a square well. The analytical energy spectrum (dashed
lines) coincides with the numerical results (solid line when |T11| = 0); (b) The transmission coe3cient, T ,
above a square-well as a function of E. An enlargement of the third minima is shown the inset. The exact
solution is represented by the dashed line while the approximated solution is indicated by the solid line.

systematic structure, i.e.,

�n(x) − �n;�(x) ≈ C�n+2(x) ; (32)

where C is a very small constant (C�1). Larger number of � functions in the �
function approximation will lead to the same behavior; the order of the diHerence
between the two results will become smaller.
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Fig. 3. (a) The energy spectrum of an harmonic oscillator potential. The dashed line indicate the positions
of the exact solution and it coincides with the approximated solution curves (solid line). (b) The eigen-
functions of an harmonic oscillator. In the top panel the Frst four eigenfunctions are shown; the diHerence
between the analytical eigenfunctions �n(x) and the approximated eigenfunctions, ��;n(x), is not visible
by eye. In the bottom panel the diHerence between the analytical and the approximated eigenfunctions
is shown. As seen, this diHerence is very small ((�n(x) − ��;n(x))�1) and has a special form, namely,
�n(x) − ��;n(x) ≈ C�n+2(x).
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4. Summary

In the present study we have shown that it is possible to use a sum of � function
potentials in order to approximate 1D potentials. By the use of transfer matrices from
one side of the � potential to the other side, the transfer matrix which connects the
left-hand side of the potential wave functions to the right-hand side wave functions
is found. The S matrix, which connects the incoming waves to outgoing waves, is
built from the total transfer matrix T . By the use of the S matrix the transmission
coe3cient, as well as the reJection coe3cient can be calculated. Moreover, the same
approach can be used to calculate the energy spectrum in a potential well (by assuming
that the wavefunctions between the � potentials are exponentially decaying functions).
Resonance states above the potential well, as well as the eigenfunctions in the potential
well can be found as well. The � function approximation was examined on two well
known examples, the square-well and the harmonic oscillator potentials.

It should be noted that the computation time of calculating transmission coe3cients,
as well as, energy spectra and eigenfunctions is small (order of seconds on a Pentium II
350 MHz PC) even when using a large number of � functions in the approximation.
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